In order to extract fault features of rolling bearing precisely and steadily, a method which is based on variational mode decomposition (VMD) and singular value decomposition was proposed for fault diagnosis using standard fuzzy C means clustering (FCM). First of all, the known fault signals measured in the same load but with different faults were decomposed by VMD, and the modes' characteristics were further extracted using singular value decomposition technique, forming the standard clustering centers by FCM, and then the test samples were clustered by a Hamming nearness approach, and the classification performance was evaluated by calculating classification coefficient and average fuzzy entropy. At last, the method was applied in rolling bearing fault diagnosis under variable loads. By comparing with a method based on EMD, this approach is not sensitive to the initialization of standard FCM, and exhibits better classification performance in the same load fault diagnosis; For the variable loads, the fault characteristic lines of test samples are still around the former clustering centers except that the ones of outer race fault sample have migrated obviously. However, the overall classification accuracy is still maintained 100%, therefore, the method proposed can extract the fault features accurately and stably, providing a good reference for the actual rolling bearing intelligent fault diagnosis.