Conference PaperPDF Available

Anisotropic Fractal Snakes

Authors:

Abstract

The segmentation and tracking of visual patterns, particularly those patterns related to natural imagery, have sparked renewed interest in the computer vision and image processing communities. Applications in robotics, automated systems, geographical information systems, etc. require efficient and accurate methods for processing visual data. Prior work in textural analysis has led to systems with promising accuracy, but poor efficiency. Work on fractal snakes provided both accuracy and efficiency, but at the loss of orientation with respect to the texture. In many applications, resolving orientation is an important piece of information. We have built upon our work in fractal snakes to expand our snake models from a purely isotropic measure of surface roughness to an orientation sensitive model: The Anisotropic Fractal Snake.
$QLVRWURSLF)UDFWDO6QDNHV
'U&KULVWRSKHU(6PLWK
6FKRRORI0DWKHPDWLFVDQG&RPSXWHU6FLHQFH
/DNH6XSHULRU6WDWH8QLYHUVLW\
6DXOW6WH0DULH0,
FVPLWK#OVVXHGX
$EVWUDFW²7KH VHJPHQWDWLRQ DQG WUDFNLQJ RI YLVXDO SDW
WHUQV SDUWLFXODUO\ WKRVH SDWWHUQV UHODWHG WR QDWXUDO LPDJHU\
KDYHVSDUNHGUHQHZHGLQWHUHVWLQWKHFRPSXWHUYLVLRQDQGLPDJH
SURFHVVLQJ FRPPXQLWLHV $SSOLFDWLRQV LQ URERWLFV DXWRPDWHG
V\VWHPVJHRJUDSKLFDOLQIRUPDWLRQV\VWHPVHWFUHTXLUHHIILFLHQW
DQGDFFXUDWHPHWKRGVIRUSURFHVVLQJYLVXDOGDWD3ULRUZRUNLQ
WH[WXUDO DQDO\VLV KDV OHG WR V\VWHPV ZLWK SURPLVLQJ DFFXUDF\
EXWSRRUHIILFLHQF\:RUNRQIUDFWDOVQDNHVSURYLGHGERWKDFFX
UDF\DQGHIILFLHQF\EXWDWWKHORVVRIRULHQWDWLRQZLWKUHVSHFWWR
WKH WH[WXUH ,Q PDQ\ DSSOLFDWLRQV UHVROYLQJ RULHQWDWLRQ LV DQ
LPSRUWDQWSLHFHRILQIRUPDWLRQ:HKDYHEXLOWXSRQRXUZRUNLQ
IUDFWDOVQDNHVWRH[SDQGRXUVQDNHPRGHOVIURPDSXUHO\LVRWUR
SLF PHDVXUH RI VXUIDFH URXJKQHVV WR DQ RULHQWDWLRQ VHQVLWLYH
PRGHOWKH$QLVRWURSLF)UDFWDO6QDNH
,QGH[7HUPV²FRPSXWHUYLVLRQLPDJHSURFHVVLQJWH[WXUH
IUDFWDOV
,,
1752'8&7,21
7H[WXUHVHJPHQWDWLRQDQGWUDFNLQJXVLQJSDUDPHWULFDFWLYH
GHIRUPDEOH PRGHOV DND ³VQDNHV´ KDV EHHQ SHUIRUPHG
XQGHUDYDULHW\RIGLIIHUHQWWH[WXUDOUHSUHVHQWDWLRQV>@>@>@
*DERUILOWHUVZDYHOHWWUDQVIRUPVDQG)RXULHUDQDO\VLVKDYH
EHHQ XVHG EXW VXIIHU IURP D ODUJH FRPSXWDWLRQDO RYHUKHDG
UHODWHG LQ SDUW WR WKH DQDO\VLV  UHTXLUHGWR PDWFK WH[WXUHV DW
YDU\LQJ VFDOHV ,Q RXU SULRU ZRUN ZH LQYHVWLJDWHG XVLQJ D
WH[WXUHUHSUHVHQWDWLRQEDVHGXSRQWKHIUDFWDO DOVRFDOOHGWKH
