Content uploaded by Ørnulf Jan Rødseth
Author content
All content in this area was uploaded by Ørnulf Jan Rødseth on Oct 07, 2016
Content may be subject to copyright.
357
1 INTRODUCTION
TheMUNINproject1isdevelopingaconceptforan
unmanneddrybulkshipofaround50000tonsdead
weight.Thestartingpointisaconventionalbulker
withasingleengineandpropellerandotherwise
normalon‐boardequipment.Topreparethisshipfor
unmannedoperation,theconceptproposesnew
sensorsystems,newtechnicaloperationand
maintenanceprocedures,autonomousnavigation
functions,anewshorecontrolcentreandother
componentsasdescribedinBurmeisteretal.(2014b).
1TheMUNIN(Maritimeunmannedshipsthroughintelli‐
genceinnetworks)projecthasreceivedfundingunderthe
EuropeanUnion’s7thFrameworkProgrammethroughthe
agreementSCP2‐GA‐2012‐314286.Seewww.unmanned‐
ship.org.
Astheprojectisaconceptstudy,noactualtrials
willtakeplace.However,toshowthefeasibilityof
theconcept,ithasbeenimportanttoidentifythe
mostcriticaltechnological,operationaland
legislativefactorsthatmaybeobstaclestothe
conceptʹsrealizationandtodemonstratethatthese
factorscanbemanagedsufficientlywelltomakethe
realizationoftheMUNINshiplikely.Furthermore,
theprocessofidentifyingandanalysingthesefactors
hastobedoneinastructuredwaysothattheprocess
andresultscanbedocumentedandtosubstantiate
theclaimthatallsignificantfactorshavebeendealt
with.
Toachievethesegoals,theprojecthasstartedto
developarisk‐basedmethodfordesignandanalysis
of“industrialautonomoussystems”.Anindustrial
autonomoussystemisdefinedasanautonomous
vehiclethatcanoperatesafelyandeffectivelyina
realworldenvironmentwhiledoingoperationsof
Risk Assessment for an Unmanned Merchant Ship
Ø.J.Rødseth
NorskMarintekniskForskningsinstituttAS(MARINTEK),Trondheim,Norway
H.‐C.Burmeister
FraunhoferCentreforMaritimeLogistics(CML),Hamburg,Germany
ABSTRACT:TheMUNINprojectisdoingafeasibilitystudyonanunmannedbulkcarrieronan
intercontinentalvoyage.Todevelopthetechnicalandoperationalconcepts,MUNINhasusedarisk‐based
designmethod,basedontheFormalSafetyAnalysismethodwhichisalsorecommendedbytheInternational
Mari‐timeOrganization.Scenarioanalysishasbeenusedtoidentifyrisksandtosimplifyoperationalscope.
Systematichazardidentificationhasbeenusedtofindcriticalsafetyandsecurityrisksandhowtoaddress
these.Technologyandoperationalconcepttestingisusingahypothesis‐basedtestmethod,wherethe
hypotheseshavebeencreatedasaresultoftheriskassessment.Finally,thecost‐benefitassessmentwillalso
useresultsfromtheriskassessment.Thispaperdescribestheriskassessmentmethod,someofthemost
importantresultsandalsodescribeshowtheresultshavebeenorwillbeusedinthedifferentpartsofthe
project.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 9
Number 3
September 2015
DOI:10.12716/1001.09.03.08
358
directcommercialvalueandwhichcanbe
manufactured,maintained,deployed,operatedand
retrievedatanacceptablecost.Thecorresponding
definitionofautonomyisanautomatedsystemthat
hasthecapabilityofmakingindependentsensor
baseddecisionsbeyondordinaryclosedloopcontrol.
Thispaperpresentssomeoftheresultsofusing
thenewdesignandanalysismethodintheMUNIN
projectaswellassomeoftheexperiencesthathave
beengainedthroughthisprocess.
Chapter2givesanoverviewofsomepublished
workonriskbaseddesignforautonomousvehicles.
Chapter3givesabriefoverviewofthedevelopment
methodandfollowingchaptersdiscussthemain
partsofthemethod:Scenariodevelopments(Ch.4),
systemmodularizationandoperationalissues(Ch.
5),hazardidentificationandriskcontrol(Ch.6),
hypothesisformulationandtests(Ch.7)aswellas
designverification(Ch.8).Afewcommentsonthe
comingcost‐benefitanalysiscanbefoundin
chapter9.Thispaperconcludeswithchapter10,
summarizingtheconclusionsandexperiencesmade
sofarintheproject.
2 AUTONOMYANDRISKBASEDDESIGN
Anindustrialautonomoussystemmustbeacost
effectivesolutionfortheintendedtasks.“Thefirst
questionanypotentialcustomerisgoingtoaskis:
Canthe[vehicle]dothejob,andifso,atalower
cost?”(Stokeyetal.1999).Thiscertainlyappliesto
industrialautonomoussystems,butevenfor
scientificmissionsthisbecomesmoreandmorean
issue.Whilesciencemaybemorelaxrelativetocost‐
effectivenessthancommercialindustry,theymay
stillhavetopayfore.g.insuranceorreplacementof
lostvehicles(Griffithsetal.2007).However,thisis
notoftenasubjectofscientificdissertationand
papersonrisk‐baseddesigncriteriaforautonomous
vehiclesarestillrelativelyrare.
