ArticlePDF Available

Abstract and Figures

Knowledge of soil characteristics in areas where activities related to the environment are developed, such as Porto Alegre Botanical Garden (JB-PoA), is a fundamental condition for the sustainable use of this natural resource. The objective of this study was to characterize, classify and evaluate some issues about soil formation in Porto Alegre Botanical Garden, as well as relate their distribution on the landscape according to environmental characteristics. For the morphological description and collecting samples four profiles were selected (P1 to P4), located in the summit-shoulder transition, backslope, footslope and toeslope, respectively. Granulometric distribution of the P1 and P3 profiles indicated sharp textural gradient, with presence of textural and “plânico” B horizons, respectively, according to Brazilian System of Soil Classification. There is predominance of low values of pH, and low base saturation, with exception of P4, indicating probable deposition of solution material at this area. The Fed/Fes relationship was greater in the profile located in the summit-shoulder transition (P1), indicating higher weathering. The Feo/Fed relationship increased in P3 and P4 profiles, indicating greater participation of iron oxides of low crystallinity in reducing environment. The occurrence of some pedogenic processes may be inferred, like lessivage in P1 (Ultic Hapludalf), due to clay skins and higher values of fine clay:total clay relationship in subsurface; ferrolysis and gleization, by low pH value and high Feo/Fed relationship in E and EB horizons of P3 (Oxyaquic Hapludalf), being the last also present in P4 (Humaqueptic Endoaquent), indicating gleization occurrence.
Content may be subject to copyright.
Soil variability in different landscape... 477
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
SOIL VARIABILITY IN DIFFERENT LANDSCAPE POSITIONS IN THE
PORTO ALEGRE BOTANICAL GARDEN, SOUTHERN BRAZIL
Variabilidade de solos em posições distintas da paisagem no
Jardim Botânico de Porto Alegre, sul do Brasil
Luís Fernando da Silva1, Paulo César do Nascimento2, Alberto Vasconcellos Inda2, Edsleine Ribeiro Silva2
ABSTRACT
Knowledge of soil characteristics in areas where activities related to the environment are developed, such as Porto Alegre
Botanical Garden (JB-PoA), is a fundamental condition for the sustainable use of this natural resource. The objective of this study
was to characterize, classify and evaluate some issues about soil formation in Porto Alegre Botanical Garden, as well as relate their
distribution on the landscape according to environmental characteristics. For the morphological description and collecting samples
four proles were selected (P1 to P4), located in the summit-shoulder transition, backslope, footslope and toeslope, respectively.
Granulometric distribution of the P1 and P3 proles indicated sharp textural gradient, with presence of textural and “plânico” B
horizons, respectively, according to Brazilian System of Soil Classication. There is predominance of low values of pH, and low
base saturation, with exception of P4, indicating probable deposition of solution material at this area. The Fed/Fes relationship was
greater in the prole located in the summit-shoulder transition (P1), indicating higher weathering. The Feo/Fed relationship increased
in P3 and P4 proles, indicating greater participation of iron oxides of low crystallinity in reducing environment. The occurrence
of some pedogenic processes may be inferred, like lessivage in P1 (Ultic Hapludalf), due to clay skins and higher values of ne
clay:total clay relationship in subsurface; ferrolysis and gleization, by low pH value and high Feo/Fed relationship in E and EB
horizons of P3 (Oxyaquic Hapludalf), being the last also present in P4 (Humaqueptic Endoaquent), indicating gleization occurrence.
Index terms: Soil-landscape relationship; pedogenic processes; lessivage; ferrolysis; gleization.
RESUMO
O conhecimento das características dos solos em áreas onde são desenvolvidas atividades relacionadas ao meio ambiente,
como no Jardim Botânico de Porto Alegre (JB-PoA), é condição fundamental para o uso sustentável desse recurso natural. Objetivo-
se, com este estudo, foi caracterizar, classicar e avaliar aspectos da formação dos solos do Jardim Botânico de Porto Alegre, bem
como relacionar a sua distribuição na paisagem às características do ambiente. Para a descrição morfológica e coleta de amostras
foram selecionados quatro pers (P1 a P4) localizados, respectivamente, no terço superior, terço médio, sopé e planície de inundação.
A granulometria dos pers P1 e P3 indicou gradiente textural acentuado, com horizonte B textural e B plânico, respectivamente,
segundo o Sistema Brasileiro de Classicação de Solos. A relação Fed/Fes foi maior no perl do terço superior (P1), indicando maior
intemperismo. Houve predomínio de baixos valores de pH e de distrosmo, com exceção do P4, indicando provável deposição de
materiais em solução nessa área. A relação Feo/Fed aumentou nos pers P3 e P4, com maior participação dos óxidos de ferro de
baixa cristalinidade em ambiente redutor. Alguns processos de formação predominantes podem ser inferidos, como a lessivagem,
pela cerosidade e maior relação argila na:argila total em P1 (Argissolo); a ferrólise e gleização, pelo baixo valor de pH e alta relação
Feo/Fed nos horizontes E e EB de P3 (Planossolo), sendo esta última também presente em P4 (Gleissolo), indicando ocorrência
de gleização.
Termos para indexação: Relação solo-paisagem; processos pedogenéticos; lessivagem; ferrólise; gleização.
1Universidade Federal do Rio Grande do Sul/UFRGS – Departamento de Solos – 91540-000 – Porto Alegre – RS – Brasil – luisf_agro@yahoo.com.br
2Universidade Federal do Rio Grande do Sul/UFRGS – Departamento de Solos – Porto Alegre – RS – Brasil
Received in april 14, 2015 and approved in june 2, 2015
INTRODUCTION
Knowledge of the characteristics of natural
resources in areas where are developed activities related
to the environment is a fundamental condition for the
sustainable use of these resources. In these, the soil
occupies a prominent position, because it is expression
of environmental factors related their formation (Buol et
al., 2003). In areas for Environmental Conservation Unit,
soil characterization constitutes a subsidy for planning
in order to optimize the use of this resource within the
inherent activities to these places. In the Porto Alegre
Botanical Garden (JB-PoA), site where are carried out
research activities of ora of the Rio Grande do Sul State
(RS), environmental education, leisure and recreation,
there are no detailed studies that investigate the soil
characteristics of park associated with their formation
environment.
In the city of Porto Alegre, preliminary soil
survey (Schneider et al., 2008) identied, according to
SILVA, L. F. da. et al.
478
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
Brazilian System of Soil Classication (EMBRAPA,
2013), the occurrence of Argissolo on top and slope
of hills with gently sloping relief; Cambissolo and
Neossolo in granitic hills with moderately steep and
steep relief; and Hydromorphic/Aluvial soils in low
and oodplain areas. The steep relief of hill areas
contributes to the formation of thinner soil and chemical
characteristics which reect a low weathering degree
(Medeiros et al., 2013).
The insertion area of JB-PoA shows smooth
relief and less steep than hill areas of Porto Alegre. The
geomorphic characteristics indicate an area with knoll
forms, with at or convex summit positions, and more
gentle slopes in relation to hill areas (Moura; Dias, 2012).
These features are reected in major water inltration,
resulting in deeply weathered soil proles. Based on this
knowledge, the hypothesis is that specic characteristics
of relief and parent material of the study area imply in
similarities with hill areas, but with formation processes
in greater denition and intensity, resulting in soils with
high degree of pedogenetic development. The objectives
were: characterize and classify the representative soil
proles of the occurrence of taxonomic units in the JB-
PoA, according to Brazilian System of Soil Classication
(EMBRAPA, 2013) and the Soil Taxonomy (Soil
Survey Staff, 2010); and indicate the inuence of soil-
environment relationship, through soil forming process
of JB-PoA.