IUDFWLRQDOGLPHQVLRQ>@7KLVPHWKRGKDVEHHQVXFFHVVIXOO\
XVHGIRUPRGHOLQJWKHVHOIVLPLODUWH[WXUHVWKDWDULVHLQQDWX
UDOVFHQHV>@>@
2XU DSSOLFDWLRQ RI WKLV UHSUHVHQWDWLRQ WR RXU VWDWLVWLFDO
SUHVVXUHVQDNHV\LHOGHGJUHDWO\LPSURYHGFRPSXWDWLRQDOSHU
IRUPDQFHZLWKRQO\DVOLJKW GHFUHDVH LQ WKH DFFXUDF\ RIWKH
VHJPHQWDWLRQRYHUFRPSHWLQJWH[WXUDODSSURDFKHV7KHPDMRU
SUREOHPZLWKWKHIUDFWDOGLPHQVLRQLVWKDWWKHPRGHOLVLVRWUR
SLFLQLPDJHV7KDWLVDWH[WXUHZLWKVWURQJO\GLUHFWHGFRP
SRQHQWVLV PDWFKHGUHJDUGOHVVRIRULHQWDWLRQZLWKUHVSHFWWR
WKHFDPHUD
,QWKLVSDSHUZHSUHVHQWDOWHUQDWLYHH[WHQVLRQVWRWKHEDVLF
IUDFWDO GLPHQVLRQ WKDW SURYLGH WKH DELOLW\ WR GLVFULPLQDWH
EHWZHHQVLPLODUDQLVRWURSLFWH[WXUHVRUWKH VDPH DQLVRWURSLF
WH[WXUH DW GLIIHUHQW RULHQWDWLRQV 7KH WHFKQLTXHV ZHX VHDUH
VXIILFLHQWWRSURYLGHGLUHFWLRQDOVHOHFWLYLW\WRRXUVQDNHVEXW
ZLWKYDU\LQJGHJUHHVRIVXFFHVV
2YHUDOOWKHGLIIHUHQWWHFKQLTXHVIRUWKHGLUHFWLRQDOL]DWLRQ
RIWKHIUDFWDO GLPHQVLRQSURYLGHQRFOHDUEHVWDSSURDFKZLWK
UHVSHFWWRWKHDFFXUDF\RIWKHVHJPHQWDWLRQWKHWLPHWRPLQL
PL]HWKH HQHUJ\IXQFWLRQDORI WKHVQDNHVDQG WKHVHOHFWLYLW\
DPRQJ VLPLODU WH[WXUHV ZLWKPLQRU YDULDWLRQV LQRULHQWDWLRQ
2XU UHVXOWV GR KRZHYHU VKRZ WKDW WKH YDULRXV GLUHFWLRQDO
IRUPXODWLRQVDOOSHUIRUPDGHTXDWHO\XQGHUDYDULHW\RIFRQGL
WLRQV
,,3
5(9,286
:
25.
7H[WXUHVHJPHQWDWLRQPHWKRGVJHQHUDOO\IDOOLQWRWZRFDW
HJRULHVS\UDPLGDOILOWHULQJ>@ DQGVWDWLVWLFDOSDWWHUQPDWFK
LQJ>@7KHPRVWFRPPRQS\UDPLGDOWHFKQLTXHLVWKHXVHRI
*DERUILOWHUV WRILQGJURXSLQJVRI VLPLODUVSDWLDOIUHTXHQFLHV
LQ LPDJHU\ >@ *DERU ILOWHUV DUH GLPHQVLRQDO VLQXVRLGDO
IXQFWLRQVFRQYROYHGZLWK D*DXVVLDQVXUIDFHWKDWSURYLGHVD
GDPSHQLQJHIIHFWRQWKHUHVXOWLQJVLJQDO7KHVLQXVRLGDOVXU
IDFHLV LQKHUHQWO\ DQLVRWURSLF EXW WKHLU XVH OHDGVWR VLJQLIL
FDQW FRPSXWDWLRQDO RYHUKHDG ,Q PRVW DSSOLFDWLRQV DQ
RUWKRQRUPDOEDVLVVHWRIWKHVXUIDFHVPXVWEHFRQYROYHGZLWK
RQHVFDOHRIWKHS\UDPLGRIWKHLPDJHWRILQGVLPLODUWH[WXUDO
UHJLRQVDWWKDWVFDOH
$VLQJOHWH[WXUHPD\UHTXLUHDPXOWLWXGH RI ILOWHUV DW GLI
IHUHQW IUHTXHQFLHV RU DOWHUQDWLYHO\ WKH VDPH IUHTXHQF\ DW
GLIIHUHQWVFDOHV GLIIHUHQW RULHQWDWLRQV DQG GLIIHUHQW *DXVV
LDQ DPSOLWXGHV WR DFFXUDWHO\ FDSWXUH WKH WH[WXUH 7KLV
DSSURDFK LV VLPSO\ WRR FRPSXWHLQWHQVLYH WR SURYLGH UHDO
WLPHSHUIRUPDQFH 6LPLODU VKRUWFRPLQJVH[LVWIRUS\UDPLGDO
PHWKRGVEDVHG XSRQ FRUUHODWLRQ DW YDU\LQJ VFDOHV ZLWK %UR
GDW]DQGRWKHUVLPLODUWH[WXUHVDPSOHVHWVDQGIRUWHFKQLTXHV
VXFKDVZDYHOHWWUDQVIRUPV>@
,Q PRVW FDVHV WKHVH WHFKQLTXHV OLNH *DERU ILOWHUV DUH
