Article

PREDICTION OF NEW CONSERVED EPITOPES IN PROTEIN 3D MODEL TO NEUTRALIZE INFLUENZA A VIRUS STRAIN H3N2 CIRCULATING IN BANGLADESH

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Influenza A virus H3N2 strain are simultaneously prevalent among human and bird population sometimes causing epidemic besides seasonal infections. This virus causes a substantial amount of morbidity and mortality in different parts of the world especially in the developing countries like Bangladesh. Although vaccine was developed against this virus strain, the activity of vaccine fails frequently due to accumulation of mutations in hemagglutinin (HA) gene. Here, we suggested an effective protein model with conserved epitope-based vaccine design which might be capable to neutralize that strain. After partial sequencing of HA gene of H3N2 isolated from Bangladeshi patients, we observed several mutations at different positions, some of which lies in existing epitopes or active sites which indicates possible resistance to existing vaccines, although experimental confirmation is needed. However, multiple sequence alignment with previously reported Bangladeshi and vaccine strains we have identified several conserved regions and some of these also fall in predicted and experimentally determined epitopes which may be useful for a new and potential vaccine development. We predicted a protein 3D model with the sequenced Bangladeshi H3N2 strain and identified conserved highly immunogenic epitopes and active sites in it which may be further evaluated experimentally for developing vaccine against it.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Additionally, genome reassortments and emerging mutations sometime spawn new strains of influenza viruses as imminent epidemic or pandemic threats to human health (Mehle et al. 2012). Among different types Open Access *Correspondence: sabita.rahman223@gmail.com 1 Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh Full list of author information is available at the end of the article of influenza viruses, type A is the most severe which further can be subtyped on the basis of antigenic differences of external glycoproteins, hemagglutinin (HA) and neuraminidase (NA) (Wright et al. 1995;Shaha et al. 2015). On the other hand, influenza B viruses are relatively less severe and develop infections among children (Abdullah Brooks et al. 2007;Zaman et al. 2009). ...
Article
Full-text available
Background: Influenza viruses may cause severe acute respiratory illness among human population. People of densely populated areas, e.g., slum, are mostly affected by influenza viruses. Although potential vaccines to influenza viruses have been developed, infection rate is still high, therefore, increase the morbidity and mortality rate in slum areas. To treat these infections, slum dwellers including children and mothers do not get proper medication as well as vaccination. Hence, prevention remains to be the only mean to tackle such infections. Herein, we determined the prevalence of influenza infections among nutritionally deprived children and mothers of slum areas in Dhaka city and demonstrated the association with different risk factors like age, gender and socio-economic status. Results: Nasopharyngeal swab samples and a short demography of all the participants suffering from influenza-like illness (ILI) were collected. The samples were subjected to RNA extraction and then real-time RT-PCR to detect influenza viruses. Among the ILI patients, about 87.9 % did not have knowledge about influenza infections and 80.5 % did not cover their noses during coughing as well as sneezing. Children were significantly infected by both influenza A and influenza B viruses, suggesting their vulnerability to these infections. Additionally, among the children with ILI, influenza infections were significantly associated with age below or equal to three years, very poor family incomes, practicing unhygienic habits and nutritional deficiency. Conclusions: This study suggests that proper vaccination, improved sanitary conditions and nutritional diet may help reduce the risk of influenza infections in slum areas.
Article
Full-text available
Unlabelled: Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Importance: Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines.
Article
Full-text available
Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.
Article
Full-text available
Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses.
Article
Full-text available
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.
Article
Full-text available
Influenza virus hemagglutinin (HA) mediates receptor binding and viral entry during influenza infection. The development of receptor analogs as viral-entry blockers has not been successful, which suggests that sialic acid may not be an ideal scaffold to obtain broad, potent HA inhibitors. Here, we report crystal structures of Fab fragments from three human antibodies that neutralize the 1957 pandemic H2N2 influenza virus in complex with H2 HA. All three antibodies use an aromatic residue to plug a conserved cavity in the HA receptor-binding site. Each antibody interacts with the absolutely conserved HA1 Trp153 at the cavity base through π-π stacking with the signature Phe54 of two VH1-69-encoded antibodies or a tyrosine from HCDR3 in the other antibody. This highly conserved interaction can be used as a starting point to design inhibitors targeting this conserved hydrophobic pocket in influenza viruses.