MATERIAL AND METHODS
The Porto Alegre Botanical Garden (JB-PoA) covers an
area of 39 hectares, limited to the coordinates 30°02’51” and
30°03’20” (S) – 51°10’19” and 51°10’51” (W) in the urban area
of Porto Alegre (FZB, 2009). The weather is humid subtropical
with a long-term average annual temperature of 19.5 °C and
long-term average annual rainfall of 1,300 mm, with rainfall
well distributed throughout the year. The long-term annual
effective rainfall (precipitation minus evapotranspiration) is
430 mm (SEMA, 2010). The parent material is composed of
“Gnaisse Porto Alegre” and “Alterito Serra de Tapes”. The
gneiss has dark color to black, with quartz, feldspars and biotite
composition. The alterite was formed from coluvial deposits,
consisting of kaolinite and iron oxides (Schneider et al., 2008).
The local relief consists in smooth hills, with inuence of
aluvial terraces of the “Arroio Dilúvio”.
To study the soil genesis were selected four proles
(Figure 1), located in the summit-shoulder transition (P1),
sloping from 13 to 15%; backslope (P2), sloping from 18
to 20%; footslope (P3), sloping from 0 to 2%; toeslope
(P4), sloping from 2 to 3%.
The trenches were opened to the description of the main
pedogenetic horizons of the soil, according to methodology
described by Santos et al. (2005). Horizons Bt3 (P1), Cr2 and
Cr3 (P2), Btg2 (P3) and Cg2 (P4), were collected by auger. The
soil samples were dried, ground and sieved in mesh 2 mm for
separation of ne earth fraction dried in air (TFSA).
Figure 1: Schematic representation of topographic location of the study proles.
Soil variability in different landscape... 479
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
The granulometric distribution and clay dispersed
in water were determined according to EMBRAPA (1997),
while the ne clay fraction (< 0.2 µm) according to method
of Jackson (1956). With these data were calculated the ne
clay/total clay relationship (Claf/Cla) and soil occulation
(SoF). To identify possible lithologic discontinuities
in the soil proles were calculated ne sand/total sand
relationship (FS/TS) and the uniformity value (VU)
(Schaetzl, 1998).
In relation to chemical characteristics, the pH in
water and KCl, the exchangeable cations (Ca2+, Mg2+, Na+,
K+ and Al3+), the potential acidity (H++Al3+) and the organic
carbon content were determined according to EMBRAPA
(1997). Were calculated cation exchange capacity (CEC),
clay fraction activity (CFA) and base saturation (V). The
sulfuric attack was carried out to quantify the Fe2O3, Al2O3
and SiO2 constituents of clay minerals (EMBRAPA, 1997).
Selective dissolutions were performed to iron oxides with
dithionite-citrate-bicarbonate (DCB) at 80 °C by Mehra and
Jackson (1960), and ammonium oxalate (OXA) according to
Schwertmann (1964) to determine the Fe and Al content in
pedogenic oxides (Fed; Ald) and low crystallinity (Feo, Alo).
The content of the elements Fe, Si and Al was determined
by atomic absorption spectroscopy. With these data were
calculated Ki index, Fed/Fes and Feo/Fed relationships, used
to evaluate the soil weathering stage and the crystallinity
degree of oxides (Kämpf; Curi; Marques, 2009).
Mineralogical composition was determined by
X-ray diffractometry analysis, conducted in sand, silt and
clay granulometric fractions, with a Bruker-D2 Phaser
equipment in non-oriented blades (powder samples). The
samples were irradiated in the range from 4 to 40° 2θ, with
a scan rate of 2° 2θ min-1. Halite was added as an internal
standard for the measurements of the spacings in clay
fraction. The results are interpreted according Brindley
and Brown (1980).
RESULTS AND DISCUSSION
The soils developed significant variation of
thickness (Table 1), being observed thicker solum in P1
(Ultic Hapludalf) and P3 (Oxyaquic Hapludalf). The
greatest slope (20%) in P2 (Oxic Dystrudept) inuenced
its low pedogenetic development compared to P1, through
the low water inltration, which resulted lower weathering
in depth (Kämpf; Curi; Marques, 2009). This characteristic
of P2 is evidenced by contact with Cr horizon less than
90 cm depth (Figure 2). The P4 prole (Humaqueptic
Endoaquent) also showed lower development, having
contact with the Cg horizon from 40 cm depth, which can
be attributed to the stagnant water and lower weathering
intensity in this landscape position.
In the proles of upper portion of the landscape
(P1 and P2) there are red and yellow colors (hues between
2.5YR and 7.5YR), which indicates the predominance of
crystalline iron oxides as hematite (Fe2O3) and goethite
(FeOOH) in good to moderate drainage conditions
(Kämpf; Schwertamnn, 1983).
In the Bi horizon of P2, the more reddish (2.5YR
4/8) and variegate colors (7.5YR 4/6) in condition of good
drainage, indicated a weathered clay matrix, with presence
of minerals that have a low stage of weathering (Schneider;
Klamt; Giasson, 2007). Gray colors in the P3 and P4
proles suggest the occurrence of anaerobic bacterial
activity, which reduces soil oxidized compounds, resulting
in low chroma related to iron mobility and occurrence of
soil gleization (Ponnamperuma, 1972).
In the Bt2 horizon of P1, the presence of clay skins
coating surface of aggregates and the blocky structure may
be related to illuvial clays (Costa; Libardi, 1999). The
surface horizons of the proles studied showed weak or
moderate structure, small to medium, granular or crumb,
condition associated with increase of organic matter
on the soil surface. The massive structure in the deeper
horizons of P2 (Cr), P3 (Btg1) and P4 (Cg1) shows the
little pedogenetic evolution.
The P1 and P3 proles showed sharp textural
gradient (Table 2). In the P1 prole, the B/A textural
relationship was 1.88, classied as B textural horizon.
In the P3 prole, the abrupt textural change between EB
and Btg1 horizons, associated with hue 10YR and chroma
lower or equal to 3 in the B horizon, classied it as B
“plânico” horizon (EMBRAPA, 2013).
Unlike P1 and P3, the P2 and P4 proles showed
little textural variation between horizons. However, in P2
stood out the clayey texture compared to other landscape
proles, being possible the change in parent material.
According to Teramoto, Lepsch and Vidal-Torrado (2001),
marked differences in soil texture on a topographic transect
may indicate the variation of parent material.
In all proles the variation of ne sand/total sand
relationship between horizons was lower than 0.14, which
combined with uniformity value (VU) lower than 0.60, rule
out possibility of lithologic discontinuity between horizons
of each prole (Schaetzl, 1998). The P1 prole showed
low soil occulation in A and AB horizons, favoring the
vertical transport of ne clay by water from eluvial A
horizon and the deposition in illuvial B horizon, when the
pores of smaller size are lled by clay (Almeida; Klamt;
Kämpf, 1997; Santos et al., 2010).
SILVA, L. F. da. et al.
480
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
Table 1: Morphological attributes of Porto Alegre Botanical Garden soils.
Hor(1) Depth, moist Munsell color, texture, structure, moist consistence, waxiness, transition
-------------------(P1) Ultic Hapludalf-------------------
A0-15 cm; 7.5YR 4/3 (moist); sandy loam; weak/moderate, small/medium, granular; very friable; slightly plastic
and slightly sticky; gradual and plan boundary.
AB 15-46 cm; 7.5YR 3/3 (moist); sandy clay loam; moderate, small/medium, subangular blocky; very friable;
slightly plastic and sticky; gradual and plan boundary.
Bt1 46-68 cm; 7.5YR 4/6 (moist); clay loam; moderate, medium/big, subangular blocky; friable; plastic and sticky;
clear and plan boundary.
Bt2 68-102 cm; 5YR 4/6 (moist); clay loam; moderate, medium/big, subangular blocky; friable; plastic and sticky;
common and moderate waxiness.
Bt3 102-135+ cm (collected by auger); 5YR 4/6 with small and little mottle 10YR 5/6 (moist); clay loam/clay.
----------------------(P2) Oxic Dystrudept----------------------
A0-25/30 cm; 10YR 3/4 (moist); sandy clay loam; moderate, small, granular, moderate, small/medium, subangular
blocky; very friable; slightly plastic and slightly sticky; clear and irregular boundary.
A/B 25/30-55/60 cm; 2.5YR 4/8 with small and little mottle 10YR 3/6 (moist); clay loam; moderate, small/medium,
subangular blocky; rm; slightly plastic and sticky; clear and wavy boundary.
