
 Procedia Computer Science 60 (2015) 1745 – 1752

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2015.08.284

ScienceDirect

19th International Conference on Knowledge Based and Intelligent Information and Engineering
Systems

Simulating Resilient Server using XEN Virtualization

Idris Winarno, Yoshiteru Ishida
Department of Computer Science and Engineering,

Toyohashi University of Technology
Tempaku, Toyohashi 441-8580, Japan

Abstract

Since servers play a critical role in data processing and data transmission for serving many clients, failures in servers cause not only
performance degradation of the server itself but also threats to all the computers connected to the server. Resilient servers that can self-
recognize failures, self-repair failures and self-replace failed parts are required when computer systems and networks become such huge-scale
as witnessed by data centers and the cloud computing. As a preliminary study, we report simulations restricting ourselves to demonstrate the
self-repair network (SRN) model in a homogeneous environment realized by a virtualization technique. Simulations are conducted using native
and hosted VMM on a single physical computer. Three scenarios: hang faulty, DoS attack and virus infection, are simulated. These simulations
demonstrated how a server with a homogeneous environment (realized by the self-repair network model using the virtualization technique) can
or cannot keep the resilience, and even suggested a possibility and necessity of using a self-reconfiguration model to create diversity.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: self-repair network; resilient server; virtual machine

1. Introduction

A computer which has a high specification and run a service that can be accessed by multiple users over a network is called a
server10. Email, web server, and other services are usually run by a computer server since it needs high computation to serve in
multiple connections. The server takes an important role along its role to deliver the information to users. Therefore, server
reliability must always take precedence in order for it to perform in a variety of situations. Each server in the data center must be
highly available for serving the data processing and transmission. To maintain the system availability, it is important to repair the
server in the data center when the failure occurs.

Server failure could happen by many problems which affect the server performance; for example hang faulty, virus spreading,
and Denial of Service (DoS) attack. The simplest way to repair such failures as virus infection is by installing an anti-virus and an
anti-rootkit on each server in the data center. However, when the server failure is complex, we have to reinstall or reset the
server. Moreover, the reinstalling and the resetting the server need much time to do. It is difficult to repair from the failure using
this scenario.

* Corresponding author. Tel.: +81-80-3685-7576.
 E-mail address: idris@sys.cs.tut.ac.jp

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.284&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.284&domain=pdf

1746 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

The other scenario to repair the system is using a self-repairing network model7, which is derived primarily from the concept
of an immunity-based system9. In the self-repair network model, the self-repair (intra-node repair visualized as a loop) and the
mutual-repair (inter-node repair visualized as a cycle) are used to recover the system from failures among the servers (also called
nodes). As a sensor to detect anomaly of the system, several tools such as Tripwire, ClamAV and rkhunter may be used. We
report simulations aiming at resilient servers that can recover by themselves from failures by incorporating the self-repairing
network (SRN)6 model with the XEN virtualization. XEN is one of the Virtual Machine Monitor (VMM). There are two types of
VMM (Section 3.3).

2. Related Work

Nowadays, servers run in a virtualization environment, and are collected to a data center. A data center is a collection of
servers, which have been evolved and still evolving. Getting started from a centralized technology known as the mainframe
machine (1.0 version), decentralized technology (2.0 version) known as the mechanism of client-server and distributed
computing is replacing the centralized technology. Currently, the virtualization technology (3.0 version) that prioritizes service-
oriented mechanism5 and is based on web 2.0 (Fig. 1) is used. Virtualization technology takes an important position in the
simulations of the resilient server against the failure scenario. Some projects1,3 use XEN to increase availability and
dependability of a server, and the other project13 uses VMware ESXi to build a backup system performed on a virtual machine.
Many researches focus on server performance involving virtualization (virtual machine) technology. Detection system of stealthy
malware has been proposed using VMM-Based “out-of-the-box” semantic view reconstruction8, which compares the VMwatch
approach with the conventional one to detect the malware. Tripwire and antivirus are used as host-based anti-malware. ReVirt
enables an intrusion analysis through virtual-machine logging and replay4, which concluded that ReVirt could determine and fix
the damage the intruder inflicted by replaying the execution before, during and after the intruder compromises the system.