Article
Full-text available
The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide:MHC binding and T-cell epitope predictive tools have been added. As validated by different labs and in the first international competition for predicting peptide:MHC-I binding, their predictive performances have improved considerably. In addition, a new B-cell epitope prediction tool was added, and the homology mapping tool was updated to enable mapping of discontinuous epitopes onto 3D structures. Furthermore, to serve a wider range of users, the number of ways in which IEDB-AR can be accessed has been expanded. Specifically, the predictive tools can be programmatically accessed using a web interface and can also be downloaded as software packages.
Article
Full-text available
Background: The recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics. Design: The Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature. Results: To demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks. Conclusions: The IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics.
Article
Full-text available
In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii) There is evidence that most new human pandemic strains and variants have originated in southern China. (viii) There is speculation that pigs may serve as the intermediate host in genetic exchange between influenza viruses in avian and humans, but experimental evidence is lacking. (ix) Once the ecological properties of influenza viruses are understood, it may be possible to interdict the introduction of new influenza viruses into humans.
Article
Full-text available
The emergence of new strains of Influenza virus have caused several pandemics over the last hundred years with the latest being the H1N1 Swine flu pandemic of 2009. The Hemagglutinin (HA) protein of the Influenza virus is the primary target of human immune system and is responsible for generation of protective antibodies in humans. Mutations in this protein results in change in antigenic regions (antigenic drift) which consequently leads to loss of immunity in hosts even in vaccinated population (herd immunity). This necessitates periodic changes in the Influenza vaccine composition. In this paper, we investigate the molecular basis of the reported loss of herd immunity in vaccinated population (vaccine component: Influenza A/X-31/1968 (H3N2)) which resulted in the outbreak due to strain Influenza A/Port Chalmers/1/1973 (H3N2). Also, the effects of antigenic drift in HA protein (H3N2 vaccine strains 1968-2007) on the 3D structures as well as interactions with BH151, a 1968 antibody, has been studied. Rigid body molecular docking protocol has been used to study the antigen-antibody interactions. We believe that the present study will help in better understanding of host-pathogen interactions at the molecular level.
Article
Full-text available
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.
Article
Full-text available
Computational small-molecule binding site detection has several important applications in the biomedical field. Notable interests are the identification of cavities for structure-based drug discovery or functional annotation of structures. fpocket is a small-molecule pocket detection program, relying on the geometric α-sphere theory. The fpocket web server allows: (i) candidate pocket detection—fpocket; (ii) pocket tracking during molecular dynamics, in order to provide insights into pocket dynamics—mdpocket; and (iii) a transposition of mdpocket to the combined analysis of homologous structures—hpocket. These complementary online tools allow to tackle various questions related to the identification and annotation of functional and allosteric sites, transient pockets and pocket preservation within evolution of structural families. The server and documentation are freely available at http://bioserv.rpbs.univ-paris-diderot.fr/fpocket.
Article
Full-text available
Influenza A viral surface protein, hemagglutinin, is the major target of neutralizing antibody response and hence a main constituent of all vaccine formulations. But due to its marked evolutionary variability, vaccines have to be reformulated so as to include the hemagglutinin protein from the emerging new viral strain. With the constant fear of a pandemic, there is critical need for the development of anti-viral strategies that can provide wider protection against any Influenza A pathogen. An anti-viral approach that is directed against the conserved regions of the hemaggutinin protein has a potential to protect against any current and new Influenza A virus and provide a solution to this ever-present threat to public health. Influenza A human hemagglutinin protein sequences available in the NCBI database, corresponding to H1, H2, H3 and H5 subtypes, were used to identify highly invariable regions of the protein. Nine such regions were identified and analyzed for structural properties like surface exposure, hydrophilicity and residue type to evaluate their suitability for targeting an anti-peptide antibody/anti-viral response. This study has identified nine conserved regions in the hemagglutinin protein, five of which have the structural characteristics suitable for an anti-viral/anti-peptide response. This is a critical step in the design of efficient anti-peptide antibodies as novel anti-viral agents against any Influenza A pathogen. In addition, these anti-peptide antibodies will provide broadly cross-reactive immunological reagents and aid the rapid development of vaccines against new and emerging Influenza A strains.
