ArticlePDF AvailableLiterature Review

Vestibular Function and Depersonalization/Derealization Symptoms

Authors:

Abstract

Patients with an acquired sensory dysfunction may experience symptoms of detachment from self or from the environment, which are related primarily to nonspecific symptoms of common mental disorders and secondarily, to the specific sensory dysfunction. This is consistent with the proposal that sensory dysfunction could provoke distress and a discrepancy between the multi-sensory frame given by experience and the actual perception. Both vestibular stimuli and vestibular dysfunction can underlie unreal experiences. Vestibular afferents provide a frame of reference (linear and angular head acceleration) within which spatial information from other senses is interpreted. This paper reviews evidence that symptoms of depersonalization/derealization associated with vestibular dysfunction are a consequence of a sensory mismatch between disordered vestibular input and other sensory signals of orientation.
Multisensory Research (2015) DOI:10.1163/22134808-00002480 brill.com/msr
Vestibular Function and Depersonalization/Derealization
Symptoms
Kathrine Jáuregui Renaud
Unidad de Investigación Médica en Otoneurología, Instituto Mexicano del Seguro Social,
Av. Cuauhtémoc 330, Colonia Doctores, CP 06720, México D.F.
Received 2 October 2014; accepted 16 February 2015
Abstract
Patients with an acquired sensory dysfunction may experience symptoms of detachment from self
or from the environment, which are related primarily to nonspecific symptoms of common mental
disorders and secondarily, to the specific sensory dysfunction. This is consistent with the proposal
that sensory dysfunction could provoke distress and a discrepancy between the multi-sensory frame
given by experience and the actual perception. Both vestibular stimuli and vestibular dysfunction can
underlie unreal experiences. Vestibular afferents provide a frame of reference (linear and angular head
acceleration) within which spatial information from other senses is interpreted. This paper reviews
evidence that symptoms of depersonalization/derealization associated with vestibular dysfunction are
a consequence of a sensory mismatch between disordered vestibular input and other sensory signals
of orientation.
Keywords
Vestibular, depersonalization, derealization
1. Introduction
To produce a unified, coherent representation of the outside world, the inte-
gration of information from different sensory systems is essential. This paper
reviews evidence on the perception of unreality as a consequence of sensory
dysfunction, particularly dysfunction of the vestibular system.
A summary on spatial orientation and body representation is provided, with
concepts on the perception of unreality, to augment the literature available
on the relationship between sensory deficits and symptoms of depersonaliza-
tion/derealization.
*E-mail: kathrine.jauregui@imss.gob.mx
©Koninklijke Brill NV, Leiden, 2015 DOI:10.1163/22134808-00002480
2K. Jáuregui Renaud / Multisensory Research (2015)
2. Spatial Orientation
The vestibular system is the main sensory organ that transduces head orienta-
tion in space. Since graviceptors are primarily required for the perception of
the upright, vestibular afferents provide a frame of reference within which
spatial information from other senses may be interpreted. Accordingly, to
facilitate locomotion, head acceleration and velocity signals are centrally rep-
resented in a network that is organized within space coordinates and provides
a common reference for multisensory integration (Hess, 2001).
Patients with vestibular disease may experience illusions of self-movement
or movement of the environment and false perceptions of orientation (Bender,
1965; Clément et al., 2009; Page and Gresty, 1985). Similar experiences of
‘spatial disorientation’ are encountered in the aerospace environment (Adams
et al., 2014; Poisson and Miller, 2014), particularly when unusual motion chal-
lenges the vestibular system’s ability to transduce orientation so that the pilot
misperceives the motion of his aircraft (Benson, 1973).
Disorientation in flight not only compromises the pilot’s control of his air-
craft, but may also result in experiences of derealization, termed the ‘break-off
phenomenon’ (Benson, 1973; Clark and Graybiel, 1957; Sours, 1965). Apart
from disorders in the aviator’s perception of attitude and motion of the aircraft,
derealization incidents may vary from altered perception of the orientation of
the aviator’s body with respect to the aircraft or the surface of the earth, to feel-
ings of detachment and isolation, usually when flying straight and level at an
altitude of more than 30 000 ft (9150 m), in conditions where the horizon is ill
defined and there is a relative constancy in the aviator’s sensory environment
(Benson, 1973).
During spaceflight, adaptive changes in how the brain integrates vestibular
signals with other sensory information can lead to spatial disorientation, im-
paired movement coordination, vertigo, and perceptual illusions after return to
earth (Clément and Wood, 2014). The disorientation phenomena may be ex-
plained by the existence of an internal estimation of the gravitational vertical.
In microgravity it is still maintained, but incorrectly updated. The otolith or-
gans signal both head translation and head tilt relative to gravity, the stimulus
profile and concurrent afferents allow discrimination between the two types
of movement (Angelaki and Dickman, 2003). During adaptation to weight-
lessness, the sensory feedback anticipated by each movement is not consistent
with the information given by the otolith organs. The nervous system reinter-
prets these signals to represent fore–aft or left–right linear acceleration, rather
than pitch or roll of the head with respect to the vertical plane (Young et al.,
1984). This, in turn, leads to illusions, and probably also facilitates space mo-
tion sickness (Glasauer and Mittelstaedt, 1998). Although a fully adequate
theory of motion sickness is not presently available, it is recognized that when-
Multisensory Research (2015) DOI:10.1163/22134808-00002480 3
ever there are deviations or variations from a 1G background force of the earth,
motion sickness may result because of the disruption of vestibulo-ocular, op-
tokinetic, and colic reflexes (Lackner, 2014).
3. Body Representation
The pursuit of behavioral goals requires an integrated neural representation of
the body and of the space around the body (Popper and Eccles, 1977). Among
the diverse conceptions of body representation, Head and Holmes (1911) pro-
vided the classic description of different ‘schemata’ representing the body,
including the postural schemata containing a continuously updated represen-
tation of current body posture. In this context, body posture can be defined as
the orientation of the body and its parts with respect to the earth-vertical (grav-
itational vertical), whereas position designates the orientation of the body parts
to each other (Mittelstaedt, 1998).
The brain generates a coherent spatial representation of the body as a whole,
the body parts, and the body as related to the external world by integrating mul-
tisensory signals. Although representation of the body and, to some extent,
the environment is constructed from visual information through inspection
(Critchley, 1950), proprioceptive information is combined with visual, tactile
and motor feedback signals to represent the body (Maravita et al., 2003). Pri-
mary and secondary somatosensory cortex activity can be modulated by spatial
and tactile attention and by visual cues (Tamè et al., 2012; Taylor-Clarke et
al., 2002). The orientation of the visual world and the head is mainly per-
ceived through vision and the vestibular system, and the posture of the trunk is
mainly perceived through sense organs in the trunk itself (Mittelstaedt, 1998).
However, there is no single brain area responsible either for maintaining a rep-
resentation of the body or of space. Rather they are the result of a network of
interacting cortical and subcortical centers (Holmes and Spence, 2004). Ab-
normalities in the sensory cortex and areas responsible for an integrated body
representation are consistent with the proposal that the inferior parietal cor-
tex is concerned with spatial orientation, visuo-motor and vestibular function
(Brandt and Dieterich, 1999; Simeon et al., 2000).