Fig. 1. Data Center and Network Evolution

3. Proposed Method

3.1. Self-repair network

The self-repair network (SRN) has been proposed as a model to design resilient systems such as a resilient server. SRN
consists of autonomous nodes not only being repaired by connected nodes but also capable of repairing connected nodes (Fig.
2b). Nodes can repair themselves (i.e., nodes with a loop) as shown in Fig. 2a. Repairing may be implemented in many ways
depending on target systems. One way is overwriting the contaminated contents with normal contents by copying the normal
contents (called inter-node repair or mutual-repair in Fig. 2b). The other ways include removing contaminated parts and resetting
the state (called intra-node repair or self-repair in Fig. 2a).

 (a) (b)

Fig. 2. (a) self-repair, (b) mutual-repair

1747 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

In building a simulator, we assume the server as a node in a virtualization environment (Fig. 3a). Each node consists of
separate parts of disk partitions. Since we use the virtual machine, a disk partition is stored as a file (Fig. 3b). When one of the
partition having a problem, it may be repaired by overwriting the partition by the corresponding content of other nodes.

 (a) (b)

Fig. 3. (a) model of server (node) run in virtualization environment, (b) model of each node by separating disk partition

There can be many kinds of servers that are running various operating systems (e.g. Linux, Windows, BSD). Moreover, each
operating system usually has many kinds of distributions (e.g. Debian GNU/Linux, CentOS). Distinct distributions allow the
servers (nodes) to be heterogeneous because each operating system has the distinct structure of file system hierarchy. Therefore,
to implement SRN model in this simulation, designing the nodes (servers) identical (homogeneous nodes) allows the inter-node
repair to be implemented by simple copying. We used the homogeneous nodes for our preliminary test of SRN for simplicity.

3.2. Information System Failure

Failures in information systems could happen anytime and anywhere. Roughly, there are two categories of failures. The First
category is a physical failure: a failure at the physical devices (hardware) of the server. The second category is a logical failure or
software failure. This note focuses on the logical failures, which will be used as scenarios on a server such as Denial of Service
(DoS) attack and virus spreading. We assume that failures will affect any services running on the server. Therefore, a server has
to preserve resilience in the services such as the communication services as in the web server and the mail server.

3.3. Virtual Machine Monitor (VMM)

There are two types of VMM (also known as a hypervisor) that can be used for simulations or even used for an operational
purpose. The first type is hosted VMM, and the second type is native (bare-metal) VMM. Fig. 4 illustrates the differences in the
two types of VMM. Table 1 shows an example of the application of the VMM. We used both types of the VMM. We simulate
the Native VMM under running hosted VMM using a single computer. In the simulatios, we use XEN 4.1.4 as native VMM and
VMware Fusion 7.0.0 as hosted VMM.

 Table 1. Example of VMM Applications

Type Application

Native VMware ESX/ESXi

KVM

XEN

Hyper-V

Hosted VMware Player

OpenVZ

VirtualBox

1748 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

Fig. 4. Two types of VMM (hypervisor)

4. System Design and Implementation

4.1. Logical Design

We use the logical design to simulate the resilient server by implementing SRN model using both hosted and native VMM
(Fig. 4). There are 4-hosted VMM: node 1 through node 4. We assume that node 1 through node 3 are normal nodes, and the
node 4 is an abnormal node (Fig. 5). Each node has four partitions that are stored in separate files (virtual disk) (Fig. 5). The
logical design simply aims at easier recovery of the file system or data of the node when an abnormal condition (an anomaly) is
detected. Each node has to install an application (sensor) to check the condition of the node itself periodically (Fig. 6). There are
three sensors that run on each node. When the sensor detects an anomaly, it instructs the node to start the recovery (the intra-node
repair indicated as self-repair in Fig. 6). However, if the problem still remains, the node has to get the copy of the file system or
data from the other nodes (the inter-node repair indicated as mutual-repair in Fig. 6).

Fig. 5. Logical design using hosted and native VMM

1749 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

Fig. 6. Flowchart of a node to check the system periodically

4.2. Scenarios

To simulate attacks (Fig. 5), we use the following three scenarios:

• Hang scenario: node having faulty (hang),
• Denial of Service (DoS) scenario: node being attacked by DoS,
• Virus scenario: node being contaminated by a virus where contaminated nodes may infect other nodes.

