... New generation metaheuristics are since then developed and growing in popularity such as Artificial bee colony (Karaboga et al., 2005), Imperialist algorithm (Atashpaz-Gargari & Lucas, 2007), Glowworm algorithm (Krishnanand & Ghose, 2005), Bacterial foraging optimisation (Passino, 2002), Bat algorithm (Yang, 2010), Intelligent water drops (Shah-Hosseini, 2009), Biogeography-based optimisation (Simon, 2008), Cuckoo search (Yang & Deb, 2009), Intelligent water drops (Hosseini, 2007), Firefly algorithm (Yang, 2009), Paddy field algorithm (Premaratne et al., 2009), Gravitational search algorithm (Rashedi et al., 2009), Grey wolf algorithm (Mirjalili et al., 2014), Harmony search algorithm (Geem et al., 2001), Whale optimisation (Mirjalili & Lewis, 2016), Krill herd (Gandomi & Alavi, 2012), Elephant herding optimisation (Wang et al., 2015), Jaya optimisation (Rao, 2016), Monarch butterfly optimisation (Wang et al., 2019), Salp Swarm optimisation (Mirjalili et al., 2017), Ant lion optimisation (Mirjalili, 2015) and others (Dokeroglu et al., 2019). The next section will discuss in greater detail the classical metaheuristics of interest to this study: particle swarm optimisation, differential evolution and genetic algorithm. ...