We consider tactical planning of a military operation on a large target scene where a number of specific targets of interest are positioned, using a given number of resources which can be, for example, fighter aircraft, unmanned aerial vehicles, or missiles. The targets could be radar stations or other surveillance equipment, with or without defensive capabilities, which the attacker wishes to
... [Show full abstract] destroy. Further, some of the targets are defended, by, for example, Surface-to-Air Missile units, and this defense capability can be used to protect also other targets. The attacker has knowledge about the positions of all the targets and also a reward associated with each target. We consider the problem of the attacker, who has the objective to maximize the expected outcome of a joint attack against the enemy. The decisions that can be taken by the attacker concern the allocation of the resources to the targets and what tactics to use against each target. We present a mathematical model for the attacker's problem. The model is similar to a generalized assignment problem, but with a complex objective function that makes it intractable for large problem instances. We present approximate models that can be used to provide upper and lower bounds on the optimal value, and also provide heuristic solution approaches that are able to successfully provide near-optimal solutions to a number of scenarios.