Article
Full-text available
Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.
Article
Full-text available
Although the surface proteins of human influenza A virus evolve rapidly and continually produce antigenic variants, the internal viral genes acquire mutations very gradually. In this paper, we analyze the sequence evolution of three influenza A genes over the past two decades. We study codon usage as a discriminating signature of gene- and even residue-specific diversifying and purifying selection. Nonrandom codon choice can increase or decrease the effective local substitution rate. We demonstrate that the codons of hemagglutinin, particularly those in the antibody-combining regions, are significantly biased toward substitutional point mutations relative to the codons of other influenza virus genes. We discuss the evolutionary interpretation and implications of these biases for hemagglutinin's antigenic evolution. We also introduce information-theoretic methods that use sequence data to detect regions of recent positive selection and potential protein conformational changes.
Article
Full-text available
Current inactivated influenza vaccines provide protection when vaccine antigens and circulating viruses share a high degree of similarity in hemagglutinin protein. Five antigenic sites in the hemagglutinin protein have been proposed, and 131 amino acid positions have been identified in the five antigenic sites. In addition, 20, 18, and 32 amino acid positions in the hemagglutinin protein have been identified as mouse monoclonal antibody-binding sites, positively selected codons, and substantially diverse codons, respectively. We investigated these amino acid positions for predicting antigenic variants of influenza A/H3N2 viruses in ferrets. Results indicate that the model based on the number of amino acid changes in the five antigenic sites is best for predicting antigenic variants (agreement = 83%). The methods described in this study could be applied to predict vaccine-induced cross-reactive antibody responses in humans, which may further improve the selection of vaccine strains.
Article
Full-text available
Until now, design of the annual influenza vaccine has relied on phylogenetic or whole-sequence comparisons of the viral coat proteins hemagglutinin and neuraminidase, with vaccine effectiveness assumed to correlate monotonically to the vaccine-influenza sequence difference. We use a theory from statistical mechanics to quantify the non-monotonic immune response that results from antigenic drift in the epitopes of the hemagglutinin and neuraminidase proteins. The results explain the ineffectiveness of the 2003-2004 influenza vaccine in the United States and provide an accurate measure by which to optimize the effectiveness of future annual influenza vaccines.
Article
Full-text available
Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 'Spanish' flu, one of the most deadly outbreaks in recorded history, which killed 30-50 million people worldwide, the 1957 'Asian' flu, and the 1968 'Hong Kong' flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.
Article
Full-text available
Recent developments in the molecular genetics of influenza provides clues into how avian flu - H5N1 - could find a way to jump easily from human to human and cause a pandemic
Article
Full-text available
We used a regression model to examine the impact of influenza on death rates in tropical Singapore for the period 1996-2003. Influenza A (H3N2) was the predominant circulating influenza virus subtype, with consistently significant and robust effect on mortality rates. Influenza was associated with an annual death rate from all causes, from underlying pneumonia and influenza, and from underlying circulatory and respiratory conditions of 14.8 (95% confidence interval 9.8-19.8), 2.9 (1.0-5.0), and 11.9 (8.3-15.7) per 100,000 person-years, respectively. These results are comparable with observations in the United States and subtropical Hong Kong. An estimated 6.5% of underlying pneumonia and influenza deaths were attributable to influenza. The proportion of influenza-associated deaths was 11.3 times higher in persons age >65 years than in the general population. Our findings support the need for influenza surveillance and annual influenza vaccination for at-risk populations in tropical countries.