Bi 55/60-80/85 cm; 2.5YR 4/8 with variegate 7.5YR 4/6 (moist); clay loam; moderate, medium/big, subangular
blocky; rm; slightly plastic and sticky; gradual and wavy boundary.
Cr1 80/85-120 cm; 5YR 5/8 (moist); sandy clay/sandy clay loam; massive, which breaks in subangular blocky;
very friable; slightly plastic and slightly sticky.
Cr2 120-140 cm (collected by auger); 5YR 4/6 with small and little mottle 2.5Y 8/1 (moist); sandy clay/sandy
clay loam.
Cr3 140-160+ cm (collected by auger); 7.5YR 8/4 (moist); sandy clay/sandy clay loam.
-------------------(P3) Oxyaquic Hapludalf------------------
A0-20/27 cm; 10YR 3/3 (moist); loamy sand; moderate, small, granular, moderate, small/medium, subangular
blocky; very friable; not plastic and not sticky; clear and wavy boundary.
E20/27-60/62 cm; 10YR 4/4 (moist); sand; moderate, small, granular, moderate, small, subangular blocky; loose;
not plastic and not sticky; gradual and plan/wavy boundary.
EB 60/62-105 cm; 7.5YR 4/3 (moist); sandy loam; moderate, medium/big, subangular blocky; friable; slightly
plastic and slightly sticky; clear and plan boundary.
Btg1 105-120 cm; 10YR 4/3 (moist); sandy clay loam; massive; plastic and sticky.
Btg2 120-150+ cm (collected by auger); 10YR 6/1 with medium and abundant mottle 10YR 5/8 (moist); clay; rm;
very plastic and sticky.
-----------------(P4) Humaqueptic Endoaquent-----------------
A0-15 cm; 7.5YR 3/2 (moist); sandy clay loam; crumb; very friable; not plastic and slightly sticky; clear and
plan boundary.
AC 15-40 cm; 10YR 3/2 with small and little mottle 5YR 4/6 (moist); sandy clay loam; weak, medium, subangular
blocky; friable; slightly plastic and slightly sticky; clear and plan boundary.
Cg1 40-60 cm; 10YR 3/1 (moist); sandy clay loam; massive; slightly plastic and slightly sticky.
Cg2 60-90+ cm (collected by auger); 10YR 4/2 with small and little mottle 10YR 5/6 (moist); clay loam; very
plastic and sticky.
(1) Hor: horizon.
Soil variability in different landscape... 481
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
Figure 2: Looking from left to right, prole image of the Ultic Hapludalf (P1), Oxic Dystrudept (P2), Oxyaquic
Hapludalf (P3) and Humaqueptic Endoaquent (P4), showing the variation of solum depth (depth of A and B horizons)
related to soil development.
The occurrence of clay skins in the Bt horizon and
increase of ne clay/total clay relationship from A horizon
to Bt horizon indicated lessivage of clays in P1. Besides
the low soil occulation be a prerequisite to lessivage,
according to Quénard et al. (2011) the translocation of clays
is favored in humid weather (when the precipitation is higher
than evapotranspiration at least 150 mm) and in planar or
sub-planar surfaces. Therefore, the humid weather of Porto
Alegre and the location of P1 prole (summit-shoulder
transition) in the landscape allow lessivage process.
The soil proles showed low pH with values lower
than 5.5 (Table 3). The pH KCl are smaller than 5.0 in all
proles, and in conjunction with negative ΔpH (pH KCl –
pH H2O), indicate the absence of “ácrico” character and,
therefore, the predominance of negative charges in all proles
(EMBRAPA, 2013). The higher base saturation found in the
A and Cg2 horizons of P4 seems indicate the importance of
the concave relief in the formation of eutrophic character,
with the lateral movement of soluble cations by water ow,
towards the upper third for the ood area. The CEC of clay
fraction (CFA) of B or C horizons in all proles was lower
than 27 cmolc kg-1, featuring soils with low clay activity.
In the P3 prole, besides the sharp acidity (pH of
4.5 in water) in E and EB horizons, soil CEC is less than
4.0 cmolc kg-1. According to Brinkman (1970) the soil
condition under successive cycles of wetting and drying
favors the destruction of clay minerals by pedogenetic
process of ferrolysis, resulting in horizons with low pH,
low clay content and low soil CEC, these characteristics
found in P3. These results are similar to those obtained by
Mafra et al. (2001), noting that ferrolysis is manifested in
sharp acidity (pH 3.0 to 4.0) and produces sandy horizons.
Also in the Cg1 horizon of P4, low pH (4.4) associated
with the lower clay content and exchangeable cations, even
as high exchangeable aluminum content, may indicate an
initial process of ferrolysis of clays in this prole section.
Barbiero et al. (2010) monitored changes in pH and
electrical conductivity of soil at different times of the year
to explain the occurrence of ferrolysis. During the rainy
season, they observed an increase in the pH of soil solution
due to reduction reactions that consume H+ ions. At the end
of the rainy season happened high weathering, resulting
in low pH, where oxidation reactions in soil produce H+
protons which penetrate the octahedral structure of clay
minerals, destabilizing them.
The Fed/Fes relationship in all proles showed
values between 0.53 and 0.98 (Table 4), which indicates
a moderate to advanced weathering for all soils. In the
P2 prole, the high Fed/Fes relationship in A, A/B and
Bi horizons identies front of weathering, with clear
reduction in this value in Cr1 horizon less weathered.
However, the Cr3 horizon showed an increase of Fed/Fes
relationship (0.89), highlighting the sudden decrease in Fes
content of Cr3. This data allows note small amount of iron
in this horizon, which was observed in eld descriptions
through the light color and low chroma. Smaller values of
Fed/Fes relationship in the surface horizons of P3 and P4
are related to lower oxidation environment and subject to
lower rates of weathering (Pereira; Anjos, 1999; Santos
et al., 2010).
SILVA, L. F. da. et al.
482
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
The Ki index in all proles was higher than 3.0,
not agreeing with values of low clay activity and Fed/Fes
relationship moderate to high, that conrm a moderate to
advanced weathering for all soils. An explanation for the
high Ki index observed in all proles is the solubilization
of silicon from silt and sand fractions, indicating inadequate
extraction method for soils with high quartz content in these
fractions (Oliveira, 2011). The high Ki index in P3 reinforces
this hypothesis, given the fact that the silt and sand fractions
have signicant participation in soil texture. Remarks of this
condition were cited in Rolim Neto et al. (2009), Medeiros
et al. (2013), and Nascimento, Lani and Zoffoli (2013).
In P1 and P2, the Feo/Fed relationship was equal
or less than 0.1, indicating the predominance of crystalline
forms such as hematite and goethite (Pereira; Anjos, 1999;
Meireles et al., 2012). This condition is coherent with the
soil location in landscape, because they are located in upper
positions and good drainage, therefore favorable condition
for formation of crystalline oxides.
The higher values of Feo/Fed relationship were
observed in P3 and P4, indicating greater participation of low
crystallinity iron oxides, which represents an environment
with poor drainage and favorable to pedogenetic process
of gleization (Costa; Bigham, 2009). In the Btg2 and Cg2
Table 2: Physical attributes of Porto Alegre Botanical Garden soils.