Somepapersarepublished,mostlyinthedomain
ofautonomousunderwatervehicles(AUV).Onewas
referencedabove(Stokeyetal.1999)anditisan
interestingaccountofwhatcangowrongwithan
AUV.Thedetailsarenotofgeneralinterestinthe
MUNINscopeasapplicationareaandoperation
paradigmsarequitedifferent.However,some
generalobservationscanbemade:
1 Humanerroristhemostcommonsourceof
problems.Thisalsoincludesproblemswiththe
softwaredesigninthecontrolstations.
2 Non‐complexhardwareerrors,suchas
connectors,batteryandcalibrationofsensorsand
algorithms,arealsoamajorcauseofproblems.
Thereisnoreasontobelievethatthispatternwill
bemuchdifferentforothertypesofvehiclessoit
confirmstheideathatarisk‐baseddesignprocess
maybeagoodchoice,butalsoemphasizesthatthe
riskanalysishastofocusasmuchonʺtrivialʺhazards
asonthemorecomplexandintellectually
challenginghazardsrelatedtotheautonomyofthe
system.
Anotherpaper,(Griffithsetal.2003)focuseson
risk‐baseddesign,butstillwithanAUVascase.It
presentsapragmaticapproachtosafety,focusing
partlyonproblemsthatareknownbyexperienceto
haveahighprobabilityandpartlyonsimplifying
physicaldesignsandprogramstokeepcomplexity
undercontrol.Someofthemainrisksidentified
were:
1 Humanerror,directlyorindirectly,accountsfora
highpercentageofproblems.
2 Relativelytrivialphysicalproblems(electronics,
GPSreceiver,mechanical,power,leaksetc.)also
causealargegroupoffailures.
3 Othersignificantproblemsareenvironmental
disturbances(foracoustictransmissions)and
softwareerrors.
Thepaperclassifiesfaultsintoimpactclassesand
performsamorecompleteriskassessment,taking
consequencesofthefaultsintoconsideration.While
thisisoflimitedusetoMUNIN,asthetechnical
domainisverydifferent,itshouldbequitevaluable
tootherAUVdesigners.Oneshouldalsonotethat
statisticalmodelsareproposedforsomeofthefault
classeswhichcouldbeusedformorequantitative
assessmentsofexpectedreliability.Finally,partof
theconclusionisthat“Thispaperhasshownthatby
gooddesignandthoroughtestingofthe‘significantfew’
systemsthatcouldposehighrisktothevehicle,theoverall
reliabilityoftheautonomousvehicleisnotdominatedby
thecomplexassembliesneededtoprovidethatautonomy”.
Thisisalsoencouragingtootherautonomoussystem
designsasthishasapplicationsnotonlytoAUVs,
butcanbeviewedasageneralstatementabout
industrialautonomoussystems.
AnotherfaultanalysisisdonebyPodderetal.
(2004).Thisfocusesontechnicalfailuresand
determinationofstatisticaldataforquantitative
assessmentofrisk.Theobservationfromthispaperis
alsothatmostfaultsare“trivial”inthesensethat
theydonotoccurinthemorecomplexsensing,
controlanddecisionmakingsoftwaremodulesofthe
vehicle.
In(Britoetal.2010),anoperationalrisk
managementprocessmodelisdescribed.Thisis
partlyaquantitativeapproachwhereexpert
judgementsarepartofthedecisionmakingdataset.
Itdefinesanacceptablerisklevelandtriesto
determineiftherisksderivedfromagivenmission
exceedthislevel.Itisalsotargetedatoperationsin
highriskenvironments,i.e.anAUVoperatingnear
andunderice,andisnotsorelevanttoMUNIN’s
operationalplanning.However,theprinciplesand
methodsdiscussedaremorequantitativeinnature
thanintheMUNINprojectanditwillbeinvestigated
ifvariantsofthemethodologycanbeusedalsointhe
designphaseforindustrialautonomoussystems.
3 THEMUNINAPPROACH
Thehigh‐levelobjectivesoftheMUNINdesign
processare:
1 Ensureanacceptablesafetyandsecuritylevelfor
ownandothershipsandtheinternational
shippingcommunityingeneral.
2 Minimizeuncertaintyinthemissions’intended
outcomeaswellasinunintendedsideeffects.
359
3 Developacosteffectivesystemthatcancompete
atalevelfieldinacommercialoperational
environment.
Onekeycontributiontothesethreeobjectivesisto
keepthesystemcomplexityaslowaspossible.
Highercomplexitygenerallymeansmorehidden
errors,moredevelopmentworkandhighercost.
Highercomplexityalsoimplieslessdeterministic
missionoutcomes,partlybecausetheautonomous
decisionmakingprocessbecomesmorecomplexand
partlybecauseunintendedsystemerrorsmay
interferewiththeprocessinunexpectedways.To
reducesystemcomplexity,wehavefoundthatavery
effectiveapproachistosimplifythemissionandthe
environmentalconstraintsasmuchaspossible
throughacarefulscenarioanalysis.Thiswillbe
returnedtoinchapter4.