For the first scenario: a node hang up, there are many possibilities that can cause the hang problem on the system2. It is hard

for the node to detect and solve the hang scenario. The hypervisor has been involved to solve this problem. A simple method to
detect the hang problem from the network is by pinging the node. When the node is not responding to the ping, the hypervisor
has to restart the node and report to the administrator.

In the second scenario: the DoS attack, the attack can be done even as distributed attacks called Distributed DoS (DDoS).
DDoS attacks can be simulated with the simulator implementing SRN model with the virtualization technique. However, we use
only DoS scenario to focus on the specific services (web server), which have the vulnerability. In the DoS scenario, we assume
the attacker sends the DoS packet to a node. The hypervisor has to respond by checking the running services and add the IP
address of the attacker to the firewall rule. If the services did not respond to the packet send by the hypervisor, the node has to
restart the services by itself (intra-node repair or self-repair). If the problem still occurs, the hypervisor has to prepare to clean
the node by copying from the normal node (inter-node repair or mutual-repair).

In the last scenario, we assume that a virus infects a node and spreads through the network. Each node has to check the
integrity of the system whether the system changed or not. If the virus successfully changed the system and the change is
detected by a sensor, the node has to copy the file system from the normal node. If the virus caused the overall system down, the
hypervisor has to make a decision to isolate or disconnect the contaminated nodes from the network (when the contaminated
nodes are identified).

4.3. Implementation

We use XEN version 4.1 as the hypervisor under Debian 7.8 GNU/Linux and created four nodes as guest Operating System
with the x86 platform (Fig. 7). The hypervisor has important roles of monitoring all of the nodes and responding if there is an
abnormal condition. Hence, the hypervisor must be capable of checking all of the three scenarios in section 4.2.

Moreover, we made the structure of all the nodes identical and separated the file system from the data itself as the different
logical disks (Table 2). With the virtual machine, the logical disk is implemented to a file (Table 2). The identical nodes allow
the inter-node repair (mutual-repair) to be realized by simply copying the normal component of the node to overwrite the

1750 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

component of the abnormal node. To monitor the system, each node must run a program in the background periodically based on
the flowchart in Fig. 6.

 Table 2. Partition table of each node

Disk ID Partition Mount point Size (MB) Disk filename

1 File system / 1024 disk1.img

2 data1 /var 512 disk2.img

3 data2 /usr 512 data3.img

4 data3 /home 512 data4.img

Fig. 7. Virtual machine with 4 nodes in x86 platform

5. Simulation Results

There are a lot more scenarios that can cause malfunction in servers, however, this preliminary simulations focus on the three
scenarios: Hang (faulty), Denial of Service (DoS) and virus attacks.

5.1. Hang scenario

Through the XEN console we can manage to monitor each node and to simulate the hang condition. Since the nodes are under
control of the Linux operating system, the OS allows us to simulate the hang scenario by simply sending a halt signal to the OS.
When the halt signal is received, however, the node will shut down the system. Thus, we must use another way to simulate the
hang scenario: by using XEN command that is "xm pause <node name>" command. We run the command for the node 4 and the
hypervisor responded by restarting the node 4.

5.2. DoS scenario

We used slowloris script12 to simulate the DoS scenario. Slowloris is a script that creates many connections to the service. In
this scenario, we simulated an attack on the HTTP services (Apache web server). When the script of slowloris is executed to
attack the node, the HTTP service ceased responding to the client requests. The hypervisor checks the services periodically and
reacts to the attack by adding the attacker IP address on the firewall rules. With this simulation, DoS attacks demonstrated to
hamper a certain services. Further, the other (identical) nodes also have the same vulnerability, suggesting a limitation of
homogeneous nodes and a necessity of heterogeneous nodes as well. There are also possibilities to simulate the DDoS attack
through this simulation assuming homogeneous nodes involving a framework such as Metasploit framework. Also,
heterogeneous nodes must be considered to overcome this scenario since each node can have a distinct OS and service in the
heterogeneous environment.

5.3. Virus scenario

In this scenario, we used ClamAV and Tripwire as sensors to detect malicious codes. We created a shell application to execute
ClamAV and Tripwire to check the node condition. The shell code will execute automatically and periodically by using cron (job
scheduler) (Fig. 9a). When the malicious code (virus) detected in a node, the node will try to recover or repair the infected files
or systems (Fig. 9b). If the infection still remains, the node asks to copy the file system from the uninfected node (normal node)
(Fig. 8). As far as the limited condition in the specific scenario is concerned, the simulation demonstrated to solve the scenario
when the nodes are identical (homogeneous node).