Hor Gra
%
CS FS Silt Clay FS/TS VU Sil/Cla Claf/
Cla
SoF
%
------------g kg-1-------------
(P1) Ultic Hapludalf
A5 396 284 150 170 0.42 -0.41 0.88 0.60 29
AB 4 251 249 220 280 0.50 0.04 0.79 0.69 11
Bt1 4 214 196 190 400 0.48 -0.06 0.48 0.78 16
Bt2 3 181 159 190 470 0.47 0.22 0.40 0.77 21
Bt3 3 232 188 180 400 0.45 -0.45 0.69 100
(P2) Oxic Dystrudept
A11 213 177 200 410 0.45 -0.03 0.49 0.71 13
A/B 12 166 114 190 530 0.41 0.33 0.36 0.73 82
Bi 17 181 69 180 570 0.28 0.51 0.32 0.67 97
Cr1 8 288 92 170 450 0.24 -0.08 0.38 0.44 100
Cr2 8 246 74 170 510 0.23 0.14 0.33 0.56 94
Cr3 6 315 115 160 410 0.27 -0.39 0.16 100
(P3) Oxyaquic Hapludalf
A1 478 262 160 100 0.35 -0.32 1.60 0.61 30
E2397 333 180 90 0.46 0.24 2.00 0.64 28
EB 1 431 229 230 110 0.35 -0.56 2.09 0.58 14
Btg1 1 232 178 360 230 0.43 0.23 1.57 0.58 9
Btg2 1 270 200 320 210 0.43 -1.52 0.58 5
(P4) Humaqueptic Endoaquent
A 2 288 232 270 210 0.45 0.09 1.29 0.67 26
AC 5 307 223 270 200 0.42 0.26 1.35 0.70 33
Cg1 4 356 264 190 190 0.43 -0.35 1.00 0.70 26
Cg2 4 240 190 280 290 0.44 -0.97 0.58 3
* Hor: horizon. Gra: gravel. CS: coarse sand. FS: ne sand. VU: uniformity value = {[(Silt+FS)/(TS-FS)]SURFACE HORIZON / [(Silt+FS)/
(TS-FS)]SUBSURFACE HORIZON} – 1,0. FS/TS: ne sand/total sand relationship. Sil/Cla: silt/clay relationship. Claf/Cla: ne clay/total
clay relationship. SoF: soil occulation.
Soil variability in different landscape... 483
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
horizons of P3 and P4, respectively, it perceives a decrease
of Feo/Fed relationship, indicating greater participation of
crystalline forms of iron oxides, which can be attributed to
the presence of mottles in these horizons.
Duarte et al. (2000) observed these decreasing
values in proles with poor drainage, because the iron
minerals precipitated in mottles had higher degree of
crystallinity than those located in the soil matrix. In the EB
horizon of P3, the high values of Feo/Fed (0.60) and Alo/
Ald (0.50) may be related to the existence of temporary
water table in this prole section, with the interference
of ferrolysis in the low crystallinity of iron oxides and
aluminosilicates, above of the clayey Btg1 horizon
(Coelho; Vidal-Torrado, 2003).
The X-ray diffraction (Figure 3) in the sand and silt
of P1, P2, P3, and similarly P4 (data not shown) showed the
occurrence of feldspar and quartz, with higher occurrence
of feldspar in P2. The predominance of kaolinite in the
clay fraction of all soils is related to an environment with
moderate to advanced weathering, which was conrmed
by low clay CEC. The presence of mica reections in the
clay of P2 indicated that the steep position occupied in
the landscape (transition to steep slope relief) caused the
lower weathering compared to other soils.
Table 3: Chemical attributes of Porto Alegre Botanical Garden soils.
Hor
pH --------------------------Sorption complex-------------------------- VmSOC
H2OKCl Ca2+ Mg2+ K+Na+SB H+Al Al3+ CEC CFA
-------------------------------cmolc kg-1----------------------------- ---%--- g kg-1
(P1) Ultic Hapludalf
A5.2 4.2 1.3 0.6 0.26 0.02 2.18 2.6 0.2 4.78 28 46 89.7
AB 5.2 4.1 2.0 0.5 0.20 0.02 2.72 3.0 0.6 5.72 20 47 18 5.0
Bt1 5.0 3.8 1.4 0.7 0.21 0.01 2.32 4.5 1.8 6.82 17 34 44 4.9
Bt2 4.9 4.0 1.1 1.2 0.10 0.02 2.42 3.0 1.1 5.42 12 44 31 2.2
Bt3 5.0 3.9 1.1 1.3 0.09 0.02 2.51 3.1 1.2 5.61 14 45 32 1.8
(P2) Oxic Dystrudept
A5.2 4.3 2.5 1.8 0.73 0.03 5.06 3.9 0.5 8.96 22 57 9 12.0
A/B 4.9 3.9 1.8 1.5 0.62 0.03 3.95 4.7 2.1 8.65 16 46 34 8.5
Bi 4.9 3.9 1.2 1.6 0.30 0.03 3.13 4.5 2.6 7.63 13 41 46 2.5
Cr1 5.0 3.9 0.7 1.2 0.11 0.03 2.04 3.8 2.2 5.84 13 34 52 1.3
Cr2 4.9 3.8 0.5 1.1 0.09 0.03 1.72 4.3 3.0 6.02 12 28 64 2.7
Cr3 5.0 3.9 0.5 1.0 0.08 0.02 1.60 2.8 2.7 4.40 11 36 63 1.0
(P3) Oxyaquic Hapludalf
A4.9 3.8 0.6 0.3 0.10 0.01 1.01 3.2 0.8 4.21 42 24 44 6.8
E 4.5 3.7 0.4 0.1 0.04 0.01 0.55 2.6 1.1 3.15 35 19 65 1.7
EB 4.5 3.8 0.4 0.1 0.05 0.02 0.57 2.8 1.0 3.37 28 18 63 2.3
Btg1 4.8 3.7 0.7 0.4 0.05 0.04 1.19 3.2 1.1 4.39 20 27 48 3.2
Btg2 5.1 3.7 1.2 1.3 0.08 0.10 2.68 1.7 0.6 4.38 21 61 18 0.8
(P4) Humaqueptic Endoaquent
A5.4 4.8 6.6 1.5 0.13 0.22 8.45 3.3 0.1 11.75 56 72 1 27.0
AC 4.8 4.0 2.3 0.7 0.10 0.15 3.25 5.0 0.4 8.25 41 40 11 18.0
Cg1 4.4 3.6 0.9 0.5 0.13 0.07 1.60 3.6 0.9 5.20 27 31 36 6.3
Cg2 5.7 4.6 1.9 1.8 0.23 0.11 4.04 1.2 0.1 5.24 18 77 2 2.6
* Hor: horizon; SB: sum of exchangeable bases; CEC: cation exchange capacity in pH 7.0; CFA: clay fraction activity; V: base
saturation; m: aluminum saturation; SOC: soil organic carbon.
SILVA, L. F. da. et al.
484
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
The P1 profile, with B textural horizon was
classied as Argissolo Vermelho-Amarelo Distróco típico
(EMBRAPA, 2013), being classied as Ultic Hapludalf
in the Soil Taxonomy (Soil Survey Staff, 2010). The
attributes of P2 prole did not suggest a more developed
formation process, and the occurrence of B incipiente
horizon was decisive to classify it as Cambissolo Háplico
Tb Distróco típico, being classied as Oxic Dystrudept.
In the P3 prole, the presence of B “plânico” diagnostic
horizon, according EMBRAPA (2013), defined the
occurrence of Planossolo Háplico Distróco gleissólico,
being classied as Oxyaquic Hapludalf. In the P4 prole,
the presence of glei horizon and organic carbon content
suitable for A “húmico” horizon (EMBRAPA, 2013),
dened as Gleissolo Melânico Tb Eutróco típico, being
classied as Humaqueptic Endoaquent.
Table 4: Content of sulfuric attack oxides (Fe2O3, SiO2, Al2O3), oxides extracted by dithionite-citrate-bicarbonate
(Fe2O3, Al2O3), oxides extracted by ammonium oxalate (Fe2O3, Al2O3), and relationship between them.