Therisk‐baseddesignapproachusedinMUNIN
isbasedontheFormalSafetyAnalysis(FSA)method
fromIMO(2007).ThestructureofFSAisillustrated
inFigure1.Thisistheinternationallyaccepted
methodfordoingcost‐benefitanalysisinthe
InternationalMaritimeOrganizationʹs(IMO)rule
makingprocess.Thus,itmakessensetousethisas
baselineasthelegislativeissuesareanimportant
partofthesystemrequirementsforunmannedships.
FSAisalsoemphasizingtheidentificationofcost
effectivemeasurestoensureanʺoptimalʺsafetylevel,
whichisanimportantobjectiveforMUNIN.
Figure1.TheFSAProcess(IMO2007)
Asdiscussedin(Rødseth&Tjora2014),MUNIN
putspartsoftheFSAmethodologyintoaframework
asshowninFigure2.Wereferthereadertothat
paperforadiscussionofthebackgroundand
principlesofthemethodandtheframework.
Figure2.MUNINDesignprocess
Inthispaperwediscusssomeoftheresultsand
experiencesfromtheuseofthemethodology.Eachof
thefollowingchaptersdiscussesoneortwoofthe
steps.
4 SCENARIOBUILDING
Thefirststepundertakenintheanalysisofthe
unmannedshipistodevelopanumberof
operationalscenariosintheformofUML(Unified
ModellingLanguage)usecases.
Theintentionofthisexerciseistodevelopabetter
understandingofthechallengesthatanunmanned
shipwouldbeexposedto,whatsupportfunctionsit
needsandhowtheoperationalprocedureswould
havetobeimplementedtosupportunmanned
operation.Thisisaniterativeprocesswherealsoa
draftphysicalarchitectureisdevelopedandthe
operationalprinciplesarelaiddown.Themain
scenariosdevelopedarelistedinTable1.Theycover
normaloperation(1to8–unshaded)aswellaswhat
wasconsideredtobeproblemsthatthesystem
wouldneedtobeabletohandle(9to18–shaded).
Table1.MUNINinitialscenarios2
_______________________________________________
1 Openseamodewithoutmalfunctions
2 Smallobjectdetection
3 Weatherrouting
4 Collisiondetectionanddeviation
5 Periodicstatusupdatestoshorecontrol
6 Periodicupdatesofnavigationaldata
7 Releasevesselfrom/toautonomousoperation
8 Manoeuvringmode‐normal
9 Floodingdetected
10 GNSS(GPS/GLONASS)malfunction
11 Manoeuvringmodewithmalfunctions
12 Communicationfailure
13 On‐boardsystemfailureandresolution
14 Pilotunavailable:Remotecontroltosafety
15 Piracy,boardingandshipretrieval
16 Ropeinpropeller
17 Openseamodewithmalfunction
18 Unmannedshipinsearchandrescue(SAR)
_______________________________________________
Bydetailinganddiscussingthescenariositwas
possibletoidentifychallengesthatcouldnoteasily
besolvedandwhichcouldleadtothefinalsystem
solutionnotbeingsafeorcost‐effective.These
challengeswerehenceforthusedtoadjustthe
operationalcapabilityoftheshiptoavoidorlimitthe
impactoftheproblems.Sometypicalexamplesare:
1 Useofacontinuouslymannedshorecontrol
center(SCC):Thisavoidsexcessiveandexpensive
levelsofautonomywhilealsoproviding
immediatebackupincaseswhereonboard
systemsfailorareunabletosolveproblems
satisfactorily.
2 Limitunmannedoperationtodeepseaareasand
placecrewonboardforportdepartureand
approach:Thisavoidslegalproblemsintheport
andcoastalstatewatersaswellasavoiding
complexautonomousnavigationinheavytraffic
areas.
3 Addredundancyincommunicationsystemsand
addanindependentrendezvouscontrolunit:This
avoidsseveralcriticalandhighprobabilitysingle
pointoffailurecases.
2DetailedUMLdiagramsareavailablefromhttp://www.mits‐forum.org/munin/index.htm
(January2015).
360
Thescenariobuildingexercisedevelopstheinitial
systemanduserrequirementsaswellasidentifies
criticalissuesthathavesignificantimpacton
operationalconstraintsandhighlevel
modularization.
5 SYSTEMDESCRIPTIONS
Thesystemdescriptionconsistsofthesystem
modularizationandthespecificationofthe
operationalprinciplesfortheunmannedship.
5.1 Modularization
Thegeneralsystemmodularizationisshownin
Figure3.
Figure3.TheMUNINmodules(Rødsethetal.2013)
Thenewmodulesandcomponentsneededto
implementautonomyareshaded.Existingmodules
arewhite.TheLOScommunicationblockconsistsof
standardsystemsintendedfordirectlineofsight
(LOS)shiptoshiporshiptoshorecommunication.