DQLVRWURSLF 7KH H[FHSWLRQ LV ZDYHOHW DQDO\VLV ZKLFK WDNHV
LQWRFRQVLGHUDWLRQRQO\WKHKRUL]RQWDODQGYHUWLFDOIUHTXHQF\
FRPSRQHQWV RI WKH WH[WXUH 7KLV PHDQV WKDW ZDYHOHW WHFK
QLTXHV ZRXOG IDLO WR GLVFULPLQDWH DUHDV RI VLPLODU WH[WXUH
ZKRVHRULHQWDWLRQVDUHFRPSOHPHQWDU\ZLWKUHVSHFWWRHLWKHU
WKHYHUWLFDORUWKH KRUL]RQWDOD[LV7KDWLVD WH[WXUHRULHQWHG
DORQJ  UDGLDQV ZRXOG PDWFKD VLPLODU WH[WXUH RULHQWHG
DORQJ UDGLDQV
$OWHUQDWLYHO\ DQLVRWURSLF VWDWLVWLFDO WH[WXUH PHWKRGV
LQFOXGH VXFK WHFKQLTXHV DV WKH 'LVFUHWH &RVLQH 7UDQVIRUP
'&7DQGWKH 'LVFUHWH )RXULHU7UDQVIRUP')7 /LNH WKH
DIRUHPHQWLRQHG S\UDPLGDO WHFKQLTXHV D VHW RI RUWKRJRQDO
EDVLV IXQFWLRQV DUH DSSOLHG WR FRQYROYHG ZLWK WKH LPDJH
7KHFRPSXWDWLRQDOSUREOHPVRIS\UDPLGDOPHWKRGVSHUVLVWLQ
WKHVHWHFKQLTXHV
3ULRU ZRUN KDV DSSOLHG GLUHFWLRQDO WH[WXUDO DQDO\VLV WR
GHIRUPDEOHPRGHOV>@7KHPRVWQRWDEOHZRUNLVE\+XDQJ
HWDO>@7KHLUWHFKQLTXHXVHVERWK *DERU PRGHOLQJ RI WKH
³WH[RQV´ DQG DQ LWHUDWLYH FRPSXWDWLRQ RI OLNHOLKRRG PDSV
Se
Se
2014 IEEE International Conference on Systems, Man, and Cybernetics
October 5-8, 2014, San Diego, CA, USA
978-1-4799-3840-7/14/$31.00 ©2014 IEEE 525
XVLQJ %HOLHI 3URSDJDWLRQ 0DUNRY 5DQGRP )LHOGV 7KH
PHWKRGSURYLGHVH[FHOOHQWVHJPHQWDWLRQUHVXOWVEXWXQIRUWX
QDWHO\LV KLJKO\ XQVXLWDEOH IRUUHDOWLPHURERWLFYLVXDOJXLG
DQFHVLQFH WKH UHSRUWHG SHUIRUPDQFHRQDVLQJOHLPDJH WRRN
DSSUR[LPDWHO\ WKUHH PLQXWHV RI FRPSXWDWLRQ DW D YHU\ ORZ
UHVROXWLRQ SL[HOV
,QUHVSRQVH WR WKHVH SUREOHPV ZH DSSOLHGIUDFWDOGLPHQ
VLRQWRDFWLYHGHIRUPDEOHPRGHOV7KLVWHFKQLTXHLVLVRWURSLF
OHDGLQJWRIDLOXUHVLQVHJPHQWLQJVLPLODUWH[WXUHVZLWKGLIIHU
LQJ RULHQWDWLRQV 7KLV LV XQVDWLVIDFWRU\ LQ PDQ\ VLWXDWLRQV
SDUWLFXODUO\LQYLVXDOVHUYRLQJDSSOLFDWLRQVZKHUHWKHHVWLPD
WLRQRIURWDWLRQDERXWWKH=D[LVZRXOGUHTXLUHH[WUDFWLQJRUL
HQWDWLRQIURPDWH[WXUHGWDUJHW
,QWKHIROORZLQJVHFWLRQVZHUHYLHZWKHIUDFWDOVQDNH
PRGHO SURSRVHD PHWKRG IRU PHDVXULQJ WKH VWUHQJWKRI WKH
WH[WXUH DORQJ D VSHFLILHG GLUHFWLRQ DQG JLYH YDULRXV WHFK
QLTXHV IRU LQFRUSRUDWLQJ WKLV GLUHFWLRQDO PHDVXUH LQWR WKH
IUDFWDOVQDNHPRGHO:HWKHQWHVWWKHYDULRXVPHWKRGVDJDLQVW
WHVWLPDJHVWRFRPSDUHWKHDFFXUDF\RIWKHVHJPHQWDWLRQDQG
WUDFNLQJWKHWLPHRIFRQYHUJHQFHRIWKHPRGHODQGWKHVHQVL
WLYLW\RIWKHPRGHOWRUHJLRQVRIWKHVDPHWH[WXUHDWGLIIHUHQW
RULHQWDWLRQV
,,,7
+(
)
5$&7$/
6
1$.(
0
2'(/
7KH WUDGLWLRQDO GHIRUPDEOH PRGHO ZDV ILUVW SURSRVHG E\
.DVVHWDO>@DQGLVDSDUDPHWULFFXUYHRIWKHIRUP