Article
Full-text available
The NCBI Influenza Virus Resource provides an integrated tool for influenza virus sequence retrieval and analysis. Every sequence in the database is curated by an automatic procedure, and NCBI staff make sure that the information presented in the database is complete, accurate, and up to date. The database has open access to all users and has been used as the backbone of several other influenza virus sequence databases, such as the Influenza Virus Database (3), the BioHealthBase BRC (http://www.biohealthbase.org/GSearch/statsAutomation.do? decorator=influenza), the Influenza Virus Genotype Tool (http://www.flugenome. org/index.php), and the Influenza Primer Design Resource (http://www.ipdr.mcw. edu/fludb/search). Sequence analysis tools such as multiple-sequence alignment and clustering of protein sequences are integrated with the database and allow users to quickly modify a data set to optimize the analysis. Using these tools offers a convenient way for preliminary sequence analyses. The influenza virus genome annotation tool makes sequence submission to GenBank much easier and will greatly promote data sharing among the influenza virus research community.
Article
Full-text available
Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP) experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions. An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score) based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1]) of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 A for RMSD. The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/I-TASSER.
Article
Please cite this paper as: Sarah C. Gilbert. (2012) Advances in the development of universal influenza vaccines. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12013. Despite the widespread availability and use of influenza vaccines, influenza still poses a considerable threat to public health. Vaccines against seasonal influenza do not offer protection against pandemic viruses, and vaccine efficacy against seasonal viruses is reduced in seasons when the vaccine composition is not a good match for the predominant circulating viruses. Vaccine efficacy is also reduced in older adults, who are one of the main target groups for vaccination. The continual threat of pandemic influenza, with the known potential for rapid spread around the world and high mortality rates, has prompted researchers to develop a number of novel approaches to providing immunity to this virus, focusing on target antigens which are highly conserved between different influenza A virus subtypes. Several of these have now been taken into clinical development, and this review discusses the progress that has been made, as well as considering the requirements for licensing these new vaccines and how they might be used in the future.
Article
Hemagglutinin (HA) and neuraminidase (NA) are highly variable envelope glycoproteins. Here hydropathic analysis, previously applied to quantify common flu (H1N1) evolution (1934-), is applied to the evolution of less common but more virulent (avian derived) H3N2 (1968-), beginning with N2. Whereas N1 exhibited opposing migration and vaccination pressures, the dominant N2 trend is due to vaccination, with only secondary migration interactions. Separation and evaluation of these effects is made possible by the use of two distinct hydropathic scales representing first-order and second-order thermodynamic interactions. The evolutions of H1 and H3 are more complex, with larger competing migration and vaccination effects. The linkages of H3 and N2 evolutionary trends are examined on two modular length scales, medium (glycosidic) and large (corresponding to sialic acid interactions). The hierarchical hydropathic results complement and greatly extend advanced phylogenetic results obtained from similarity studies. They exhibit simple quantitative trends that can be transferred to engineer oncolytic properties of other viral proteins to treat recalcitrant cancers.
Article
Context: Infections caused by influenza viruses are a major health burden, both in developed and developing countries worldwide. Nevertheless, the overwhelming majority of influenza reports originate from industrialized countries in northern and southern temperate zones. Aims: The aim of this study was to determine the epidemiology of influenza viruses in patients seeking treatment for acute febrile illnesses in rural Bangladesh. Settings and design: As part of our research on the causes of febrile illnesses in rural Bangladesh, nasopharyngeal swabs from patients with signs and symptoms consistent with influenza were collected from 2008 onwards. Materials and methods: Viral infection was established using two independent rapid diagnostic tests (RDTs) and later confirmed by RT-PCR. Results: A total of 314 fever cases were enrolled in a survey of febrile illnesses carried out in Bandarban District in southeastern Bangladesh, out of whom 38 (12.1%) tested positive by RDT. Molecular subtyping showed that seasonal H3 strains (N=22; 7.0%) as well as the new H1N1v pandemic influenza subtype (N=13; 4.1%) had been circulating at the time of our investigations resulting in a PCR-adjusted positivity rate of 11.1% (95% CI 8.0 - 15.3). The positive predictive values for the RDTs used were 90.9% and 94.4%, respectively. Conclusions: This study provides a first insight into influenza epidemics in one of the most remote parts of Asia. Our findings suggest that respiratory illnesses due to influenza viruses are underreported in areas with limited access to health care and show a distinct seasonality also in rural areas of tropical countries.