Thisincludestheautomaticidentificationsystem
(AIS),globalmaritimedistressandsafetysystems
(GMDSS)aswellasaproposedfutureVHFdata
exchangeservice(VDES)asdiscussedinRødsethet
al.(2013).Theradar,integratedbridgeand
automationsystemsareotherexistingshipcontrol
systems.
TheRCUmoduleismainlyusedduringport
approachanddeparturewhentheportoperations
crewisboarding,butitdoesalsoplayaspecialrole
inrecoveryofunmannedshipsthatcannototherwise
becontrolled.TheRCUisoperationallyindependent
fromallotherautonomoussystemcomponentsand
representspartofthefailtosafebackupprocedures
forshiprecovery,evenwhennormalsatellite
communicationorautonomouscontrolsystemsfail.
NewsensorsconsistofacombinedCCTVandfar
infrared(IR)camerathatworkstogetherwithmainly
AISandradartodetectandclassifynearbyobjects.
TheIRcameraisoftheForwardLookingIR(FLIR)
type.Thesensorfusionfunctionsarelocatedinthe
ASM(Bruhnetal.2014).
Theautonomousshipcontroller(ASC)consistsof
varioussub‐modulesforautonomousnavigation,
enginecontrol,engineconditionmonitoringand
energyefficiencymanagement(Burmeisteretal.
2014a,Walteretal.2014).Theshorecontrolcenter
(SCC)isaremotecontrolcenterwithseveralcontrol
stationsandfunctions(Porathe2014).
CommunicationbetweenshipandSCCisdone
overastandardcommercialsatellitelinkwitha
capacityofpreferablyatleast1500kilobitsper
second(kbps),butwhichwillworkdownto125
kilobitspersecond(Rødsethetal.2013).Another,
normallylowercapacitysatellitelink,e.g.Inmarsat
orIridiumisusedasbackup.Inaddition,the
unmannedshipwillbeabletocommunicatewith
othershipsthroughtheLOSmodule.
5.2 Operationalprinciples
Theoperationalprinciplesarecharacterizedbya
conservativeapproachtousing“intelligentcontrol”
intheship.TheinclusionoftheSCCremovesmany
complexityincreasingfactorsfromtheoperational
scenarios.Thismeansthatitisonlynecessaryto
implementarelativelylimiteddegreeofautonomyin
theship.Thisalsomakesiteasiertoensure
determinisminmissionexecution.Theoperational
modesareshowninFigure4.
Figure4.Theoperationalmodes(Rødsethetal.2013)
Autonomousexecutioncorrespondsroughlyto
autopilotoperation.Itperformsnavigationaland
lookouttasksfullyautomaticallyaslongasmore
advancedreasoninganddecisionmakingisnot
necessary.Thisisdonewithoutguidancefromshore,
butwithperiodicandbriefstatusreportssenttothe
shoreoperators.Autonomouscontrolisamode
wheretheship,withindefinedoperationallimits,
performsactionsonowninitiativetoavoid
dangerousorunwantedsituations.Thetypical
exampleisavoidancemaneuverswhenotherships
areinthevicinity.Remotecontrolcanbedirectwith
continuousandrealtimecontrolfromtheSCCor
indirectwhichiswhentheSCConlyoutputshigh
levelcommands,e.g.waypoints,totheshipwithout
controllingotheroperationalparametersdirectly.
Failtosafeisthestatetheshipcontrollerwillgoto
whenitisunabletocontinueautonomousoperations
withoutSCCassistanceandSCCresponsesare
missingordelayed.Thespecificationsofthefailto
safemodearebasedonpre‐programmedinstructions
fromSCCandwillnormallybeupdatedfromthe
SCCasthevoyageproceeds.Thespecificfailtosafe
modewilldependonwhatproblemtheship
encountersandotherenvironmentalorship
parameters(Burmeisteretal.2014b).
5.3 Operationaldomain
Thefinalpartofthesystemdescriptionisthe
definitionoftheoperationaldomainoftheship.The
MUNINshipisadrybulkcarrierofmediumsize
361
andthevoyageforeseenisironoretransport
betweenSouthAmericaandEurope.
Duringanalysisoftheusecasescenarios,itwas
alsodecidedtolimitthevoyagetothedeepsea
passageandnotincludetransitincongestedwaters
orportapproachordeparture.Therearetwomain
reasonsforthat:
1 Operationindeepseaareasaremainlyunderthe
jurisdictionoftheflagstatewhichsimplifiesthe
regulatoryissuessignificantly.Thereisnoneedto
considerdifferentportorcostalstates’legal
regimes.
2 Trafficdensityandcomplexityofoperationis
verymuchsimplifiedbyoperatingonlyindeep
seaareas.Also,theprobabilitythatanerror
resultsinadangerousconsequenceislower.
Ontheotherhand,thiswillalsohaveanimpact
oncosteffectivenessasoneneedstohavecrew
onboardforportapproachanddeparture.This
meansthatsomeaccommodationfacilitiesmayhave
tobeavailable.Thesemeasureswillincreaseboth
capitalandoperationalcostsandmayhavean
impactonthecost‐effectivenessofthewholeconcept.
