ArticlePDF Available

Réponses de l’Huîtrier-pie, Haematopus ostralegus à une diminution de sa ressource alimentaire principale en Baie de Somme : la Coque, Cerastoderma edule

Authors:
  • Syndicat Mixte Baie de Somme, grand littoral picard

Abstract

Prey depletion and consequenses on a wintering population of Oystercatchers.
Article
Human interests often conflict with those of wildlife. In the coastal zone humans often exploit shellfish populations that would otherwise provide food for populations of shorebirds (Charadrii). There has been considerable debate on the consequences of shellfishing for the survival of shorebirds, and conversely the effects of shorebird predation on the shellfish stocks remaining for human exploitation. Until now, it has been difficult to determine the impact of current shellfishery practices on birdsor to investigate how possible alternative policies would affect their survival and numbers. One long-running contentious issue has been how to manage mussel Mytilus edulis and cockle Cerastoderma edule shellfisheries in a way that has least effect on a co-dependent shorebird, the oystercatcher Haematopus ostralegus, which also consumes these shellfish. This study used a behaviour-based model to explore the effects that the present-day management regimes of a mussel (Exe estuary, UK) and a cockle (Burryinlet, UK) fishery have on the survival and numbers of overwintering oystercatchers. It also explored how alternative regimes might affect the birds. The model includes depletion and disturbance as two possibly detrimental effects of shellfishing and some of the longer-term effects on shellfish stocks. Importantly, model birds respond to shellfishing in the same ways as real birds. They increase the time spent feeding at low tide and feed in fields and upshore areas at other times. When shellfishing removes the larger prey, birds eat more smaller prey. The results suggest that, currently, neither shellfishery causes oystercatcher mortality to be higher than it would otherwise be in the absence of shellfishing; at present intensities, shellfishing does not significantly affect the birds. However, they also show that changes in management practices, such as increasing fishing effort, reducing the minimum size of shellfish collected or increasing the daily quota, can greatly affect oystercatcher mortality and population size, and that the detrimental effect of shellfishing can be greatly increased by periods of cold weather or when prey are unusually scarce. By providing quantitative predictions of bird survival and numbers of a range of alternative shellfishery management regimes, the model can guide management policy in these and other estuaries.
Article
Full-text available
Bibliographic synthesis on the biology and ecology of Common European Cockle Cerastoderma edule.
Article
Full-text available
We used a carbon-based food web model to investigate the effects of oyster cultivation on the ecosystem of an intertidal mudflat. A previously published food web model of a mudflat in Marennes-Oleron Bay, France, was updated with revised parameters, and a realistic surface area and density of existing oyster cultures on the mudflat. We developed 2 hypothetical scenarios to estimate the impact of oyster cultivation on the food web structure of the ecosystem: one with no oysters, the other with a doubled area devoted to cultivated oysters in the bay. Oysters are direct trophic competitors of other filter feeders, and their presence modifies benthic-pelagic coupling by forcing a shift from pelagic consumers to benthic consumers. Increasing the surface area of cultivated oysters caused secondary production to increase, providing food for top predators (in particular juvenile nekton), reinforcing the nursery role of the mudflat in the ecosystem, and altering the species composition available to the top predators.
Article
Full-text available
Synthesis on the biology and the ecology of Cerastoderma edule
ResearchGate has not been able to resolve any references for this publication.