Article
Seasonal and pandemic influenza have caused high morbidity and mortality worldwide. Recent emergence of influenza A H5N1 and H1N1 strains has heightened concern, especially as a result of their drug resistance. The life cycle of influenza viruses has been well studied and nearly all the viral proteins are becoming potential therapeutic targets. In this review, we present an overview of recent progress in structure-based anti-influenza drug design, paying close attention to the increasing role of computation and strategies for overcoming drug resistance.
Article
Vaccines are the gold standard for the control and prevention of infectious diseases, but a number of important human diseases remain challenging targets for vaccine development. An influenza vaccine that confers broad spectrum, long-term protection remains elusive. Several broadly neutralizing antibodies have been identified that protect against multiple subtypes of influenza A viruses, and crystal structures of several neutralizing antibodies in complex with the major influenza surface antigen, hemagglutinin, have revealed at least 3 highly conserved epitopes. Our understanding of the molecular details of these antibody-antigen interactions has suggested new strategies for the rational design of improved influenza vaccines, and has inspired the development of new antivirals for the treatment of influenza infections.
Article
Four 'antigenic sites' on the three-dimensional structure of the influenza haemagglutinin are identified. At least one amino acid substitution in each site seems to be required for the production of new epidemic strains between 1968 and 1975.
Article
A panel of 125 monoclonal antibodies (IgG) was raised against the haemagglutinin of an early representative of the Hong Kong (H3N2) subtype of influenza. They were classified into groups based on their cross-reactions with 16 other virus strains from the same subtype. This classification was performed using methods of numerical taxonomy. Statistical tests supported the validity of the grouping. Ten such groups were identified. Nine antibodies remained unclassified. The locations on the haemagglutinin molecule of amino acid residues influencing the binding of each antibody group were estimated. This was achieved by a study of antibody cross-reactive profiles, coupled with previously published locations of amino acid changes in the primary sequence of different haemagglutinins, and their positions in the tertiary structure of the molecule. The locations of the amino acids affecting antibody binding overlapped between the different antibody groups forming a continuous ring surrounding the probable cell-receptor pocket. The amino acids affecting the binding of each antibody group may or may not represent the actual antibody binding sites. The importance of the different sites of amino acid variation in the haemagglutinin during evolution of the virus is discussed.