6 HAZARDIDENTIFICATIONANDRISK
CONTROL
Thehazardidentificationwasdoneinaworkshop
guidedbycertainsemanticcomponentsfromthe
MiTSarchitecture(Rødseth2011),mainlytheship
functionalbreakdowntogetherwithvoyagephases
andtheoperationalmodes.
Atotalof65mainhazardswereidentified.Each
ofthehazardswasthenclassifiedaccordingtoits
consequenceiftheeventshouldhappenandthe
probabilitythatitwillhappen.Theriskwasthen
gradedinthreelevels:Acceptable(lowprobability
and/orlowconsequence);Unacceptable(high
consequenceand/orhighfrequency);andALARP:As
lowasreasonablypracticable.
Therewereseveralhazardsthatwereclassifiedas
unacceptableintheinitialshipconfiguration:
1 Interactionwithotherships,whethertheyfollow
COLREGSornot,isacriticalissue.Navigation
andanti‐collisionsoftwaremustbethoroughly
tested.
2 Errorsindetectionandclassificationofsmallto
mediumsizeobjectsiscriticalasitmaybe
wreckage,persons,lifeboatsorotherobjectsthat
needtobereportedtoauthorities.Thisfunction
mustbecarefullytested.
3 Failureinobjectdetection,particularlyinlow
visibility,cancausepoweredcollisions.The
advancedsensormodulemustbeverifiedtobe
abletodoallrelevanttypesofobjectdetection,
alsoinadverseweather.
4 Propulsionsystembreakdownwillrenderthe
shipunabletomove.Itisnecessarytohaveavery
goodconditionmonitoringandforecasting
systemtoreducesuchincidentstoanacceptable
minimum.
5 Veryheavyweathermaymakeitdifficultto
manoeuvretheshipsafely.Itisnecessarytoavoid
excessiveweatheranditisalsorequiredto
investigateimprovedmethodsforremotecontrol
ifsuchconditionsshouldbeencountered.
TheALARPgroupofrisksrepresentsissuesthat
havetobeconsideredonacost‐benefitbasis.One
shouldaimtoremoveorreducetheserisksaslongas
costisnotprohibitivelylarge.
Amongthelatterwerethevarioussecurityrelated
hazards,includingstowaways,pirateattacksand
terrorism.Whilethescenarioofaterroristusingthe
unmannedshipsasaremotelycontrolledweapon
maybeseenasaveryhighriskscenario,
investigationsintoalreadydefinedtechnicalbarriers
showedthatitwasunlikelythatterroristswouldbe
abletotakecontroloftheshipaslongas
communicationsystems,positionsensingandon‐
boardcontrolsystemsweredesignedproperly
(Rødsethetal.2013).
Theidentifiedriskcontroloptionsassociatedwith
theaboveunacceptablerisksarelistedinTable2.
Table2.Majorriskcontroloptions
_______________________________________________
Hzd Riskcontrol
_______________________________________________
1Avoidheavytraffic
Objectdetectionandclassification
Deepseanavigationmodule
SCCandVHFcommunicationwithships
2Improvedmaintenanceroutines
Improvedconditionmonitoring
Redundancyinpropulsion(waterjet)
3RadarandAISintegratedinobjectdetection
SCCnotificationwhenindoubt
4Weatherrouting
SCCindirectcontrol
5FLIRcameraandhighresolutionCCTV
SCCnotificationwhenindoubt
_______________________________________________
Theriskcontrolsaregenerallyfirsttotrytoavoid
thedangeroussituation,secondlyhandlingitaswell
aspossibleonboardandthirdly,usetheSCCassoon
asthereisanydoubtaboutoutcome.Therewillalso
befailtosafeactionsformanyofthesecasesthatare
notlistedhere.
Thedefinedacceptablesafetylevelistobeatleast
asgoodasonnormalmannedships,whichmeans
thatsomeoftheconventionaltechnologycanbeused
toachievethesamesafetylevel.Thiswillasan
exampleapplytotheuseofradarandAISinlow
visibility.
Forthepropulsionsystembreakdown,one
proposalistoinstallawaterjetthatcanbedriven
fromtheauxiliarygeneratorssothatitis
independentofallmainpropulsioncomponents.The
ideaistogiveatypeof“limphome”functionality.
Theobjectdetectionsystemconsistsofanumber
ofsensorsthatshouldgiveatleastandnormally
betterdetectioncapabilitiesthanahumanlookout.
Amongthesensorsisradar,CCTV,forwardlooking
infrared(FLIR)andAIS.
362
7 HYPOTHESISFORMULATIONANDTESTS
Achallengefordesignersofautonomoussystemsis
toconvinceusersthatthesystemissafeandthatit
willdowhatitisintendedtodo.Evenby
demonstratingacertainfunction,itcanbeargued
thatalthoughitworkedonce,itdoesnotmeanthatit
willworkeverytime.InMUNINwehavedecidedto
addressthisproblemthroughhypothesistesting.