The concept of bodily self-consciousness consists of several aspects, in-
cluding self-location, first-person perspective, self-identification and sense of
agency (for review, see Pfeiffer et al., 2014). Evidence suggests that unam-
biguous self-location and egocentric visuospatial perspective are related to
neural activity at the temporo-parietal junction (Blanke et al., 2005). Changes
in bodily self-consciousness depend on visual gravitational signals and the ex-
perienced direction of the first person perspective depends on the integration
of visual, vestibular, and tactile signals, as well as on individual differences in
idiosyncratic visuo-vestibular strategies (Pfeiffer et al., 2013). Vestibular pro-
4K. Jáuregui Renaud / Multisensory Research (2015)
cessing may serve as a spatial reference for the spatial determinants of bodily
self-consciousness (Lopez et al., 2012; Pfeiffer et al., 2013), coding for em-
bodiment and body ownership (Lopez et al., 2008). It also has an influence on
the registration of somatosensory input onto a map of the body, but no influ-
ence on the stored knowledge about the spatial organization of the body as a
physical object (Ferrè et al., 2013).
Seeing one’s body in extra-personal space (autoscopic phenomena) is an
illusory own body perception that affects the entire body and leads to abnor-
malities in embodiment as well as body ownership. There are three main forms
of autoscopic phenomena: autoscopic hallucinations (Maillard et al., 2004),
out-of-body experiences (Blanke et al., 2004) and heautoscopy (Brugger et
al., 1994). Autoscopic hallucinations may be due to a visuo-somatosensory
deficit, not associated with major deficits in bodily self-consciousness. Out-
of-body experiences and heautoscopy are frequently associated with patho-
logical sensations of position, movement and perceived completeness of one’s
own body, including vestibular sensations, visual body-part illusions and the
experience of seeing one’s body only partially (Blanke et al., 2004, 2005).
Evidence suggests that disturbed vestibular processing may play a key role
in triggering out-of-body experiences (Schwabe and Blanke, 2008), while the
abnormal bodily self-consciousness during heautoscopy may be caused by a
breakdown of self–other discrimination regarding affective somatosensory ex-
perience (Heydrich and Blanke, 2013).
4. The Perception of Unreality
Altered perceptions of the self and the environment are termed ‘dissociation
phenomena’. Dissociative experiences are common in the general population,
they may decline with age, but they are not related to socio-economic status,
sex, education, religion, or place of birth (Lambert et al., 2001a; Ross et al.,
1991). Depersonalization refers to experiences of unreality, detachment, or
being an outside observer with respect to one’s thoughts, feelings, sensations,
body or actions, while derealization refers to experiences of unreality or de-
tachment with respect to the surrounding (American Psychiatric Association,
2013).
Depersonalization/derealization symptoms may occur on a continuum
of circumstances, from healthy individuals under certain situational condi-
tions to neurological and psychiatric disorders (Bancaud et al., 1994; Cas-
sano et al., 1989; Coons, 1998; Lambert et al., 2002). Also, depersonal-
ization/derealization experiences are common under life-threatening stress
(Bernat et al., 1998). A community questionnaire survey study in the United
States of America reported prevalence rates of 19.1% for depersonaliza-
tion, 14.4% for derealization and 23.4% for either dissociative experience
Multisensory Research (2015) DOI:10.1163/22134808-00002480 5
(Aderibigbe et al., 2001). However, when the symptoms become recurrent or
persistent the diagnosis of depersonalization/derealization disorder has to be
considered.
Depersonalization/derealization disorder is a dissociative disorder during
which the patient feels as though he or she is detached from the self or from
the environment (American Psychiatric Association, 2013). In circa one third
of the patients, the disorder is episodic, and each episode may last hours,
days, weeks or even months (Baker et al., 2003; Simeon, 2004). The most
common, immediate precipitants of the disorder are severe stress, depression,
panic, marijuana and hallucinogen ingestion (Simeon, 2004). Mood, anxiety
and personality disorders are often comorbid with depersonalization disorder.
However, a functional magnetic resonance imaging (fMRI) study has shown
evidence of separate brain systems for each trait while performing tasks of
facial emotion processing, and its correlation with self-report scales of soma-
tization, depression, dissociation and anxiety (Lemche et al., 2013). The main
differences between patients with depersonalization disorder and control sub-
jects were:
for somatization in the right temporal operculum and ventral striatum,
for symptoms of depression in the right pulvinar and left amygdala,
for dissociation in the left mesial inferior temporal gyrus and left supra-
marginal gyrus,
for state anxiety in the left inferior frontal gyrus and para-hippocampal
gyrus, and
for trait anxiety, in the right caudate head and left superior temporal gyrus.
Phenomenological overlaps with the unawareness of ownership of one’s
body parts (asomatognosia) suggest that depersonalization might result from
parietal mechanisms disrupting the experience of body ownership and agency
(Sierra et al., 2002). Likewise, phenomenological similarities between the
inability to become emotionally aroused by visual cues (visual hypoemotion-
ality) and derealization suggest that a disruption of the process by means of
which perception becomes emotionally colored may be an underlying mech-
anism in both conditions (Sierra et al., 2002). Using event related fMRI,
compared to control subjects, patients with depersonalization disorder showed
a decrease in subcortical limbic activity as well as an increase in dorsal pre-
frontal cortical activity to emotionally arousing stimuli (Lemche et al., 2007).
Although both higher order association areas and presumptive unisensory
areas of the cerebral cortex may be multisensory in nature, evidence suggests
that the multisensory processes in the association cortex may primarily com-
pute a veridical representation of the outside world (Ghazanfar and Schroeder,
6K. Jáuregui Renaud / Multisensory Research (2015)
2006). In a Positron Emission Tomography study on depersonalization dis-
order (Simeon, 2000), comparing patients to sex-matched controls, patients
showed lower activity in the right temporal region (Brodman areas 22 & 21),
bilateral higher activity in the parietal region (Brodman areas 7B & 39) and
higher activity in the left occipital region (Brodman area 19). The results indi-
cate that depersonalization may be related to disruptions in functioning along
hierarchical sensory association areas responsible for the processing of incom-
ing perceptions against pre-existing brain templates (Simeon, 2004).
In patients with Kleine–Levin syndrome, which is characterized by episodes
of hypersomnia, cognitive impairment, apathy, derealization and behavioral
disturbances, during symptomatic periods, depersonalization/derealization
symptoms strongly correlate with hypoperfusion of the right and left parieto-
temporal junctions, which are involved in cross-modal association between
somatosensory, auditory and visual information (Kas et al., 2014).
5. Sensory Dysfunction and Depersonalization/Derealization Symptoms
Early studies conceived of depersonalization disorder as a disturbance of the
primary senses (Sierra and Berrios, 1997). Sensory dysfunction may provoke
a discrepancy between the multi-sensory frame given by experience and the
actual perception. In patients with depersonalization, across modalities, visual
unreality may be the most frequent, followed by auditory, tactile, gustatory,
and olfactory unreality (Sierra and Berrios, 2001). Using self-report measures
of imagery ability in relation to a range of symptoms, the assessment of pa-
tients with depersonalization disorder compared to age/sex matched control
subjects, showed a correlation between an impaired ability to generate visual
images, particularly images pertaining to the self and other people as opposed
to objects, with symptoms of depersonalization, other dissociative symptoms
and depressed mood (Lambert et al., 2001b).
Inversely, patients with an acquired sensory dysfunction may experience
symptoms of depersonalization/derealization (Jáuregui-Renaud, 2008a; Lip-
sanen et al., 1999). The evaluation of non-clinical volunteers has shown that
subjects with visual distortions can have higher scores for derealization, iden-
tity alteration, and depersonalization (Lipsanen et al., 1999). It is plausible
that people with visual impairment are more likely to experience problems
with functioning, which in turn leads to depression. However, controlling for
potential confounding factors, particularly activities of daily living, markedly
attenuated the association between visual impairment and depression (Evans
et al., 2007). Additionally, a history of corrected visual acuity for refraction
errors in healthy subjects may have no influence on reporting symptoms of
depersonalization/derealization, while in patients with hearing loss and those
with vestibular disease, corrected visual acuity may be related to the report
Multisensory Research (2015) DOI:10.1163/22134808-00002480 7
of depersonalization/derealization symptoms (Jáuregui-Renaud et al., 2008a).