Hor
----Oxides by sulfuric----
attack
Ki
DCB OXA Relationship
Fe2O3SiO2Al2O3Fe2O3d Al2O3d Fe2O3o Al2O3oFeo/
Fed
Alo/
Ald
Fed/
Fes
-----------g kg-1----------- ------------------g kg-1------------------
(P1) Ultic Hapludalf
A10.3 44.4 21.6 3.50 8.7 4.8 1.3 1.2 0.15 0.25 0.84
AB 18.1 97.6 46.1 3.60 17.7 9.6 1.7 2.9 0.10 0.30 0.98
Bt1 30.6 166.0 82.3 3.43 21.9 13.2 2.2 4.3 0.10 0.33 0.72
Bt2 35.8 194.1 105.0 3.14 27.6 14.2 2.3 4.3 0.08 0.30 0.77
Bt3 26.0 171.3 78.4 3.71 20.4 10.7 2.1 3.9 0.10 0.36 0.78
(P2) Oxic Dystrudept
A27.5 163.5 72.0 3.86 22.0 11.1 2.0 3.8 0.09 0.34 0.80
A/B 42.2 221.4 111.1 3.39 39.1 15.7 2.4 4.8 0.06 0.31 0.93
Bi 40.5 223.4 122.5 3.10 32.0 13.3 2.5 4.9 0.08 0.37 0.79
Cr1 29.8 195.5 101.1 3.29 17.3 7.2 1.4 3.2 0.08 0.44 0.58
Cr2 25.0 192.7 98.1 3.34 18.4 8.7 1.7 3.3 0.09 0.38 0.74
Cr3 7.3 100.3 49.1 3.47 6.5 4.6 0.6 1.4 0.09 0.30 0.89
(P3) Oxyaquic Hapludalf
A8.1 37.6 13.7 4.66 7.0 3.3 1.6 0.8 0.23 0.24 0.86
E 7.4 38.5 16.6 3.95 6.1 3.2 1.5 0.9 0.25 0.28 0.82
EB 7.9 48.9 16.1 5.15 7.5 3.6 4.5 1.8 0.60 0.50 0.95
Btg1 19.8 77.1 37.5 3.50 12.4 5.3 3.7 1.6 0.30 0.30 0.63
Btg2 25.5 83.6 32.3 4.40 16.6 3.7 2.7 0.5 0.16 0.14 0.65
(P4) Humaqueptic Endoaquent
A 20.8 87.0 35.6 4.16 16.9 5.1 8.9 2.1 0.53 0.41 0.81
AC 16.6 70.9 39.0 3.09 12.6 4.6 4.7 1.8 0.37 0.39 0.76
Cg1 13.3 79.4 42.3 3.19 7.5 4.0 2.9 1.7 0.39 0.43 0.56
Cg2 17.9 119.9 67.1 3.04 9.5 5.5 2.0 2.1 0.21 0.38 0.53
* Ki: relationship (1.7*SiO2)/Al2O3. Feo: Fe2O3 extracted by ammonium oxalate. Alo: Al2O3 extracted by ammonium oxalate. Fed:
Fe2O3 extracted by dithionite-citrate-bicarbonate. Ald: Al2O3 extracted by dithionite-citrate-bicarbonate. Fes: Fe2O3 extracted by
sulfuric attack.
Soil variability in different landscape... 485
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
CONCLUSIONS
The soil distribution in the landscape of the
Porto Alegre Botanical Garden followed the form
observed in hill and knoll areas of Porto Alegre,
with major pedogenic development in P1 (depth, soil
forming process development), whereas incipient soil
development occurred in P2, in condition of steep
slope, which was corroborated by high presence of
feldspar and mica. It is believed that steep slope implies
lower inltration of water in this landscape position,
affecting the clay translocation in depth (non-occurrence
of lessivage) or the progress of other soil forming
processes.
The good drainage in summit-shoulder transition
and backslope, and the sharp hydromorphism in footslope
and toeslope positions, showed the inuence of the relief
forms in the soil genesis, which was corroborated by
attributes like soil color and degree of crystallinity of iron
oxides. The highest degree of soil weathering was observed
in P1 located in upper third of landscape, not in steep slope,
which was conrmed by the high Fed/Fes relationship.
The lessivage process could be inferred in P1 by
clay skins and increase of ne clay/total clay relationship
until the beginning of illuvial horizon; while the ferrolysis
and gleization processes were indicated by low pH and high
Feo/Fed relationship in E and EB horizons of P3, being the
last also present in P4, indicating occurrence of gleization.
Figure 3: X-ray diffraction of sand, silt and clay of the pedogenetic horizons of P1, P2 and P3. Qz quartz; Ft
feldspar; Mc – mica; 2:1 – clay minerals 2:1; Ct – kaolinite; Gt – goethite; Hm – hematite; Ha – halite.
SILVA, L. F. da. et al.
486
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
ACKNOWLEDGMENTS
To “Fundação Zoobotânica” of Rio Grande do Sul
State (FZB-RS), for supporting the study. To biologist
Robberson Setubal and agronomist Walmir Gamboa, for
their efforts to carry out the work. To “Conselho Nacional
de Desenvolvimento Cientíco e Tecnológico” (CNPq
471446/2012-2) and “Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior” (CAPES), for the nancial
support and scholarship to the rst author.
REFERENCES
ALMEIDA, J. A.; KLAMT, E.; KÄMPF, N. Gênese do
contraste textural e da degradação do horizonte B de um
Podzólico Vermelho-Amarelo da Planície Costeira do
Rio Grande do Sul. Revista Brasileira de Ciência do
Solo. 21(2):221-233, 1997.
BARBIERO, L. et al. Ferrolysis induced soil
transformation by natural drainage in Vertisols of sub-
humid South India. Geoderma. 156(3):173-188, 2010.
BRINDLEY, G. W.; BROWN, G. Crystal structures of
clay minerals and their X-ray identication. London:
Mineralogical Society, 1980. 495p.
BRINKMAN, R. Ferrolysis, a hydromorphic soil
forming process. Geoderma. 3(3):199-206, 1970.
BUOL, S. W. et al. Soil Genesis and Classication.
Yowa: Blackwell Publishing, 2003. 494p.
COELHO, M. R.; VIDAL-TORRADO, P.
Caracterização e gênese de pers plínticos
desenvolvidos de arenito do Grupo Bauru: I - química.
Revista Brasileira de Ciência do Solo. 27(3):483-494,
2003.
COSTA, A. C. S.; BIGHAM, J. M. Óxidos de ferro. In:
ALLEONI, L. R. F.; MELO, V. F. (Eds.). Química e
mineralogia do solo. Viçosa: Sociedade Brasileira de
Ciência do Solo, 2009. p.506-520.
COSTA, A. C. S.; LIBARDI, P. L. Caracterização
físico-hídrica de um perl de terra roxa estruturada
latossólica pelo método do perl instantâneo. Revista
Brasileira de Ciência do Solo. 23(3):669-677, 1999.
DUARTE, M. N. et al. Mineralogia, química e
micromorfologia de solos de uma microbacia nos
Tabuleiros Costeiros do Espírito Santo. Pesquisa
Agropecuária Brasileira. 35(6):1237-1250, 2000.
EMPRESA BRASILEIRA DE PESQUISA
AGROPECUÁRIA - EMBRAPA. Manual de
métodos de análise de solo. 2.ed. Rio de Janeiro,
1997. 212p.
______. Sistema Brasileiro de Classicação de Solos.
3.ed. Brasília, 2013. 353p.
FUNDAÇÃO ZOOBOTÂNICA DO RIO GRANDE
DO SUL - FZB. Jardim Botânico de Porto Alegre: 50
anos conservando a ora gaúcha. Porto Alegre: Jardim
Botânico de Porto Alegre, 2009. 72p. (Publicações
Avulsas FZB, 15).
JACKSON, M. L. Soil chemical analysis: advanced
course. Madison: University of Wisconsin, 1956. 894p.
KÄMPF, N.; CURI, N.; MARQUES, J. J. Intemperismo
e ocorrência de minerais no ambiente do solo. In:
ALLEONI, L. R. F.; MELO, V. F. (Eds.). Química e
mineralogia do solo. Viçosa: Sociedade Brasileira de
Ciência do Solo, 2009. p.334-371.
KÄMPF, N.; SCHWERTMANN, U. Goethite and
hematite in a climosequence in Southern Brasil and
their application in classication of kaolinitic soils.
Geoderma. 29(1):27-39, 1983.
MAFRA, A.L. et al. Pedogênese de uma seqüência de
solos desenvolvidos de arenito na região de Piracicaba
(SP). Revista Brasileira de Ciência do Solo.
25(2):355-369, 2001.
MEDEIROS, P. S. C. et al. Caracterização e
classicação de solos graníticos em topossequência na
região sul do Brasil. Ciência Rural. 43(7):1210-1217,
2013.