Oxforddictionarydefinesahypothesisas“a
suppositionorproposedexplanationmadeonthebasisof
limitedevidenceasastartingpointforfurther
investigation”.Thus,MUNIN’smainhypothesisfor
thefeasibilitytestisthatunmannedshipsystemscan
autonomouslysailonanintercontinentalvoyageat
leastassafeandefficientasmannedships.However,
ascientificapproachrequiresthehypothesistobe
testedtovalidateit.AsMUNIN’smainhypothesisW
isratherbroad,testablesub‐hypothesesSijforeach
modulearederivedthataredirectlydependenton
themainhypothesis.Ofcourse,evenifallSijare
valid,thisdoesnotmeanthatWholds,butatleasta
falsificationispossiblebythisapproachdueto
contraposition:
(WSij)(SijW)(1)
TheSijarederivedfromtheidentifiedhazards.
Afterwards,appropriatescientifictestscanbefound
andconductedtoattempttofalsifythemain
hypothesis.Thus,theprincipaltestapproachof
MUNINissummarizedinFigure5.
Main hypothesis W
Sub-hypotheses S1to Sn
Design and conduct test for Si
S ˄ ¬ (¬S)
Test Siand ¬Si
next W not ok
noyes
for each i
Figure5.Hypothesisderivationandtests
Table3.Extractofderivedhypothesis(Krüger,ed.2014)
_______________________________________________
Number Hypothesis
_______________________________________________
WUnmannedshipsystemscanautonomouslysail
onanintercontinentalvoyageatleastassafe
andefficientasmannedships.
S1ASCcanautonomouslynavigateashipsafely
andefficientlyalongapredefinedvoyageplan
withrespecttoweatherandtrafficconditions.
S11 ASCcanidentifytheCOLREG‐obligationofthe
shiptowardsallobjectsinthevicinityin
unrestrictedwaters.
S12 ASCcancalculatepossible,COLREG‐compliant
deviationmeasuresforagiventrafficsituation
inunrestrictedwatersthatminimizethe
necessarytrackdeviation.
S2ASMcansensesufficientweatherandtraffic
datatoensurenavigationandplanningfunction
onautonomousvesselsandenablesituation
awarenessinanoperationroom.
S21 ASMiscapabletodetectafloatingobjectof
standardcontainersizeinarangeofatleast4.0
NM.
S22 ASMiscapabletodetectaliferaftinarangeof
atleast3.0NM.
_______________________________________________
WhilethisisnotafullproofthatWistrue,itisa
muchmoreconvincingargument,particularlyifthe
sub‐hypothesisandtestsarewelldesigned.
However,itisachallengetodesigngoodtestsforthe
negationofS.
Asanexample,Table3givesanoverviewofa
smallpartofMUNIN’ssub‐hypothesiswithregards
tocollisionavoidanceandobjectdetectionhazards
describedinchapter6.
Basedonthishypothesistree,individualtestsare
designedandconducted.Thesetestsmightdiffer
dependingontheconcretecircumstances.Whilee.g.
S21andS22canbeeasilytestedbyconductinganin‐
situ‐testofthesystemunderdifferentenvironmental
conditions,S11cane.g.beverifiedbycheckingthe
complianceofobligationsderivedfromS11with
situationspre‐evaluatedbynauticalexpertsorcourt
decisions.Incontrast,S12canbetestedbyhistorical
tracksavailablefromAIS‐Dataproviders.
Thehypothesistestswillalsoserveaspartofthe
generalsoftwareandsystemtesting.However,asthe
hypothesesnormallyfocusonsub‐systemsand
specificfunctions,otherandmoresystemoriented
testsarealsonecessary.Thiswillbepartofthe
constructionandtestphaseandwillnotbediscussed
furtherhere.
8 DESIGNVERIFICATION
Fornormalships,theprocessofgettingtherequired
flagstateandclasscertificatesisthefinaldesign
verification.Duringthecertificationprocess,
independentthirdpartiesexaminethetechnical
solutionsandissuecertificatesasproofofsafety,
securityandfunctionality.
Onewillneedasimilarregimeforunmanned
ships.Tobeabletosail,theshipmustbeapproved
andcertifiedbyaflagstateandforinsuranceandfor
acceptancebythecargoownersaswellasother
commercialparties,itwillalsohavetohaveclass
approval.
Onecanassumethattheapprovaland
certificationprocessforunmannedorreduced
manningshipswillbesimilarinstructuretothatfor
mannedships.Theproblemistodefinethe
acceptancecriteriaandtoalesserdegreetotest
compliance.Anothersignificantproblemisthat
manyoftheexistinginternationalregulations
stipulatethatthereisacrewonboardandthatmany
rulesdealwithwhatworkprocessesandwhat
routinesarerequiredbythiscrewtoensureasafe
voyage.Anobviousexamplehereisthe
“InternationalConventiononStandardsofTraining,
CertificationandWatchkeepingforSeafarers”
(STCW)whichisobviouslynotpossibletofulfillfor
anunmannedvessel.Thisandothercodeswillhave
tobereassessedorreformulatedtoaddresstheuseof
automatedlookoutsandhelmsmen.