This finding could be explained by considering that subjects with no other
sensory dysfunction, than the corrected visual acuity, would have a consistent
perception through all other senses, while in patients who have a sensory dys-
function, this ‘corrected’ vision could represent a second source of distortion
to perceive the environment (Jáuregui-Renaud et al., 2008a).
Compared to control subjects, patients with acquired hearing-loss, periph-
eral vestibular disease or bilateral retinal disease may have a higher fre-
quency of symptoms of depersonalization/derealization (Jáuregui-Renaud et
al., 2008a). Patients with retinal disease and those with vestibular disease may
show higher depersonalization/derealization scores than patients with hearing
loss and control subjects. The type of sensory dysfunction as well as the ev-
idence of symptoms of common mental disorders (GHQ12 by Goldberg and
Williams, 1988) may have an influence on the frequency and severity of symp-
toms of depersonalization/derealization assessed by self-report (questionnaire
by Cox and Swinson, 2002). This finding is consistent with the notion that sen-
sory dysfunction could provoke both, distress and a discrepancy between the
multi-sensory frame given by experience and the actual perception (Jáuregui-
Renaud et al., 2008a; Sno and Draaisma, 1993).
6. Vestibular Dysfunction and Depersonalization/Derealization
Symptoms
Increasing evidence supports that vestibular information underlies not only re-
flex responses but higher level processes, including cognition, emotion and
the sense of self through information regarding self-motion and self-location
(for reviews, see Carmona et al., 2009 and Smith and Darlington, 2013). The
coexistence of vestibular and psychiatric symptoms is supported by clinical
evidence and the relationship between vestibular pathways and the regions im-
plicated in cognitive and emotion processing in the central nervous system (for
review see Gurvich et al., 2013). In a sample of 547 patients recruited from
a specialized interdisciplinary treatment center with organic and non-organic
vertigo/dizziness, half of those with an organic cause, particularly patients
with vestibular paroxysmia or vestibular migraine, had a current psychiatric
comorbidity, with more depressive, anxiety and somatization symptoms, and
lower psychological quality of life compared with patients without psychiatric
comorbidity (Lahmann et al., 2014).
In the general population, a survey of 1287 persons using standardized self-
rating questionnaires on dizziness, depersonalization and mental distress iden-
tified depersonalization as a significant, independent predictor for dizziness
and impairment by dizziness (Tschan et al., 2013). Patients attending neuro-
otology clinics may report psychological symptoms (Eagger et al., 1992;
8K. Jáuregui Renaud / Multisensory Research (2015)
McKenna et al., 1991), including unspecific feelings of unreality (Grigsby
and Johnston, 1989), as well as symptoms of depersonalization/derealization
(Jáuregui-Renaud et al., 2008a; Kolev et al., 2014; Sang et al., 2006).
At the turn of the 20th century, the relationship between vestibular symp-
toms and depersonalization was described by Schilder (1964) and, several
decades ago, the tendency for vestibular stimulation to provoke feelings of
unreality was described in normal, healthy subjects undergoing caloric stimu-
lation (Cappon and Banks, 1961, 1965). In a more recent study (Sang et al.,
2006), healthy subjects reported that caloric stimulation provoked symptoms
of depersonalization/derealization that they had not previously experienced,
and many of these symptoms were similar to the ones reported by vestibular
patients. Reassuringly, in patients with bilateral vestibular loss, caloric stimu-
lation induced almost no symptoms.
Vestibular dysfunction may underlie unreal experiences, such as ‘Dizzi-
ness’ and ‘Feeling as if walking on shifting ground’; these symptoms are, by
definition, unreal experiences since the body is not spinning and the ground
is not moving. In patients with peripheral, vestibular disease, symptoms of
depersonalization/derealization can be related to both spatial disorientation
and symptoms of common mental disorders (Gómez-Alvarez and Jáuregui-
Renaud, 2011; Jáuregui-Renaud et al., 2008a, b; Sang et al., 2006). The more
erroneous the spatial reorientation estimates are, the more the patient ex-
periences depersonalization/derealization symptoms (Jáuregui-Renaud et al.,
2008b). Even more, patients with peripheral vestibular dysfunction and re-
cent balance symptoms may report symptoms of detachment from reality more
frequently and more severely than patients without recent balance symptoms
(Jáuregui-Renaud et al., 2008a, b), and those with incomplete recovery may re-
main disoriented (Gómez-Alvarez and Jáuregui-Renaud, 2011). This finding is
consistent with recent evidence showing that, after an acute unilateral vestibu-
lar lesion, vestibulo-ocular and vestibulo-perceptual thresholds essentially re-
flect the sensitivity of the fused peripheral receptors; while for supra-threshold
stimuli, time constants and duration of the vestibulo-ocular and vestibulo-
perceptual responses are reduced, asymmetrically for the vestibulo-ocular and
symmetrically for perception; at recovery, vestibulo-ocular responses remain
shortened and asymmetric, while vestibulo-perceptual responses normalize
(Cousins et al., 2013).
A vestibular deficit may have an impact on the multisensory mechanisms
involved with perceiving orientation in space. In order to interact with the en-
vironment, a frame of reference should be recovered. To assess the correlation
between the results of simple tests of updating spatial orientation (Jáuregui-
Renaud et al., 2008b) and the occurrence of common psychological symptoms
(questionnaires by Goldberg and Williams, 1988; Hamilton, 1960; and Zung,
1971) with depersonalization/derealization symptoms (questionnaires by Carl-
Multisensory Research (2015) DOI:10.1163/22134808-00002480 9
son et al., 1993a, and by Cox and Swinson, 2002), a three months follow-up
study was performed in patients with acute vestibular neuritis. During the first
days, patients were disoriented and reported depersonalization/derealization
symptoms and depression symptoms, including attention/concentration diffi-
culties. During the following weeks, updating spatial orientation improved,
most of the symptoms of instability disappeared (questionnaire by Jáuregui-
Renaud et al., 2003), disability declined (handicap inventory by Jacobson
and Newman, 1990) and the frequency and severity of the depersonaliza-
tion/derealization symptoms decreased (questionnaire by Cox and Swinson,
2002). The larger the decrease on the depersonalization/derealization score
was, the larger the improvement on the reorientation estimate and on the symp-
toms of instability. In this study, symptoms of anxiety were infrequent and no
evidence of an interaction between depersonalization/derealization symptoms
and symptoms of anxiety were observed. However, since symptoms of anxiety,
panic or agoraphobia frequently coexist with symptoms of depersonalization
(Cassano et al., 1989; Putnam et al., 1996), the assessment of patients with
vestibular disease with/without anxiety has shown that in patients with anxiety
the frequency and severity of the symptoms of depersonalization/derealization
may increase (Kolev et al., 2014).
Interestingly, although a strong loading on derealization symptoms was
found by the depersonalization/derealization questionnaire by Cox and Swin-
son (2002) and by the dissociative experiences scale by Carlson et al. (1993a),
patients reported a low frequency of other type of dissociative experiences
explored by the questionnaire by Carlson et al. (1993a). The depersonal-
ization/derealization questionnaire by Cox and Swinson (2002) was devel-
oped for use with clinically anxious patients to self-report depersonaliza-
tion/derealization symptoms. On the other hand, the dissociative experiences
scale inquires about the frequency of a variety of dissociative experiences, in-
cluding amnesia, depersonalization, derealization, absorption, and imaginative
involvement, but the scale will reliably measure only the general dissociation
factor (Carlson and Putnam, 1993b). The low frequency of general dissocia-
tive experiences in patients with acute, peripheral, vestibular disease suggests
that their feelings of unreality may be related to more specific deficits on the
perception of surrounding and self-consciousness, more than to the alterations
in awareness and memory for events that are related to detachment on disso-
ciation.