MEHRA, O. P.; JACKSON, M. L. Iron oxide removal
from soils and clays by a dithionite-citrate system
buffered with sodium bicarbonate. In: ADA, S. (Ed.).
Clays clay mineralogy. Elmsdorf: Pergamon Press,
1960. p.317-342.
MEIRELES, H. T. et al. Relações solo-paisagem
em topossequência de origem basáltica. Pesquisa
Agropecuária Tropical. 42(2):129-136, 2012.
Soil variability in different landscape... 487
Ciênc. Agrotec., Lavras, v. 39, n. 5, p. 477-487, set./out., 2015
MOURA, N. S. V.; DIAS, T. S. Elaboração do mapa
geomorfológico do município de Porto Alegre – RS.
Ciência e Natura. 34(2):113-138, 2012.
NASCIMENTO, P. C.; LANI, J. L.; ZOFFOLI,
H. J. O. Caracterização, classificação e gênese
de solos hidromórficos em regiões litorâneas no
Estado do Espírito Santo. Científica. 41(1):82-93,
2013.
OLIVEIRA, J. B. Pedologia aplicada. 4.ed.
Jaboticabal: FEALQ, 2011. 414p.
PEREIRA, M. G.; ANJOS, L. H. C. Formas extraíveis
de ferro no Estado do Rio de Janeiro. Revista
Brasileira de Ciência do Solo. 23(2):371-382, 1999.
PONNAMPERUMA, F. N. The chemistry of
submerged soils. Los Baños: Academic Press, 1972.
68p. (Advances in Agronomy, v.24).
QUÉNARD, L. et al. Lessivage as a major process
of soil formation: A revisitation of existing data.
Geoderma. 167-168:135-147, 2011.
ROLIM NETO, F. C. et al. Topolitossequências do Alto
Paranaíba: atributos químicos, físicos e mineralógicos.
Revista Brasileira de Ciência do Solo. 33(6):1795-
1809, 2009.
SANTOS, A. C. et al. Gênese e classicação de solos
numa topossequência no ambiente de Mar de Morros do
Médio Vale do Paraíba do Sul, RJ. Revista Brasileira
de Ciência do Solo. 34(4):1297-1314, 2010.
SANTOS, R. D. et al. Manual de descrição e coleta de
solos no campo. 5.ed. Viçosa: Sociedade Brasileira de
Ciência do Solo, 2005. 100p.
SCHAETZL, R. J. Lithologic discontinuities in some
soils on drumlins: theory, detection and application. Soil
Science. 163(7):570-590, 1998.
SCHNEIDER, P.; KLAMT, E.; GIASSON, E. Morfologia
do Solo: subsídios para caracterização e classicação de
solos a campo. Guaíba: Agrolivros, 2007. 72p.
SCHNEIDER, P. et al. Solos de Porto Alegre. In:
HASENACK, H. (Coord.). Diagnóstico ambiental de
Porto Alegre: Geologia, Solos, Drenagem, Vegetação/
Ocupação e Paisagem. Porto Alegre: Secretaria
Municipal do Meio Ambiente, 2008. p.28-43.
SCHWERTMANN, U. Differenzierung der eisenoxide
des bodens durch extraction mit ammoniumoxalat-
lösung. Zeitschrift für Panzenernährung und
Bodenkunde. 105(3):194-202, 1964.
SECRETARIA ESTADUAL DO MEIO AMBIENTE
- SEMA. Zoneamento ambiental da silvicultura:
estrutura, metodologia e resultados. Porto Alegre:
Secretaria Estadual do Meio Ambiente, 2010. 137 p.
SOIL SURVEY STAFF. Keys to soil taxonomy.
11.ed. Washington DC: United States Department of
Agriculture (NRCS), 2010. 346p.
TERAMOTO, E. R.; LEPSCH, I. F.; VIDAL-
TORRADO, P. Relações solo, superfície geomórca e
substrato geológico na microbacia do Ribeirão Marins
(Piracicaba-SP). Scientia Agricola. 58(2):361-371, 2001.
... The heights soil profiles in the two toposequences were either dystrophic (V < 50%) or allitic (Al > 4 cmol c kg −1 soil, CFA ≥ 20 cmol c kg −1 clay) ( Fig. 2; Table 2). This result is consistent with the soil survey for Porto Alegre (Hasenack, 2008), and also with previous studies on well-drained soils developing from granite and gneiss in this region (Medeiros et al., 2013;Silva et al., 2015). The low base saturation, and high Al saturation and concentration, are consistent with the granitic nature of the parent materials, which are rich in quartz and feldspar in this region (especially in the SAN area). ...
... This is suggestive of substantial gradient formation as a result of profile depth not favoring pedogenic development. Likewise, the presence of Argiluvic Inceptisols (Cambissolos Argilúvicos) in P2-and P5-SAN is suggestive of a transition from the Bi horizon to the Bt horizon that was also observed in previous studies on Inceptisols on intrusive igneous rocks (Medeiros et al., 2013;Silva et al., 2015;Dortzbach et al., 2016). Also, it suggests that further pedological research in similar environments could reveal the conditions needed for soils to be classified as Cambissolos Argilúvicos according to SiBCs (e.g., at the subgroup level). ...
Article
Southern Brazil abounds with granitic hills capped by intricately distributed soils most of which have been classified as Entisols or Inceptisols in medium- and small-scale soil surveys. However, field observations have revealed substantial texture gradients that are consistent with better-developed soils; also, the physical, chemical and mineralogical properties of the soils suggest that they are only slightly to moderately weathered. In this work, we examined the influence of formation-related factors and processes in soils from two granite toposequences. The eight soil profiles studied for this purpose were shallow, their C horizons occurring at depths of less than 100 cm. The low degree of flocculation and the fine/total clay ratio of the soils suggest that lessivage, which contributed to the development of the texture gradient in six of the profiles, was the main pedogenic process responsible for the formation of these soils. The soils at topographically high points were dystrophic or allitic, whereas those at low points were eutrophic. Based on their Ki values, the soils were weathered to a medium extent, which is in conflict with their low clay activity and cation exchange capacity. On the other hand, the Fed/Fes ratios of the soils were consistent with strong weathering, which in turn was consistent with their pH and exchangeable Al values. The iron oxides contents increased with increasing depth in the profiles as a result of lessivage. Feo/Fed ratios were suggestive of a prevalence of crystalline iron oxides. Increased substitution of Al in Fe oxides in the topographically higher soils further confirmed their increased weathering. Based on the foregoing, the soils were classified as Ultisols/Alfisols, Entisols and Inceptisols, the last series being less frequent than suggested by existing soil surveys. The transitional nature of these soil classes reflected in the presence of Ultisols/Alfisols with a thin B horizon, and also of argilluvic Inceptisols.
... Fig. 2 depicts the procedure used to elucidate the mineralogical composition of the soils from VIS-NIR-SWIR spectral data. The occurrence of soil mineralogy in the study area was verified through previous studies of soils in the same region (Amaral et al., 2015;Corrêa de Medeiros et al., 2020;Fink et al., 2014;Oliveira et al., 2020;Silva et al., 2015). Such studies were conducted at locations with a climate, soil type and parent material similar to those of the study area. ...
Article
The physical and chemical attributes of soils are strongly influenced by the nature of the minerals they contain and their concentration. Thus, soil texture is directly dependent on the content in clayey minerals, which influences a number of characteristics such as water dynamics. Although the mineralogical composition of soil is usually determined by X-ray diffraction spectroscopy, this technique is expensive and time-consuming, and uses toxic materials, all of which makes it impractical for obtaining large data sets. Also, available methods for acquiring, interpreting and examining visible-near infrared-shortwave infrared (VIS-NIR-SWIR) spectra are largely ineffective with tropical soils. The aim of this work was to ascertain whether VIS-NIR-SWIR reflectance spectroscopy (350-2500 nm) is useful for identifying minerals in subtropical soils as classified by textural class. For this purpose, soil samples were collected at 66 points at three different soil depths (0-20, 20-40 and 40-60 cm) over a study area located in the State of Rio Grande do Sul (Brazil). The soil texture were determined with the pipette method, and soil spectra were recorded on a FieldSpec Pro VIS-NIR-SWIR laboratory spectropho-tometer. Soil minerals were identified, and their proportions determined, from the second-derivative of the Kubelka-Munk (KM) function for the spectra. Five main minerals were thus identified from their spectral signatures , namely: hematite, goethite, kaolinite, chlorite and illite. Identification of the minerals was facilitated by classifying the samples according to texture. The higher the clay content was, the higher was the spectral amplitude of the minerals identified. Those textural classes with the highest clay contents exhibited the greatest proportions of iron oxides and of clay minerals such as kaolinite. These relationships allowed more comprehensive analysis of the soils and expeditious characterization of the study area in terms of texture and mineralogy with a view to facilitating decision-making agricultural support policies.