363
TherearealreadymechanismsinplaceintheIMO
regulatoryframeworktoallowflagstateandclassto
developnewmethodsfordefiningrequirementsto
andfortestingsystemstocertainsafetygoalsrather
thantotechnicalstandards.Theconceptof“Goal
BasedStandards”(GBS)wasintroducedbytheIMO
Councilin2002.Thismaybeasignificanthelpin
adaptingatleastsomeoftherelevantregulationsto
unmannedships.TheuseoftheFSAmethodologyis
animportantpartofthisandisthereasonwhyFSA
wasselectedasbaselinefortheMUNIN
methodology.TheuseofFSA‐basedmethodsalready
intheconceptstudieswillpresumablymakeit
possibletoreusemanyoftheanalysisresultsalsoin
theinternationallyregulatoryprocesses.
Thelegalproblemislowerwhenoperatingonly
ininternationalwaters,wherethejurisdictionis
almostexclusivelythatoftheflagstate.When
enteringintonationalwaters,theportandcoastal
states’jurisdictionwillcomeintoplayaswell.This
createsamuchmorecomplexpictureandwillinthe
longtermrequirenewinternationalregulationsand
conventionsdevelopedthroughIMOandpossibly
otherorganizations.TheMUNINprojecthas
providedsomeanalysisoftheseissues,butmore
workisneededtofindefficientsolutionstothe
identifiedproblems(Sage‐Fuller,ed.2013a,2013b).
Thehypothesistestswilltosomedegreealsoact
asverificationcriteria,althoughahypothesis
typicallyonlyaddressesfactorfromthehazard
identificationandsystemmodularization
individually.Thus,theywillnotaddressthesystem
asawhole.
Inthiscontextonealsohastolookatthein‐house
designverification.Thisisanormalpartofthe
systemdevelopmentprocessandistypically
undertakenduringmoduletests,integrationtests
andcommissioningofthesystem.Thiswillbean
add‐onandanecessarystepalsotothethirdparty
verificationrelatedtoissuanceofcertificates.
DesignverificationwillnotbedoneinMUNINas
theprojectislimitedtoaconceptstudy.Thefinaltest
stageinMUNINwillbethehypothesistestsand,
followingthose,thehighlevelcost‐benefitanalysis.
Thus,systemverificationcriteriahavenotbeen
developedandwillnotbeaddressedtoany
significantextentinthisproject.
9 COST‐BENEFITANALYSIS
Thecost‐benefitanalysis(CBA)fortheMUNIN
concepthasnotstartedyetandwillbedoneinthe
firsthalfof2015.Alsoheretheresultsoftherisk‐
basedapproachareexpectedtohavesomeimpacts.
Weexpectthattheoperationalsimplificationsthat
cameoutofthescenarioanalysiswillhaveapositive
impactascostswillbereducedwhencomplexityof
thetechnologydecreases.Thepossibleexceptionhere
istheneedforhavingcrewonboardduringport
approachanddeparture.Unlessthisishandledina
waythatreducestheneedforlifesupportsystems
onboard,itmayoffsetmanyofthepotentialgainsin
havingshipsoptimizedforunmannedoperations,
e.g.withoutaccommodationareas,lesslifesupport
systemsandusingnewsuperstructureconcepts.
Theriskcontroloptionsthatwereidentifiedas
necessaryinthehazardidentificationandrisk
controlactivitieswillnormallyhaveanegative
impactasmostriskcontrolsrequiremoreadvanced
softwareorothertechnology.However,the
structuredapproachofFSAshouldguaranteethat
theseriskcontrolsarereallynecessaryandthatthey
giveactualbenefitstotheshipandshipowners.
Fortheriskcontrolsthatweredefinedas
unnecessaryorasALARP,theFSA‐based
methodologyshouldbeexpectedtooptimizethe
cost‐benefitstradeoffandassuchhaveapositive
contribution.
10 CONCLUSIONS
Theexperienceswiththerisk‐basedapproachto
designhavebeenverygoodsofar.Ithasdefineda
necessaryandefficientstructuretotheanalysisand
designactivitiesandhasmadeitpossibletopresenta
consistentandwelldocumentedargumentforthe
safetyandsecurityoftheunmannedship.Ithasalso
givenvaluableinputtotheinitialcost‐benefitwork.
Theprojectteam’simpressionsofaristhatthe
conceptofanunmannedshipisviable,althoughnot
necessarilyasaretro‐fittoexistingbulkcarriers.
Theriskbasedmethodhasinparticularbeen
usefulinstructuringtheHazardIdentification
processasthatishighlycriticalindefiningthemain
challengesandwheredevelopmenteffortsneedtobe
focused.Inouropinion,itisnotpossibletoarguefor
thesafetyandsecurityofunmannedshipswithout
thistypeofstructuredproblemanalysis.
Theearlyscenariodescriptionandanalysis
exercisehasalsoprovenveryeffectiveinbalancing
operationalcomplexitywithtechnicalsimplifications.
Thisisacriticalpartofdefiningtheindustrial
autonomoussystem’soperationalscopeasatoo
flexibleortooextensivescopecanhaveveryhigh
impactontechnicalcomplexityand,henceoncost
andreliability.