However, among the symptoms of depersonalization/derealization observed
during the acute phase of a vestibular deficit, the occurrence of symptoms
related to attention/concentration and its decrease during follow-up (Gómez-
Alvarez and Jáuregui-Renaud, 2011), are consistent with cross-sectional stud-
ies showing evidence of an association between vestibular function and dif-
ficulty concentrating (Yardley et al., 1998), as well as with reports on the
10 K. Jáuregui Renaud / Multisensory Research (2015)
adverse effect of vestibular dysfunction on attention processes (Redfern et
al., 2004; Smith et al., 2005; Talkowski et al., 2005). These results are in
agreement with the hypothesis that the requirement of cognitive resources
involved in successful processing and integration of vestibular information
would be increased in patients with vestibular dysfunction, and the integra-
tion of vestibular information could be associated to the cognitive resources
required for adequate spatial orientation (Talkowski et al., 2005).
In conclusion, interaction with the environment requires continuous updat-
ing of the relationship of the body and the body parts with the surrounding. The
vestibular system has widespread connections with multisensory cortical net-
works, and may provide a frame of reference within which spatial information
from other sources is interpreted. A false sense of orientation arising either
from inappropriate vestibular signals or from disordered central interpreta-
tion of vestibular information may interfere with an accurate representation of
body orientation (Saj et al., 2013) and with updating orientation during motion
(Gómez-Alvarez and Jáuregui-Renaud, 2011; Jáuregui-Renaud et al., 2008b).
This, in turn, can underlie the perception of unreality, which may decrease
with recovery, but persist whenever the inappropriate signals interfere with the
representation and continuous updating of self-orientation in the environment.
References
Adams, M. S., Curry, I. P. and Gaydos, S. J. (2014). British army air corps accidents, 1991–
2010: a review of contrasting decades, Aviat. Space Environ. Med. 858, 852–856.
Aderibigbe, Y. A., Bloch, R. M. and Walker, W. R. (2001). Prevalence of depersonalization
and derealization experiences in a rural population, Soc. Psychiatry Psychiatr. Epidemiol. 3,
63–69.
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disor-
ders, 5th edn. American Psychiatric Publishing, Arlington, VA, USA.
Angelaki, D. E. and Dickman, J. D. (2003). Gravity or translation: central processing of vestibu-
lar signals to detect motion or tilt, J. Vestib. Res. 13, 245–253.
Baker, D., Hunter, E., Lawrence, E., Medford, N., Patel, M., Senior, C., Sierra, M., Lambert,
M. V., Phillips, M. L. and David, A. S. (2003). Depersonalization disorder: clinical features
of 204 cases, Br. J. Psychiatry 182, 428–433.
Bancaud, J., Brunet-Bourgin, F., Chauvel, P. and Halgren, E. (1994). Anatomical origin of déjà
vu and vivid ‘memories’ in human temporal lobe epilepsy, Brain 117, 71–90.
Bender, M. B. (1965). Oscillopsia, Arch. Neurol. 13, 204–213.
Benson, A. J. (1973). Spatial disorientation and the “break-off phenomenon”, Aerosp. Med. 44,
944–952.
Bernat, J. A., Ronfeldt, H. M., Calhoun, K. S. and Arias, I. (1998). Prevalence of traumatic
events and peritraumatic predictors of posttraumatic stress symptoms in a nonclinical sample
of college students, J. Trauma Stress 11, 645–664.
Blanke, O., Landis, T., Spinelli, L. and Seeck, M. (2004). Out-of-body experience and au-
toscopy of neurological origin, Brain 127, 243–258.
Multisensory Research (2015) DOI:10.1163/22134808-00002480 11
Blanke, O., Mohr, C., Michel, C. M., Pascual-Leone, A., Brugger, P., Seeck, M., Landis, T. and
Thut, G. (2005). Linking out-of-body experience and self processing to mental own-body
imagery at the temporoparietal junction, J. Neurosci. 25, 550–557.
Brandt, T. and Dieterich, M. (1999). The vestibular cortex. Its locations, functions, and disor-
ders, Ann. N.Y. Acad. Sci. 871, 293–312.
Brugger, P., Agosti, R., Regard, M., Wieser, H. G. and Landis, T. (1994). Heautoscopy, epilepsy,
and suicide, J. Neurol. Neurosurg. Psychiatry 57, 838–839.
Cappon, D. and Banks, R. (1961). Orientational perception. A review and preliminary study of
distortion in orientational perception, Arch.Gen.Psychiatry5, 380–392.
Cappon, D. and Banks, R. (1965). Orientational perception. II. Body perception in depersonal-
ization, Arch. Gen. Psychiatry 13, 375–379.
Carlson, B. and Putnam, F. (1993b). An update on the Dissociative Experiences Scale, Dissoci-
ation 6, 16–26.
Carlson, B., Putnam, F., Ross, C., Torem, M., Coons, P., Dill, D. L., Loewenstein, R. J. and
Braun, B. G. (1993a). Validity of the Dissociative Experiences Scale in screening, Am. J.
Psychiatry 150, 1030–1036.
Carmona, J. E., Holland, A. K. and Harrison, D. W. (2009). Extending the functional cerebral
systems theory of emotion to the vestibular modality: a systematic and integrative approach,
Psychol. Bull. 135, 286–302.
Cassano, G. B., Petracca, A., Perugi, G., Toni, C., Tundo, A. and Roth, M. (1989). Derealization
and panic attacks: a clinical evaluation on 150 patients with panic disorder/agoraphobia,
Compr. Psychiatry 30, 5–12.
Clark, B. and Graybiel, A. (1957). The break-off phenomenon: a feeling of separation from the
earth experienced by pilots at high altitude, J. Aviat. Med. 28, 121–126.
Clément, G. and Wood, S. J. (2014). Rocking or rolling — perception of ambiguous motion
after returning from space, PLoS One 9, e111107.
Clément, G., Fraysse, M. J. and Deguine, O. (2009). Mental representation of space in vestibular
patients with otolithic or rotatory vertigo, Neuroreport 20, 457–461.
Coons, P. M. (1998). The dissociative disorders. Rarely considered and underdiagnosed, Psy-
chiatr. Clin. North. Am. 21, 637–648.
Cousins, S., Kaski, D., Cutfield, N., Seemungal, B., Golding, J. F., Gresty, M., Glasauer, S. and
Bronstein, A. M. (2013). Vestibular perception following acute unilateral vestibular lesions,
PLoS One 8, e61862.
Cox, B. J. and Swinson, R. P. (2002). Instrument to assess depersonalization–derealization in
panic disorder, Depress. Anxiety 15, 172–175.
Critchley, M. (1950). The body image in neurology, Lancet 258, 335–340.
Eagger, S., Luxon, L. M., Davies, R. A., Coelho, A. and Ron, M. A. (1992). Psychiatric mor-
bidity in patients with peripheral vestibular disorder: a clinical and neuro-otological study,
J. Neurol. Neurosurg. Psychiatry 55, 383–387.
Evans, J. R., Fletcher, A. E. and Wormald, R. P. (2007). Depression and anxiety in visually
impaired older people, Ophthalmology 114, 283–288.
Ferrè, E. R., Vagnoni, E. and Haggard, P. (2013). Vestibular contributions to bodily awareness,
Neuropsychologia 51, 1445–1452.
Ghazanfar, A. A. and Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends.