... However, there are few studies on soil genesis, morphology and properties in botanical gardens. Among the available research studies on soil-ecological issues in botanical gardens, two groups of scientific works may be distinguished: (1) studies on the effects of variegated vegetation and other environmental elements on soil properties differentiation (Behr and Bredenkamp, 1988;Da Silva et al., 2015;Gołębiowska and Pędziwilk, 1976;Rozanova et al., 2016;Urusevskaya and Matinian, 2012) and (2) studies focusing on the contamination of soils in botanical gardens, treated as seminatural enclaves in urban areas (Agapkina et al., 2012;Orecchio, 2010). The available papers emphasize the co-occurrence of natural soil-forming factors and strong human influence. ...
Article
Soils in botanical gardens play a crucial role as they condition the growth and vegetation of huge diversity of plant species on relatively small areas. Creating favourable habitats for the planted vegetation's development frequently leads to the formation of soils with thick surface horizons with a very well developed structure, rich in organic matter and nutrients, described as hortisols. Despite significant human influence, the environments of botanical gardens are often considered to be seminatural enclaves in urban areas. The main objectives of the presented paper were to explain soil cover differentiation noted across the Botanical Garden of Jagiellonian University in Kraków and determine the share of natural and anthropogenic features in the studied soils. Moreover, the usefulness of the WRB system in the evaluation of the rate of anthropogenic transformation in soils was tested. All the investigated soils showed significant evidences of anthropogenic transformations. Both digging and overbuilding with allochthonous material rich in artefacts caused disturbances in soil morphology. On the other hand, formerly intensive liming and fertilizing with organic materials has resulted in the homogenization of soil chemical properties in the studied botanical garden. No significant relationships between the spatial differentiation of soil properties and diversity of planted vegetation or time span from the area's inclusionto the botanical garden were detected. The results of the bonitation of specific soil properties not considered by the classification system (e.g. thickness of soil profile overheap) were compatible with the WRB 2015 systematic position. This confirmed good definition of actual WRB criteria for soils disturbed by human activity and undergoing natural development.
Article
Full-text available
Em Terra Roxa Estruturada Latossólica do município de Piracicaba (SP), foram instalados tensiômetros a cada 15 cm, em triplicata, a partir de 30 cm até à profundidade de 240 cm, numa área de 25 m², para medida do potencial mátrico (φm) e, indiretamente, por meio da curva de retenção de água, a umidade volumétrica (θ). O método da umidade (Libardi et al., 1980) ajustou os dados de redistribuição de água (θ vs t) com coeficientes de determinação (R²) maiores que 0,98. A hipótese de gradiente do potencial hidráulico (δφh δz-1) unitário foi verificada somente no horizonte Bw. No horizonte Bt, o gradiente do potencial hidráulico variou de 1 a 3,89 m m-1, o que determinou valores de condutividade hidráulica maiores que os obtidos pelo método de Hillel et al. (1972). A umidade volumétrica na capacidade de campo (θcc) variou de 0,45 a 0,33 m³ m-3, que corresponde a uma variação de potencial mátrico (-φm) de 0,0075 a 0,0014 MPa e de condutividade hidráulica de 0,00068 a 0,00750 cm h-1. O horizonte Bt, graças à estrutura em blocos bem desenvolvida, apresentou os maiores valores de densidade do solo e microporosidade, comparado aos do horizonte Bw, que resultaram nas diferenças dos valores das características hídricas do perfil da TR.
Article
Full-text available
O trabalho abordou a formação de solos com horizonte B textural e teve por objetivo identificar os processos pedogenéticos envolvidos na formação de lamelas, do gradiente textural abrupto, assim como suas implicações sobre os atributos físicos, químicos e mineralógicos do solo. O estudo foi desenvolvido numa toposseqüência de solos derivados de arenito: o perfil (P1), ocorrendo na parte alta do relevo (topo); perfil (P2), na faixa intermediária (terço médio da encosta), e perfil (P3), no terço inferior da encosta. As análises realizadas foram: granulométrica, química, mineralógica e micromorfológica. Os perfis apresentaram seqüência de horizontes do tipo A-E-Bt, tendo sido classificados como Alissolos Crômicos. Os solos foram classificados como quimicamente ácidos, com mineralogia da fração argila mostrando predomínio de caulinita. Os materiais analisados evidenciaram uniformidade quanto à granulometria, diâmetro médio, arredondamento e relação zircão/turmalina das areias, assim como no aspecto morfológico, apontando para formação autóctone do solo. Os processos pedogenéticos responsáveis pela formação do gradiente textural foram a degradação das argilas em condições de oxirredução e a lessivagem. O primeiro processo foi constatado em microdomínios no contato E/Bt, onde se notaram cores de gleização, indicando encharcamento temporário. Neste caso, a formação do horizonte álbico deveu-se principalmente à destruição do topo do horizonte Bt. As lamelas nada mais seriam do que heranças do horizonte Bt no horizonte álbico. A presença de cerosidade, associada aos cutãs de iluviação no exame micromorfológico, revelou a participação do processo de lessivagem contribuindo para a diferenciação textural.
Article
Full-text available
2) & L. H. C. ANJOS (2) RESUMO No estado do Rio de Janeiro, destacam-se três feições geomorfológicas: as formações constituídas por rochas do Complexo Cristalino, expostas ou capeadas por seus produtos de alteração; os tabuleiros costeiros, compostos pelos sedimentos da Formação Barreiras, e, por último, as planícies aluvionares, que são formações quaternárias. As diferenças entre os materiais de origem e as classes de relevo e sua influência na formação dos solos têm constituído o tema principal dos estudos de genêse realizados no Rio de Janeiro. Este trabalho teve como objetivo avaliar o comportamento das formas extraíveis de ferro, Feo, Fed e Fes, e as relações entre elas em função do grau de pedogênese dos solos. Para estes solos, as formas de ferro e relações Fed/Fes e Feo/Fed expressaram variações na mineralogia do material de origem, grau de intemperismo dos solos e do material formador, ou classe de drenagem, mais do que a intensidade de pedogênese. Assim, as formas extraíveis de Fe e respectivas relações para avaliar o grau de pedogênese, nos solos do Rio de Janeiro, requerem uma interpretação conjunta das demais propriedades do solo, com ênfase para a morfologia e classes de drenagem. Termos de indexação: intemperismo, gênese de solos, solos tropicais. SUMMARY: EXTRACTABLE IRON FORMS IN SOILS FROM THE STATE OF RIO DE JANEIRO, BRAZIL The state of Rio de Janeiro, Brazil, is characterized by three main geomorphologic formations, the landform constituted by crystalline rocks, exposed or covered by their alteration products; coastal tablelands, formed by Barreiras Formation Tertiary sediments; and alluvial floodplain sediments of Quaternary age. Differences between parent material and topography and their influence on soil genesis have been the main subject of studies in Rio de Janeiro.