Wehavenotyetusedthecost‐benefitpartofthe
FSAmethodology,butthiswillbeaddressedinthe
remaininghalfyearoftheprojectandreportedon
later.However,theFSAmethodhasbeenusedina
numberofotherIMOstudiesandwedoexpectthat
alsothispartwillworkwell.
REFERENCES
Brito,M.P.,Griffiths,G.,&Challenor,P.2010.Risk
analysisforautonomousunderwatervehicleoperations
inextremeenvironments.RiskAnalysis,30(12),1771‐
1788.
Bruhn,W.C.,Burmeister,H.C.,Long,M.T.,&Moræus,J.
A.2014.Conductinglook‐outonanunmannedvessel:
Introductiontotheadvancedsensormodulefor
MUNIN’sautonomousdrybulkcarrier.InProceedings
ofInternationalSymposiumInformationonShips—ISIS
2014(pp.04‐05).
364
BurmeisterH.‐C.&BruhnW.C.2014a,Designingan
autonomouscollisionavoidancecontrollerrespecting
COLREG,InMaritime‐PortTechnologyandDevelopment
2014,Taylor&FrancisGroup,London(2014),pp.83‐88
BurmeisterH.C.,BruhnW.,RødsethØ.J.&PoratheT.
2014bAutonomousUnmannedMerchantVesselandits
Contributiontowardsthee‐Navigation
Implementation:TheMUNINPerspective,in
InternationalJournalofe‐NavigationandMaritime
Economy1(2014)1–13.
Griffiths,G.,Millard,N.W.,McPhail,S.D.,Stevenson,P.,
&Challenor,P.G.2003.Onthereliabilityofthe
Autosubautonomousunderwatervehicle.Underwater
Technology:InternationalJournaloftheSocietyfor
UnderwaterTechnology,25(4),175‐184.
Griffiths,G.,Bose,N.,Ferguson,J.,&Blidberg,D.R.2007.
Insuranceforautonomousunderwatervehicles.
UnderwaterTechnology,27(2),43‐48.
IMO2007.MSC83/INF.2,FormalSafetyAssessment:
ConsolidatedtextoftheGuidelinesforFormalSafety
Assessment(FSA)foruseintheIMOrule‐makingprocess.
May14,2007
KrügerC.M.(ed.)2014,MUNINDeliverableD8.1,Test
environmentset‐updescription,November2014
(AvailablefromMUNINprojectonrequest).
Podder,T.K.,Sibenac,M.,Thomas,H.,Kirkwood,W.J.,&
Bellingham,J.G.2004.Reliabilitygrowthof
autonomousunderwatervehicle‐Dorado.In
OCEANSʹ04.MTTS/IEEETECHNO‐OCEANʹ04(Vol.2,
pp.856‐862).IEEE.
Porathe,T.2014.RemoteMonitoringandControlof
UnmannedVessels–TheMUNINShoreControlCentre.
InProceedingsofthe13thInternationalConferenceon
ComputerApplicationsandInformationTechnologyinthe
MaritimeIndustries(COMPIT‘14)(pp.460‐467).
RødsethØ.J.2011,AMaritimeITSArchitecturefore‐
Navigationande‐Maritime:SupportingEnvironment
FriendlyShipTransport,inProceedingsofIEEEITSC
2011,Washington,USA,2011.
RødsethØ.J&Burmeister,H.‐C.2012.Developments
towardtheunmannedship,inProceedingsof
InternationalSymposiumInformationonShips–ISIS2012,
Hamburg,Germany,August30‐31,2012.
Rødseth,Ø.J.,Kvamstad,B.,Porathe,T.,&Burmeister,H.‐
C.2013.Communicationarchitectureforanunmanned
merchantship.InProceedingsofIEEEOceans2013.
Bergen,Norway.
Rødseth,Ø.J&Tjora,Å.2014.Ariskbasedapproachtothe
designofunmannedshipcontrolsystems.InMaritime‐
PortTechnologyandDevelopment2014.Taylor&
FrancisGroup,London(2014).
Sage‐FullerB.(ed.)2013a.MUNINDeliverableD5.1,Legal
AnalysisandLiabilityfortheAutonomousNavigation
Systems,March2013(AvailablefromMUNINprojecton
request).
Sage‐FullerB.(ed.)2013b.MUNINDeliverableD7.2,Legal
AnalysisandLiabilityfortheRemoteControlledVessels,
August2013(Availablefromwww.unmanned‐ship.org
January2015orfromtheMUNINprojectonrequest).
Stokey,R.,Austin,T.,VonAlt,C.,Purcell,M.,Forrester,N.,
Goldsborough,R.,&Allen,B.1999.AUVBloopersor
WhyMurphyMusthavebeenanOptimist:APractical
LookatAchievingMissionLevelReliabilityinan
AutonomousUnderwaterVehicle.InProceedingsofthe
EleventhInternationalSymposiumonUnmanned
UntetheredSubmersibleTechnology(pp.32‐40).
Walther,L.,Burmeister,H.‐C.&Bruhn,W.2014,Safeand
efficientautonomousnavigationwithregardsto
weather,In:ProceedingsofCOMPITʹ14,Redworth,UK,
12‐14May2014,p.303‐317.