Cogn. Sci. 10, 278–285.
12 K. Jáuregui Renaud / Multisensory Research (2015)
Glasauer, S. and Mittelstaedt, H. (1998). Perception of spatial orientation in microgravity, Brain
Res. Rev. 28, 185–193.
Goldberg, D. P. and Williams, P. (1988). The User’s Guide to the General Health Questionnaire.
NFER-Nelson, Windsor, UK.
Gómez-Alvarez, F. B. and Jáuregui-Renaud, K. (2011). Psychological symptoms and spatial
orientation during the first 3 months after acute unilateral vestibular lesion, Arch.Med.Res.
42, 97–103.
Grigsby, J. P. and Johnston, C. L. (1989). Depersonalization, vertigo and Ménière’s disease,
Psychol. Rep. 64, 527–534.
Gurvich, C., Mallera, J. J., Lithgowa, B., Haghgooied, S. and Kulkarnia, J. (2013). Vestibular
insights into cognition and psychiatry, Brain Res. 1537, 244–259.
Hamilton, M. (1960). A rating scale for depression, J. Neurol. Neurosurg. Psychiatry 23, 56–62.
Head, H. and Holmes, G. (1911). Sensory disturbances from cerebral lesions, Brain 34, 102–
254.
Hess, B. J. M. (2001). Vestibular signals in self-orientation and eye movement control, News
Physiol. Sci. 16, 234–238.
Heydrich, L. and Blanke, O. (2013). Distinct illusory own-body perceptions caused by damage
to posterior insula and extrastriate cortex, Brain 136, 790–803.
Holmes, N. P. and Spence, Ch. (2004). The body schema and the multisensory representation(s)
of peripersonal space, Cogn. Process. 5, 94–105.
Jacobson, G. P. and Newman, C. W. (1990). The development of the Dizziness Handicap Inven-
tory, Arch. Otolaryngol. Head Neck Surg. 116, 424–427.
Jáuregui-Renaud, K., Gutierrez, M. A., Viveros, R. L. and Villanueva, P. L. (2003). Síntomas de
inestabilidad corporal y enfermedad vestibular, Rev. Med. Inst. Mex. Seguro Soc. 41, 373–
378.
Jáuregui-Renaud, K., Ramos-Toledo, V., Aguilar-Bolaños, M., Montaño-Velázquez, B. and
Pliego-Maldonado, A. (2008a). Symptoms of detachment from the self or from the envi-
ronment in patients with an acquired deficiency of the special senses, J. Vestib. Res. 18,
129–137.
Jáuregui-Renaud, K., Sang, F. Y., Gresty, M., Green, D. and Bronstein, A. (2008b). Depersonal-
isation/derealisation symptoms and updating orientation in patients with vestibular disease,
J. Neurol. Neurosurg. Psychiatry 79, 276–283.
Kas, A., Lavault, S., Habert, M. O. and Arnulf, I. (2014). Feeling unreal: a functional imaging
study in patients with Kleine–Levin syndrome, Brain 137, 2077–2087.
Kolev, O. I., Georgieva-Zhostova, O. and Berthoz, A. (2014). Anxiety changes depersonaliza-
tion and derealization symptoms in vestibular patients, Behav. Neurol. 2014, 847054.
Lackner, J. R. (2014). Motion sickness: more than nausea and vomiting, Exp. Brain Res. 232,
2493–2510.
Lahmann, C., Henningsen, P., Brandt, T., Strupp, M., Jahn, K., Dieterich, M., Eckhardt-Henn,
A., Feuerecker, R., Dinkel, A. and Schmid, G. (2014). Psychiatric comorbidity and psy-
chosocial impairment among patients with vertigo and dizziness, J. Neurol. Neurosurg.
Psychiatry 86, 302–308.
Lambert, M. V., Senior, C., Fewtrell, W. D., Phillips, M. L. and David, A. S. (2001a). Primary
and secondary depersonalisation disorder: a psychometric study, J. Affect. Disord. 63, 249–
256.
Multisensory Research (2015) DOI:10.1163/22134808-00002480 13
Lambert, M. V., Senior, C., Phillips, M. L., Sierra, M., Hunter, E. and David, A. S. (2001b).
Visual imagery and depersonalisation, Psychopathology 34, 259–264.
Lambert, M. V., Sierra, M., Phillips, M. L. and David, A. S. (2002). The spectrum of organic
depersonalization: a review plus four new cases, J. Neuropsychiatry Clin. Neurosci. 14, 141–
154.
Lemche, E., Surguladze, S. A., Giampietro, V. P., Anilkumar, A., Brammer, M. J., Sierra, M.,
Chitnis, X., Williams, S. C., Gasston, D., Joraschky, P., David, A. S. and Phillips, M. L.
(2007). Limbic and prefrontal responses to facial emotion expressions in depersonalization,
Neuroreport 26, 473–477.
Lemche, E., Surguladze, S. A., Brammer, M. J., Phillips, M. L., Sierra, M., David, A. S.,
Williams, S. C. and Giampietro, V. P. (2013). Dissociable brain correlates for depres-
sion, anxiety, dissociation, and somatization in depersonalization–derealization disorder,
C.N.S. Spectr. 23, 1–8.
Lipsanen, T., Lauerma, H., Peltola, P. and Kallio, S. (1999). Visual distortions and dissociation,
J. Nerv. Ment. Dis. 187, 109–112.
Lopez, C., Halje, P. and Blanke, O. (2008). Body ownership and embodiment: vestibular and
multisensory mechanisms, Clin. Neurophysiol. 38, 149–161.
Lopez, C., Schreyer, H. M., Preuss, N. and Mast, F. W. (2012). Vestibular stimulation modifies
the body schema, Neuropsychologia 50, 1830–1837.
Maillard, L., Vignal, J. P., Anxionnat, R. and Taillandier Vespignani, L. (2004). Semiologic
value of ictal autoscopy, Epilepsia 45, 391–394.
Maravita, A., Spence, C. and Driver, J. (2003). Current multisensory integration and the body
schema: close to hand and within reach, Curr. Biol. 13, R531–R539.
McKenna, L., Hallam, R. S. and Hinchcliffe, R. (1991). The prevalence of psychological dis-
turbance in neurotology outpatients, Clin. Otolaryngol. 16, 452–456.
Mittelstaedt, H. (1998). Origin and processing of postural information, Neurosci. Biobehav. Rev.
22, 473–478.
Page, N. G. and Gresty, M. A. (1985). Motorist’s vestibular disorientation syndrome, J. Neurol.
Neurosurg. Psychiatry 48, 729–735.
Pfeiffer, C., Lopez, C., Schmutz, V., Duenas, J. A., Martuzzi, R. and Blanke, O. (2013). Mul-
tisensory origin of the subjective first-person perspective: visual, tactile, and vestibular
mechanisms, PLoS One 8, e61751.
Pfeiffer, C., Serino, A. and Blanke, O. (2014). The vestibular system: a spatial reference for bod-
ily self-consciousness, Front. Integrative Neurosci. 8, 31. DOI:10.3389/fnint.2014.00031.
Poisson, R. J. and Miller, M. E. (2014). Spatial disorientation mishap trends in the U.S. Air
Force 1993–2013, Aviat. Space Environ. Med. 85, 919–924.
Popper, K. R. and Eccles, J. C. (1977). The Self and Its Brain. Springer-Verlag, London, UK.
Putnam, F. W., Carlson, E. B., Ross, C. A., Anderson, G., Clark, P., Torem, M., Bowman, E. S.,
Coons, P., Chu, J. A., Dill, D. L., Loewenstein, R. J. and Braun, B. G. (1996). Patterns of
dissociation in clinical and nonclinical samples, J. Nerv. Ment. Dis. 184, 673–679.