Article
Full-text available
Variações nos atributos do solo dependem da posição do solo na paisagem e processos de drenagem, erosão e deposição. Este estudo objetivou avaliar os atributos físicos e químicos do solo, em uma topossequência de origem basáltica, na região de Batatais (SP). A área possui relevo aplanado e altitude oscilando entre 740 m e 610 m, em região dominada por basaltos. Foi estabelecido caminhamento de 3.000 m, a partir do espigão da vertente, no seu declive mais suave. As superfícies geomórficas foram identificadas e delimitadas conforme critérios topográficos e estratigráficos, com base em intensas investigações detalhadas de campo. Foram coletadas amostras laterais aos perfis modais representativos das diversas superfícies geomórficas (S.G.) da topossequência (S.G. I = topo; S.G. II = meia encosta e sopé de transporte; S.G. III = ombro e sopé de deposição), totalizando 142 amostras. Além disto, foram abertas trincheiras, nos segmentos de vertente inseridos nas superfícies geomórficas mapeadas. As amostras coletadas foram analisadas quanto à densidade do solo, textura, bases trocáveis (Ca2+, K+ e Mg2+), soma de bases, capacidade de troca catiônica, saturação por bases, pH (água e KCl), SiO2, Al2O3, Fe2O3 (ataque por H2SO4), óxidos de Fe livres extraídos com ditionito-citrato-bicarbonato e Fe mal cristalizado extraído com oxalato de amônio. Os resultados revelaram que os solos oriundos de basalto apresentaram atributos físicos e químicos com comportamento dependente das formas do relevo. Com o uso de técnicas estatísticas multivariadas, foi possível distinguir três diferentes ambientes, que equivalem às três superfícies geomórficas.
Article
Full-text available
Variations in soil attributes depend on the soil position in the landscape and drainage, erosion, and deposition processes. This study aimed to evaluate the soil physical and chemical properties, in a toposequence developed from basaltic parent material, in Batatais, São Paulo State, Brazil. The area presents a flatter topography and altitude ranging from 740 m to 610 m, in a basalt-dominated region. The experiment was carried out along a transect of 3,000 m from the top downwards. The geomorphic surfaces were identified and delimited according to topographic and stratigraphic criteria, based on detailed field investigations. Samples were collected along the representative side of profiles, for each geomorphic surface (GS) of the toposequence (GS I = top; GS II = hillside and transport foothill; GS III = shoulder and deposition foothill), totaling 142 samples. In addition, trenches were opened in the slope segments of the mapped geomorphic surfaces. The samples were analyzed for bulk density, texture, exchange bases (Ca2+, K+, and Mg2+), sum of bases, cation exchange capacity, base saturation, pH (water and KCl), SiO2, Al2O3, Fe2O3 (H2SO4 attack), free Fe oxides extracted with dithionite-citrate-bicarbonate, and poorly crystallized Fe extracted with ammonium oxalate. The results showed that soils developed from basaltic parent material presented physical and chemical attributes tied to the relief shapes. The use of multivariate statistical techniques made possible to identify three different environments, which are equivalent to the three geomorphic surfaces.
Article
Full-text available
Solos tropicais são geralmente considerados altamente intemperizados, o que é atribuído às condições climáticas de altas temperaturas e precipitação pluvial. Entretanto, no ambiente de Mar de Morros, a intensidade dos processos pedogenéticos pode ser alterada pela remoção de material, em consequência do relevo movimentado, rejuvenescendo as superfícies. Este trabalho teve como objetivos caracterizar e classificar solos, formados a partir de muscovita-biotita gnaisse, em uma topossequência em Pinheiral (RJ). Os perfis localizam-se nos seguintes pontos da topossequência: (P1) topo de elevação, (P2) terço superior, (P3) terço médio, (P4) terço inferior e (P5) em área plana de várzea. Os perfis foram descritos, caracterizados e classificados segundo o Sistema Brasileiro de Classificação de Solos (SiBCS). As características edáficas que se destacaram foram: relação silte/argila; valor V%; valor T; ki; mineralogia da fração argila; e formas de Fe pedogênicas de alta cristalinidade (Fed). Ao longo da topossequência encontrou-se Cambissolo Háplico Tb distrófico típico no topo e no terço médio da topossequência. No terço superior foi identificado um Argissolo Vermelho-Amarelo distrófico típico e, no terço inferior, um Argissolo Amarelo eutrófico típico. Já na área plana de várzea foi observado um Gleissolo Háplico Tb distrófico típico. O relevo e o material de origem gnáissico estratificado foram os principais fatores que alteram a pedogênese.
Article
Full-text available
Nas paisagens do norte e oeste do estado de São Paulo, plintita e petroplintita constituem feições que se repetem com freqüência sobre os arenitos cretácicos da Formação Adamantina (Grupo Bauru). Com o objetivo de avaliar as características mineralógicas desses materiais e estudar sua gênese, selecionaram-se dois perfis de solos representativos da paisagem local e constituídos por feições plínticas, petroplínticas e mosqueados. O estudo foi realizado na baixa meia encosta de uma vertente situada na Estação Experimental de Agronomia de Pindorama, do Instituto Agronômico (IAC), região norte do estado de São Paulo. Com base nas observações em microscópio de varredura e microanálise pontual realizadas em glébulas selecionadas, bem como nas análises mineralógicas da fração argila desferrificada e dos óxidos de ferro de todos os horizontes dos perfis estudados, constatou-se que caulinita, hematita e goethita são os principais constituintes da fração argila dos nódulos e horizontes estudados. Os minerais mica, gibbsita e anatásio complementam a mineralogia da fração argila das glébulas, assemelhando-se em constituição ao material interglebular e aos demais horizontes dos perfis. Quartzo, feldspatos potássicos, traços de feldspatos sódicos e ilmenita foram identificados como componentes da fração silte e areia dos nódulos. A presença constante de minerais alteráveis nas glébulas petroplínticas é evidência de que a gênese desses materiais está relacionada com a ferruginização do saprolito. Este fato, associado aos baixos teores de Al na estrutura dos óxidos de ferro das glébulas, evidencia sua formação em condições hidromórficas, supostamente relacionadas com a solubilização e mobilização do ferro ferroso, lixiviado da paisagem a montante e reprecipitado na zona de vadosa, onde os maiores potenciais de oxidação favoreceram a segregação e a precipitação do ferro.
Chapter
The oxidation potential of dithionite (Na2S2O4) increases from 0.37 V to 0.73 V with increase in pH from 6 to 9, because hydroxyl is consumed during oxidation of dithionite. At the same time the amount of iron oxide dissolved in 15 minutes falls off (from 100 percent to less than 1 percent extracted) with increase in pH from 6 to 12 owing to solubility product relationships of iron oxides. An optimum pH for maximum reaction kinetics occurs at approximately pH 7.3. A buffer is needed to hold the pH at the optimum level because 4 moles of OH are used up in reaction with each mole of Na2S2O4 oxidized. Tests show that NaHCO3 effectively serves as a buffer in this application. Crystalline hematite dissolved in amounts of several hundred milligrams in 2 min. Crystalline goethite dissolved more slowly, but dissolved during the two or three 15 min treatments normally given for iron oxide removal from soils and clays.
Article
The aim of this work is to identify relief compartments in Porto Alegremunicipality, Rio Grande do Sul State capital. Therefore, this research’sobjective is to elaborate a geomorphological mapping, scale 1:50.000,to identify different relief structures and the main aspects of its shaping,lithology and morphogenesis. In order to achieve that, one has tocharacterize the regional geological and geomorphological scene, characterizeand map different relief shapes through its morphometric,morphological, morphogenetic and morpho-chronological elements.The analysis follows Ross (1992) and aim to express cartographicallythe relief in each morphostructure. The following methodology wasapplied: bibliographical research, digital cartographic base and mor phometricmaps elaboration, aerial photographs and satellite imagesanalysis and mapping the relief elements. Regarding regional aspects,Porto Alegre is bounded by “Planalto Uruguaio Sulriograndense” (aplateau, a higher relief ) which formation consists of crystalline rocksand the “Planicie Costeira” (plain, lowland, with sedimentary originand intake of higher lands sediments from “Depressao Periferica”).The following relief patterns were identified into this morphosculpture:hills; low hills; terrace; plains and flat areas of anthropogenic origins. The higher and steeper areas belong to hill patterns locatedon the municipality’s central area, on a northeast-southwest directedstripe. The flatter and lower lands belong to plain patterns located inthe south and north of the municipality.