1751 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

Fig. 8. Copying file system from normal node to abnormal node (mutual repair)

Fig. 9. (a) Application run periodically using cron, (b) virus (failure) is detected and server (node) is being repair

As far as the limited simulations are concerned, the SRN may be a sound model to involve the virtualization technique.
However, homogeneous node may not be a sound assumption. For example, in the virus attack scenario, all the nodes are equally
vulnerable to the attack. Moreover, it would be difficult to avoid the same infection even after the infected node is cleaned up. To
overcome this problem, we can use the heterogeneous nodes (each node has a distinct operating system11 or even distinct
services). The heterogeneous node could be implemented by installing different distribution operating system (e.g., CentOS and
Debian GNU/Linux) and services (e.g., Apache and Nginx). By implementing the heterogeneous node, it is more difficult for
malicious codes to exploit the system, for they have to find the vulnerability each of the heterogeneous nodes.

6. Conclusion

Simulations revealed that the self-repair network with homogeneous nodes can be realized by involving the virtualization
techniques where the self-repair is executed by copying the content of the homogeneous node. Simulations also suggested that
the servers with the homogeneous environment can be made resilient against failures in limited scenarios. Although the self-
repair network can deal with a specific type of failures to a limited scale of failures, the self-repair network alone cannot even
recognize a large-scale failures, and recovery is also limited if we restrict ourselves to mutual repairing between homogeneous
nodes. We also suggest that the diversity created by heterogeneous nodes involving a self-reconfiguration model that allows a
system to replace failed nodes with heterogeneous nodes and to protect against ever growing threats involving diversity (learned
from the immune system) can be a solution to keep resilience against unknown type of failures.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and suggestions that greatly contributed to
improve the final version of this report. IW is also grateful to DIKTI (Indonesian Government for Higher Education) for the
scholarship.

a

b

1752 Idris Winarno and Yoshiteru Ishida / Procedia Computer Science 60 (2015) 1745 – 1752

References

1. Brendan C, Geoffrey L, et al. Remus: High Availability via Asynchronous Virtual Machine Replication. Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation; 2008. p. 161-174.

2. Cotroneo D, Natella R, Russo S. Assessment and Improvement of Hang Detection in the Linux Operating System. Proceedings of the 28th IEEE
International Syposium on Reliable Distributed Systems; 2009. p. 288-294.

3. Cully B, Warfield A. SecondSite: Disaster Protection for the Common Server. In HOTDEP’06: Proceedings of the 2nd conference on Hot Topics in System
Dependability; 2006.

4. Dunlap GW, King ST, Cinar S, Basrai MA, Chen PM. ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. ACM SIGOPS
Operating Systems Review 36; 2002.

5. Ian B. Data Centre Evolution: The Role of the Network in Data Centre Transformation. Cisco; 2008.
6. Ishida Y. A Critical Phenomenon in a Self-repair Network by Mutual Copying. Knowledge-Based Intelligent Information and Engineering Systems. Lecture

Notes in Computer Science 2005; 3682: 86-92.
7. Ishida Y, Tanabe K. Dynamics of Self-Repairing Networks: Transient State Analysis on Several Repair Types. International Journal of Innovative

Computing, Information and Control 2014; 10: 389-403.
8. Jiang X, Wang X, Xu D. Stealthy malware detection through vmm-based out-of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM

Conference on Computer and Communications Security; 2007. p. 128–138.
9. Jerne NK. The Immune System. Sci Amer 1973; 229: 52-60.
10. Maffeis S. Client/server term definition. In: Hemmendinger D, Ralston A, Reilly ED, editors. Encyclopedia of Computer Science. International Thomson

Computer Publishing; 1998.
11. Pu C, Black A, Cowan C, Walpole J. A Specialization Toolkit to Increase the Diversity in Operating Systems. In: Workshop Notes on Immunity-Based

Systems. International Conference on Multiagent Systems; 1996. p. 107-117.
12. Slowloris HTTP DoS, http://ha.ckers.org/slowloris/
13. Winarno I, Sani MN. Automatic Backup System for Virtualization Environment. EMITTER International Journal Of Engineering Technology 2014; 2: 91-

101.