Redfern, M. S., Talkowski, M. E., Jennings, J. R. and Furman, J. M. (2004). Cognitive influences
in postural control of patients with unilateral vestibular loss, Gait Posture 19, 105–114.
Ross, C. A., Joshi, S. and Currie, R. (1991). Dissociative experiences in the general population:
a factor analysis, Hosp. Community Psychiatry 42, 297–301.
Saj, A., Honoré, J., Bernard-Demanze, L., Devèze, A., Magnan, J. and Borel, L. (2013). Where
is straight ahead to a patient with unilateral vestibular loss? Cortex 49, 1219–1228.
14 K. Jáuregui Renaud / Multisensory Research (2015)
Sang, F. Y., Jauregui-Renaud, K., Green, D. A., Bronstein, A. M. and Gresty, M. A. (2006).
Depersonalisation/derealisation symptoms in vestibular disease, J. Neurol. Neurosurg. Psy-
chiatry 77, 760–766.
Schilder, P. (1964). The Image and Appearance of the Human Body. Studies in the Constructive
Energies of the Psyche. John Wiley & Sons, New York, NY, USA.
Schwabe, L. and Blanke, O. (2008). The vestibular component in out-of-body experiences:
a computational approach, Front. Hum. Neurosci. 2, 17. DOI:10.3389/neuro.09.017.2008.
Sierra, M. and Berrios, G. E. (1997). Depersonalization: a conceptual history, Hist. Psychiatry
8, 213–229.
Sierra, M. and Berrios, G. (2001). The phenomenological stability of depersonalization: com-
paring the old with the new, J. Nerv. Ment. Dis. 189, 629–636.
Sierra, M., Lopera, F., Lambert, M. V., Phillips, M. L. and David, A. S. (2002). Separating
depersonalisation and derealisation: the relevance of the “lesion method”, J. Neurol. Neuro-
surg. Psychiatry 72, 530–532.
Simeon, D. (2004). Depersonalisation disorder: a contemporary overview, C.N.S. Drugs 18,
343–354.
Simeon, D., Guralnik, O., Hazlett, E. A., Spiegel-Cohen, J., Hollander, E. and Buchsbaum,
M. S. (2000). Feeling unreal: a PET study of depersonalization disorder, Am. J. Psychiatry
157, 1782–1788.
Smith, P. F. and Darlington, C. L. (2013). Personality changes in patients with vestibular dys-
function, Front. Hum. Neurosci. 7, 678. DOI:10.3389/fnhum.2013.00678.
Smith, P. F., Zheng, Y., Horii, A. and Darlington, C. L. (2005). Does vestibular damage cause
cognitive dysfunction in humans? J. Vestib. Res. 15, 1–9.
Sno, H. N. and Draaisma, D. (1993). An early Dutch study of deja vu experiences, Psychol.
Med. 23, 17–26.
Sours, J. A. (1965). The “break-off” phenomenon. A precipitant of anxiety in jet aviators, Arch.
Gen. Psychiatry 13, 447–456.
Talkowski, M. E., Redfern, M. S., Jennings, J. R. and Furman, J. M. (2005). Cognitive re-
quirements for vestibular and ocular motor processing in healthy adults and patients with
unilateral vestibular lesions, J. Cogn. Neurosci. 17, 1432–1441.
Tamè, L., Braun, C., Lingnau, A., Schwarzbach, J., Demarchi, G., Li Hegner, Y., Farnè, A. and
Pavani, F. (2012). The contribution of primary and secondary somatosensory cortices to the
representation of body parts and body sides: an fMRI adaptation study, J. Cogn. Neurosci.
24, 2306–2320.
Taylor-Clarke, M., Kennett, S. and Haggard, P. (2002). Vision modulates somatosensory cortical
processing, Curr. Biol. 12, 233–236.
Tschan, R., Wiltink, J., Adler, J., Beutel, M. E. and Michal, M. (2013). Depersonalization ex-
periences are strongly associated with dizziness and vertigo symptoms leading to increased
health care consumption in the german general population, J. Nerv. Ment. Dis. 201, 629–
635.
Yardley, L., Burgneay, J., Nazareth, I. and Luxon, L. (1998). Neuro-otological and psychiatric
abnormalities in a community sample of people with dizziness: a blind, controlled investi-
gation, J. Neurol. Neurosurg. Psychiatry 65, 679–684.
Multisensory Research (2015) DOI:10.1163/22134808-00002480 15
Young, L. R., Oman, Ch. M., Watt, D. G. D., Money, K. E. and Lichtenberg, B. K. (1984).
Spatial orientation in weightlessness and readaptationt of earth’s gravity, Science 225, 205–
208.
Zung, W. K. (1971). A rating instrument for anxiety disorders, Psychosomatics 12, 371–379.
... Standard score ranges were used, as recommended by the DASS manual. Depression: Normal (0-9), Mild (10-13), Moderate (14)(15)(16)(17)(18)(19)(20), Severe (21)(22)(23)(24)(25)(26)(27), Extremely severe (28+). Anxiety: Normal (0-7), Mild (8)(9), Moderate (10)(11)(12)(13)(14), Severe (15)(16)(17)(18)(19), Extremely severe ...
... High rates of depersonalisation have been reported previously in patients with vestibular dysfunction (26,27), retinal disease (28), and chronic dizziness (29). Here it has been theorised that feelings of depersonalisation may be evoked by a discrepancy between expected sensory input (provided by the frame of experience) and actual (aberrant) sensory experience (28); or, alternatively, by a discrepancy between signals from different sensory systems due to one or more being disrupted (30). ...
Article
Full-text available
Objective: To characterise the psychiatric symptoms of visual snow syndrome (VSS), and determine their relationship to quality of life and severity of visual symptoms. Methods: One hundred twenty-five patients with VSS completed a battery of questionnaires assessing depression/anxiety, dissociative experiences (depersonalisation), sleep quality, fatigue, and quality of life, as well as a structured clinical interview about their visual and sensory symptoms. Results: VSS patients showed high rates of anxiety and depression, depersonalisation, fatigue, and poor sleep, which significantly impacted quality of life. Further, psychiatric symptoms, particularly depersonalisation, were related to increased severity of visual symptoms. The severity/frequency of psychiatric symptoms did not differ significantly due to the presence of migraine, patient sex, or timing of VSS onset (lifelong vs. later onset). Conclusion: Psychiatric symptoms are highly prevalent in patients with VSS and are associated with increased visual symptom severity and reduced quality of life. Importantly, patients with lifelong VSS reported lower levels of distress and milder self-ratings of visual symptoms compared to patients with a later onset, while being equally likely to experience psychiatric symptoms. This suggests that the psychiatric symptoms of VSS are not solely due to distress caused by visual symptoms. While no consistently effective treatments are available for the visual symptomology of VSS, psychiatric symptoms offer an avenue of treatment that is likely to significantly improve patient quality of life and ability to cope with visual symptoms.
... Higher immersion and manipulation of sensories using artificial stimuli in VR could lead to some negative psychological effects. For example, VR increases dissociative experiences and lessens people's sense of presence in actual reality (Renaud, 2015). Renaud further claim that the greater the individual's preexisting tendency for dissociation and immersion, the greater the dissociative effects of VR (Renaud, 2015). ...
... For example, VR increases dissociative experiences and lessens people's sense of presence in actual reality (Renaud, 2015). Renaud further claim that the greater the individual's preexisting tendency for dissociation and immersion, the greater the dissociative effects of VR (Renaud, 2015). Addiction, desentitisation and social isolation are found to be the main psychological side effects of VR. ...