Article
The hemagglutinin (HA) gene of influenza viruses encodes the major surface antigen against which neutralizing antibodies are produced during infection or vaccination. We examined temporal variation in the HA1 domain of HA genes of human influenza A (H3N2) viruses in order to identify positively selected codons. Positive selection is defined for our purposes as a significant excess of nonsilent over silent nucleotide substitutions. If past mutations at positively selected codons conferred a selective advantage on the virus, then additional changes at these positions may predict which emerging strains will predominate and cause epidemics. We previously reported that a 38% excess of mutations occurred on the tip or terminal branches of the phylogenetic tree of 254 HA genes of influenza A (H3N2) viruses. Possible explanations for this excess include processes other than viral evolution during replication in human hosts. Of particular concern are mutations that occur during adaptation of viruses for growth in embryonated chicken eggs in the laboratory. Because the present study includes 357 HA sequences (a 40% increase), we were able to separately analyze those mutations assigned to internal branches. This allowed us to determine whether mutations on terminal and internal branches exhibit different patterns of selection at the level of individual codons. Additional improvements over our previous analysis include correction for a skew in the distribution of amino acid replacements across codons and analysis of a population of phylogenetic trees rather than a single tree. The latter improvement allowed us to ascertain whether minor variation in tree structure had a significant effect on our estimate of the codons under positive selection. This method also estimates that 75.6% of the nonsilent mutations are deleterious and have been removed by selection prior to sampling. Using the larger data set and the modified methods, we confirmed a large (40%) excess of changes on the terminal branches. We also found an excess of changes on branches leading to egg-grown isolates. Furthermore, 9 of the 18 amino acid codons, identified as being under positive selection to change when we used only mutations assigned to internal branches, were not under positive selection on the terminal branches. Thus, although there is overlap between the selected codons on terminal and internal branches, the codons under positive selection on the terminal branches differ from those on the internal branches. We also observed that there is an excess of positively selected codons associated with the receptor-binding site and with the antibody-combining sites. This association may explain why the positively selected codons are restricted in their distribution along the sequence. Our results suggest that future studies of positive selection should focus on changes assigned to the internal branches, as certain of these changes may have predictive value for identifying future successful epidemic variants.
Article
Eighteen codons in the HA1 domain of the hemagglutinin genes of human influenza A subtype H3 appear to be under positive selection to change the amino acid they encode. Retrospective tests show that viral lineages undergoing the greatest number of mutations in the positively selected codons were the progenitors of future H3 lineages in 9 of 11 recent influenza seasons. Codons under positive selection were associated with antibody combining site A or B or the sialic acid receptor binding site. However, not all codons in these sites had predictive value. Monitoring new H3 isolates for additional changes in positively selected codons might help identify the most fit extant viral strains that arise during antigenic drift.
Article
Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HAO; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry.
Article
The antigenic evolution of influenza A (H3N2) virus was quantified and visualized from its introduction into humans in 1968 to 2003. Although there was remarkable correspondence between antigenic and genetic evolution, significant differences were observed: Antigenic evolution was more punctuated than genetic evolution, and genetic change sometimes had a disproportionately large antigenic effect. The method readily allows monitoring of antigenic differences among vaccine and circulating strains and thus estimation of the effects of vaccination. Further, this approach offers a route to predicting the relative success of emerging strains, which could be achieved by quantifying the combined effects of population level immune escape and viral fitness on strain evolution.
Article
The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/.
Article
PredictProtein (PP, http://cubic.bioc.columbia.edu/pp/) is an internet service for sequence analysis and the prediction of aspects of protein structure and function. Users submit protein sequence or alignments; the server returns a multiple sequence alignment, PROSITE sequence motifs, low-complexity regions (SEG), ProDom domain assignments, nuclear localisation signals, regions lacking regular structure and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions and disulfide-bonds. Upon request, fold recognition by prediction-based threading is available. For all services, users can submit their query either by electronic mail or interactively from World Wide Web.
Article
We studied the genetic and epidemic characteristics of influenza A (H3N2) viruses circulated in human in Fujian Province, south of China from 1996 to 2004. Phylogenetic analysis was carried out for genes encoding hemagglutinin1 (HA1) of influenza A virus (14 new and 11 previously reported reference sequences). Our studies revealed that in the 8 flu seasons, the mutations of HA1 genes occurred from time to time, which were responsible for about four times of antigenic drift of influenza H3N2 viruses in Fujian, China. The data demonstrated that amino acid changes were limited to some key codons at or near antibody binding sites A through E on the HA1 molecule. The changes at the antibody binding site B or A or sialic acid receptor binding site 226 were critical for antigenic drift. But the antigenic sites might change and the key codons for antigenic drift might change as influenza viruses evolve. It seems important to monitor new H3 isolates for mutations in the positively selected codons of HA1 gene in south of Asia.
Article
The influenza vaccine failed this winter. Steven Salzberg suggests that future success relies on sharing data more widely and making the virus strain selection process more transparent.