Small RNA and its application in andrology and urology

Translational Andrology and Urology 09/2012; 1(1):33-43. DOI: 10.3978/j.issn.2223-4683.2011.12.04


Small non-coding RNAs such as small interfering RNA (siRNA), microRNA (miRNA) and piwi-interacting RNA (piRNA) exist in almost all kingdoms of organisms and have recently emerged as master regulators of gene expression to affect a diverse range of important biological processes. They exert their functions largely through two related but opposing mechanisms: RNA interference (RNAi) mediated by siRNA, miRNA and piRNA, and RNA activation (RNAa) mediated by small activating RNA (saRNA) and miRNA, leading to silencing and overexpression of target genes respectively. Dysregulation of these mechanisms have been implicated in a variety of human diseases including urological and andrological diseases. Importantly, both mechanisms can be readily harnessed for therapeutic purposes for a variety of diseases by using small RNA molecules as the "ribodrug". In this review, we highlight recent advances in the applications of small RNA as therapeutics for urological cancer, male infertile and erectile dysfunction.

Download full-text


Available from: Ji Wang, Oct 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of male infertility appraised 10-15% in worldwide. Male infertility is frequently coupled to deficient in sperm development and production. Of note, in principle of the number of sperm cells in seminal fluid, has been categorised in azoospermia, severe oligozoospermia and mild oligozoospermia.
    Full-text · Article · Jan 2012 · Translational Andrology and Urology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are the most common tumors in the central nervous system. This study aims to investigate the expressions of transforming growth factor-β1 (TGF-β1) and epithelial cadherin (E-cadherin) in human brain glioma tissues and the correlation between their expressions with clinical pathological features and clinical significance. The expressions of mRNA or protein of TGF-β1 and E-cadherin were detected by using reverse transcription polymerase chain reaction (RT-PCR) and Western blot in these tissues. Positive rates of the expression of TGF-β1 and E-cadherin were 62.9 % and 38.6 % in brain tissues of glioma patients. The expressions of mRNA or protein for TGF-β1 in brain glioma tissues were significantly higher than that in normal brain tissues (p < 0.01). Their expressions in well-differentiated glioma brain tissues were lower than those in poorly differentiated glioma brain tissues (p < 0.01). A negative correlation was found between TGF-β1 and E-cadherin in brain glioma tissues (r = -0.302, p < 0.011). The cell numbers of C6 glioma through Transwell chambers were decreased significantly (p < 0.01), and the expression of TGF-β1 was downregulated significantly (p < 0.01). However, the expression of E-cadherin was upregulated significantly (p < 0.01) after transfecting TGF-β1 siRNA. The expression changes of TGF-β1 and E-cadherin may be related to the emergence and the development of glioma. Downregulation of TGF-β1 expression using siRNA can decrease the invasive capability of C6 glioma cells.
    No preview · Article · Apr 2012 · Tumor Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to determine the expression of microRNA-203 (miR-203) in human lung cancer cell lines and to evaluate the effects of miR-203 by targeting survivin, on the lung cancer cell line 95-D to provide potential new strategies for treating lung cancer. The expression of miR-203 was detected using quantitative real-time PCR (qRT-PCR) in the in vitro cultured lung cancer cells A549, HCC827, NCI-H1299, and 95-D as well as in normal human bronchial epithelial cells. Following a 72-h transfection with the miR-203 precursor in 95-D lung cancer cells, the change in miR-203 expression was detected using qRT-PCR and the resulting effect on survivin protein expression was ascertained by Western blot analysis. The influence of miR-203 on the viability of 95-D lung cancer cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effect of miR-203 on 95-D cell proliferation was analyzed using flow cytometry. The consequences of miR-203 expression on 95-D cell apoptosis were analyzed by Annexin V/propidium iodide double staining coupled with flow cytometry. The role of miR-203 in the invasive potential of 95-D cells was studied using a transwell chamber assay. A luciferase reporter gene system was used to verify that survivin is a target gene for miR-203. By qRT-PCR, the expression of miR-203 was lower in lung cancer cells than in normal bronchial epithelial cells (p < 0.01), and the expression of miR-203 in 95-D lung cancer cells was significantly higher after a 72-h transfection with the miR-203 precursor (p < 0.01). After a 72-h transfection with the miR-203 precursor, survivin protein levels in 95-D cells were significantly decreased (p < 0.01). Cell viability, as assessed with an MTT assay, decreased following an increase in miR-203 expression (p < 0.05). The flow cytometry results indicated that after miR-203 expression increased, the cell proliferation index decreased (p < 0.05) and the number of apoptotic cells increased (p < 0.01). Increased miR-203 expression led to a significant decrease in the number of cells that migrated through a transwell chamber membrane (p < 0.01). The luciferase reporter gene system demonstrated that the relative luciferase activity significantly decreased after transfection with the miR-203 precursor (p < 0.05). The expression of miR-203 is downregulated in lung cancer cells. miR-203 negatively regulates survivin protein expression and inhibits the proliferation and invasion of lung cancer cells. Therapeutic strategies that enhance miR-203 expression or silence survivin could potentially benefit lung cancer patients.
    No preview · Article · Oct 2012 · Tumor Biology
Show more