Conference Paper
Full-text available
The field of wearable technologies has evolved greatly in the past few years. Virtual Reality (VR) Head Mounted Displays (HMDs) are an emerging technological trend among the wearable technologies and promises to revolutionize the way people learn. Due to their ability to provide highly immersive and engaging experiences, VR based simulators are quickly becoming indispensable part of modern professional training. Nevertheless, VR still has to address many challenges and overcome the limitations before being adopted as training simulators. This paper aims to perform a brief analysis of the potential of VR in maritime training and possible challenges in adopting the technology from human factors, innovation and technology point of view for a holistic perspective. An initial investigation of the technology acceptance of VR engine room simulators among marine engineering students was carried out through an empirical study and the results are also presented in the paper.
... Patients often report feelings of disconnectedness from the self and their surroundings (mild depersonalisation and derealisation). Such low-level but mostly persistent dissociative symptoms are very commonly reported by patients with PPPD, but also experienced by healthy individuals who are exposed to a strong vestibular stimulus [24][25][26], suggesting such cognitive perceptions are indeed engendered by vestibular symptoms. The character of dissociative symptoms includes a feeling of brain fog or non-specific sensations of disorientation, together with a range of more specific cognitive symptoms that include short-term memory loss, difficulty concentrating, and impairments in multi-tasking ( Figure 1) [27]. ...
Article
Full-text available
Persistent postural-perceptual dizziness (PPPD) is a common cause of chronic dizziness associated with significant morbidity, and perhaps constitutes the commonest cause of chronic dizziness across outpatient neurology settings. Patients present with altered perception of balance control, resulting in measurable changes in balance function, such as stiffening of postural muscles and increased body sway. Observed risk factors include pre-morbid anxiety and neuroticism and increased visual dependence. Following a balance-perturbing insult (such as vestibular dysfunction), patients with PPPD adopt adaptive strategies that become chronically maladaptive and impair longer-term postural behaviour. In this article, we explore the relationship between behavioural postural changes, perceptual abnormalities, and imaging correlates of such dysfunction. We argue that understanding the pathophysiological mechanisms of PPPD necessitates an integrated methodological approach that is able to concurrently measure behaviour, perception, and cortical and subcortical brain function.
... Other studies found altered somatosensory and attentional functioning at early processing stages in depersonalisation (Adler, Schabinger, Michal, Beutel, & Gillmeister, 2016) but not in anxiety-and depression-matched patients (Schabinger et al., 2018). DPD has also been linked to disrupted activity in neuronal regions underlying somatic processing (Lemche et al., 2013;Medford, Sierra, Stringaris, Giampietro, Brammer, & David, 2012) and the vestibular system (Jáuregui Renaud, 2015), which is responsible for providing information about the body's position in space (Ferrè & Haggard, 2016;Ferrè, Lopez, & Haggard, 2014). ...
Article
Full-text available
This paper considers the phenomenology of depersonalisation disorder, in relation to predictive processing and its associated pathophysiology. To do this, we first establish a few mechanistic tenets of predictive processing that are necessary to talk about phenomenal transparency, mental action, and self as subject. We briefly review the important role of ‘predicting precision’ and how this affords mental action and the loss of phenomenal transparency. We then turn to sensory attenuation and the phenomenal consequences of (pathophysiological) failures to attenuate or modulate sensory precision. We then consider this failure in the context of depersonalisation disorder. The key idea here is that depersonalisation disorder reflects the remarkable capacity to explain perceptual engagement with the world via the hypothesis that “I am an embodied perceiver, but I am not in control of my perception”. We suggest that individuals with depersonalisation may believe that ‘another agent’ is controlling their thoughts, perceptions or actions, while maintaining full insight that the ‘other agent’ is ‘me’ (the self). Finally, we rehearse the predictions of this formal analysis, with a special focus on the psychophysical and physiological abnormalities that may underwrite the phenomenology of depersonalisation.
... More specifically, the results of the current study showed that there is significant positive correlation between the total scores of the BSD-Q questionnaire and the total scores of DIS-Q questionnaire. Moreover, the results of the regression analysis revealed the specific vestibular and somatosensory factors which support the behavioural findings associated with vestibular symptoms (Lopez, 2013;Renaud, 2015;Harricharan et al., 2017) and the symptoms associated with somatosensory (i.e., conversion) (Şar, 2011). Our hypothesis that individuals with more profound experiences of bodily self-consciousness in dreams would experience more dissociation in waking life is supported by our findings. ...
... The vestibular system plays a crucial role, not only in the sense of balance, motor coordination and spatial orientation, but also more broadly for egocentric self-awareness (Lenggenhager et al., 2008;Lenggenhager et al., 2015) by providing a gravitational reference to other bodily signals (Ferrè et al., 2014). When signalling pathways are disturbed in peripheral vestibular disease, the brain fails to generate a coherent spatial representation of the body with respect to the external world (Renaud, 2015). An incoherent spatial frame of reference may also result in feelings of detachment from the world (derealisation). ...
Preprint
Full-text available
Depersonalisation/derealisation disorder (DPD) refers to frequent and persistent detachment from bodily self and disengagement from the outside world. As a dissociative disorder, DPD affects 1-2% of the population, but takes 7-12 years on average to be accurately diagnosed. In this systematic review, we comprehensively describe research targeting the neural correlates of core DPD symptoms, covering publications between 1992 and 2020 that have used electrophysiological techniques. The aim was to investigate the diagnostic potential of these relatively inexpensive and convenient neuroimaging tools. We review the EEG power spectrum, components of the event-related potential (ERP), as well as vestibular and heartbeat evoked potentials as likely electrophysiological biomarkers to study DPD symptoms. We argue that acute anxiety- or trauma-related impairments in the integration of interoceptive and exteroceptive signals play a key role in the formation of DPD symptoms, and that future research needs analysis methods that can take this integration into account. We suggest tools for prospective studies of electrophysiological DPD biomarkers, which are urgently needed to fully develop their diagnostic potential.
... Disorders called "twisties", climbed to the fore during the 2020 Olympic Games held in 2021, are often associated to (or even produced by) a partial detachment from the sense of self (Jáuregui Renaud, 2015). They are quite rare, and more frequent in adolescence and early post-adolescence, that is, in the age in which athletic performance is higher, at least from a physical point of view. ...
... Empirical evidence for this disrupted bodily sensory processing comes from studies that report disrupted physiological responses in patients with DPD, compared with healthy participants (Sierra et al., 2002;Owens et al., 2015;Dewe et al., 2018). DPD has also been linked to disrupted activity in neuronal regions underlying somatic processing Lemche et al., 2013) and the vestibular system (Jáuregui Renaud, 2015), which is responsible for providing information about the body's position in space (Ferrè and Haggard, 2016). ...
Article
Full-text available
In his paper “Whatever next? Predictive brains, situated agents, and the future of cognitive science,” Andy Clark seminally proposed that the brain's job is to predict whatever information is coming “next” on the basis of prior inputs and experiences. Perception fundamentally subserves survival and self-preservation in biological agents, such as humans. Survival however crucially depends on rapid and accurate information processing of what is happening in the here and now. Hence, the term “next” in Clark's seminal formulation must include not only the temporal dimension (i.e., what is perceived now) but also the spatial dimension (i.e., what is perceived here or next-to-my-body). In this paper, we propose to focus on perceptual experiences that happen “next,” i.e., close-to-my-body. This is because perceptual processing of proximal sensory inputs has a key impact on the organism's survival. Specifically, we focus on tactile experiences mediated by the skin and what we will call the “extended skin” or “second skin,” that is, immediate objects/materials that envelop closely to our skin, namely, clothes. We propose that the skin and tactile experiences are not a mere border separating the self and world. Rather, they simultaneously and inherently distinguish and connect the bodily self to its environment. Hence, these proximal and pervasive tactile experiences can be viewed as a “transparent bridge” intrinsically relating and facilitating exchanges between the self and the physical and social world. We conclude with potential implications of this observation for the case of Depersonalization Disorder, a condition that makes people feel estranged and detached from their self, body, and the world.
... With respect to depersonalization, we found moderate, positive correlations with vection intensity, suggesting that participants who report higher susceptibility to "out of the body" experiences are more likely to experience stronger vection. Vection is an illusion of self-motion operating through shared vestibular pathways, and artificial vestibular stimulation and vestibular disease have been shown to increase the likelihood of depersonalization experiences (Jáuregui Renaud, 2015;Lopez & Elzière, 2018;Yen Pik Sang, 2006). The comparatively strong correlation between vection intensity and the depersonalization score in our slow-speed conditions suggests that people experiencing depersonalization might be more vulnerable to motion-related visual stimulation. ...
Article
Full-text available
Vection is a perceptual phenomenon that describes the visually induced subjective sensation of self-motion in the absence of physical motion. Previous research has discussed the potential involvement of top-down cognitive mechanisms on vection. Here, we quantified how cognitive manipulations such as contextual information (i.e., expectation) and plausibility (i.e., chair configuration) alter vection. We also explored how individual traits such as field dependence, depersonalization, anxiety, and social desirability might be related to vection. Fifty-one healthy adults were exposed to an optic flow stimulus that consisted of horizontally moving black-and-white bars presented on three adjacent monitors to generate circular vection. Participants were divided into three groups and given experimental instructions designed to induce either strong, weak, or no expectation with regard to the intensity of vection. In addition, the configuration of the chair (rotatable or fixed) was modified during the experiment. Vection onset time, duration, and intensity were recorded. Results showed that expectation altered vection intensity, but only when the chair was in the rotatable configuration. Positive correlations for vection measures with field dependence and depersonalization, but no sex-related effects were found. Our results show that vection can be altered by cognitive factors and that individual traits can affect the perception of vection, suggesting that vection is not a purely perceptual phenomenon, but can also be affected by top-down mechanisms.
Article
Background We describe herein the case of a patient whose primary complaints were episodic vertigo and “depersonalization,” a sensation of detachment from his own body. Purpose This case study aims to further clinical knowledge and insight into the clinical evaluation of vertiginous patients with complaints of depersonalization. Research Design This is a case study. Data Collection and Analysis A retrospective chart review of vestibular function testing done on a vertiginous patient with complaints of depersonalization was performed. Results Vestibular function testing revealed absent cervical and ocular vestibular evoked myogenic potentials on the left side with normal vHIT or video Head Impulse Test, videonystagmography, and rotational chair results, suggesting peripheral vestibular impairment isolated to the left saccule and utricle. Conclusion The otolith end organ impairment explains the patient's postural deviation to the left side during attempts to ambulate. We recommend that clinicians should be attentive to patient complaints of depersonalization and perform vestibular evoked myogenic potential testing to determine whether evidence of at least a unilateral peripheral otolith end organ impairment exists.
Article
Full-text available
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz) where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1-2 days. During dynamic linear acceleration (0.15-0.6 Hz, ±1.7 m/s2) perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore-aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions.
Article
Full-text available
Background: Spatial disorientation is a significant factor in a large percentage of military Class A aviation mishaps. While previous studies have analyzed accident statistics, they often suffer from methodological flaws, which lead to questionable conclusions. Methods: The current study relied upon the Air Force Safety Automated System to document U.S. Air Force Class A mishap investigations during the past 21 yr. Human Factors Analysis and Classification System codes were used to determine mishaps involving pilot spatial disorientation. The data were combined with data from the Reliability and Maintainability Information System to determine the accident rate per flight hour. Results: There were 72 spatial disorientation (SD) mishaps analyzed, resulting in loss of 101 lives and 65 aircraft since fiscal year (FY) 1993 for a total monetary cost of 2.32 billion. Class A mishaps involving spatial disorientation had a higher rate as a function of hours flown for helicopter and fighter/attack fixed wing aircraft than other aircraft. Additionally, mishap rates for F-16 fighter/attack aircraft were marginally larger than for other fighter/attack aircraft. Although SD mishaps at night had similar mishap rates to daytime SD mishaps when adjusted by flight hours, SD mishaps account for a larger percent of Class A mishaps during the night than during the day. Discussion: SD mishaps were analyzed in terms of Class A mishaps per million flight hours. Results indicate that future SD research should be focused on fighter/attack and helicopter platforms. Updates to the Air Force safety center database are recommended.
Article
Full-text available
Background Vertigo and dizziness are often not fully explained by an organic illness, but instead are related to psychiatric disorders. This study aimed to evaluate psychiatric comorbidity and assess psychosocial impairment in a large sample of patients with a wide range of unselected organic and non-organic (ie, medically unexplained) vertigo/dizziness syndromes. Methods This cross-sectional study involved a sample of 547 patients recruited from a specialised interdisciplinary treatment centre for vertigo/dizziness. Diagnostic evaluation included standardised neurological examinations, structured clinical interview for major mental disorders (SCID-I) and self-report questionnaires regarding dizziness, depression, anxiety, somatisation and quality of life. Results Neurological diagnostic workup revealed organic and non-organic vertigo/dizziness in 80.8% and 19.2% of patients, respectively. In 48.8% of patients, SCID-I led to the diagnosis of a current psychiatric disorder, most frequently anxiety/phobic, somatoform and affective disorders. In the organic vertigo/dizziness group, 42.5% of patients, particularly those with vestibular paroxysmia or vestibular migraine, had a current psychiatric comorbidity. Patients with psychiatric comorbidity reported more vertigo-related handicaps, more depressive, anxiety and somatisation symptoms, and lower psychological quality of life compared with patients without psychiatric comorbidity. Conclusions Almost half of patients with vertigo/dizziness suffer from a psychiatric comorbidity. These patients show more severe psychosocial impairment compared with patients without psychiatric disorders. The worst combination, in terms of vertigo-related handicaps, is having non-organic vertigo/dizziness and psychiatric comorbidity. This phenomenon should be considered when diagnosing and treating vertigo/dizziness in the early stages of the disease.
Article
Introduction: Accident investigation and review are important not only to attribute failure modes, but also mitigate risk, improve safety, and enhance capability. It was hypothesized that an interesting perspective on British Army Air Corps (AAC) rotary-wing (RW) accidents may be garnered by contrasting data from the previous two decades with a general operational (OP) shift from European theaters of conflict to operations in Southwest Asia. Methods: AAC mishaps for the period from January 1991 through December 2010 were reviewed within an air safety management system. Accidents, defined by category 4 or 5 aircraft damage or death or major injury of personnel, were selected. Analysis was conducted jointly by a minimum of two specialists in aviation medicine. Results: There were 37 accidents that occurred in 6 differing airframes at an average rate of 2.5 per 100,000 flying hours. From 1991-2000, 25 accidents (9 OP) occurred with a rate of 2.8 per 100,000 flying hours. From 2001-2010, 12 accidents (5 OP) occurred with a rate of 2.1 per 100,000 flying hours. Aircrew human factors (HF) errors represented 84% of attributable causation for both decades. Spatial disorientation (SD) represented a higher proportion of HF-related accidents for OP flying. Discussion: Despite the perception of a more difficult OP theater for the latter decade, the overall rate and the proportion of OP accidents did not differ appreciably. Rather than theater-specific threats or challenges, it has been the longstanding and prominent player of HF error and specifically SD in OP flying that has remained entrenched in the causal chain.