7KHHQHUJ\IXQFWLRQDOLVGHILQHGDV

WKDWLQFOXGHVLQWHUQDOLPDJHDQGFRQVWUDLQWHQHUJLHV

7KHLQWHUQDOHQHUJ\LVJLYHQE\

,QWKHFORVHGFRQWRXUFDVH ZHREWDLQ

ZKHUH  DQG  DUH ZHLJKWVDQG  LV WKHSRWHQWLDOLQGXFHG
E\WKHLPDJHYDOXHV
,Q 3HUULQ DQG 6PL WK >@ ZH DOWHUHG WKLV IRUPXODW LRQ WR
SURYLGHD VQDNH PRGHOWKDWLVPRUHLQWXLWLYHDQG LV HDVLHUWR
WXQHIRURSWLPDOSHUIRUPDQFH,QWKLVIRUPXODWLRQWKHRULJL
QDO  RI (TXDWLRQ  ZDV EHHQ UHSODFHG ZLWK D VLQJOH
WHUP WKDW PDLQWDLQV D ]HUR IRXUWK GHULYDWLYH WR PRUH DFFX
UDWHO\ UHIOHFW WKH RULJLQDO PRWLYDWLRQV IRU DFWLYH GHIRUPDEOH
PRGHOV7KHQHZWHUPLV

LVJLYHQE\WKHVWDWLVWLFDOSUHVVXUHWHUP

ZKHUH LVWKHWROHUDQFHIRUDFFHSWDQFH7KHWHUP FDQWDNH
RQDQ\ IRUP DV ORQJDVDVWDWLVWLFDODFFHSWDQFHFULWHULRQFDQ
EH IRUPXODWHG >@>@>@ )RU WH[WXUH WKLV WHUP XVHV WKH
IUDFWDO GLPHQVLRQ )' RI WKH RULJLQDO VHHG UHJLRQ DQG WKH
SL[HOQHLJKERUKRRGDERXWWKHFRQWUROSRLQWRIWKHVQDNH

,I LVVPDOOHUWKDQ LHWKHORFDOSL[HOVPDWFKWKHVHHG
UHJLRQ WKHQ SRVLWLYH SUHVVXUH LV SURGXFHG DQG WKH VQDNH
H[SDQGVLQWKHGLUHFWLRQSHUSHQGLFXODUWRWKHORFDOVQDNHFRQ
WRXU,I LVODUJHUWKDQ WKHQHLJKERUKRRGGRHVQRWPDWFK
DQGWKHSUHVVXUHLVQHJDWLYH7KLVFRQWUDFWVWKHVQDNHSHUSHQ
GLFXODUWRWKH ORFDO FRQWRXU7KHGHULYDWLYHV DUH RQO\ FDOFX
ODWHGDWWKHVQDNHFRQWUROSRLQWVXVLQJILQLWHGLIIHUHQFHWHFK
QLTXHV
:HXVHWKH'9DULDWLRQPHWKRG>@ZKLFKFDQEH
DSSOLHGWRJUD\VFDOHLPDJHU\7KLVPHWKRGUHOLHVXSRQD GLI
IHUHQFHYROXPHLQDVTXDUHVXEUHJLRQRIVL]H DURXQGD
D VQDNH FRQWURO SRLQW LQ WKH LPDJH :LWKLQ WKH VTXDUH VXE
UHJLRQWKHPLQLPXP DQGPD[LPXP SL[HOYDOXHV
DUHIRXQG\LHOGLQJDGLIIHUHQFHLQWKHKHLJKWYHUVXVWKHGHSWK
RIWKH SL[HOVXUIDFH SURILOH 7KHYROXPH  RI WKH SULVP
UHTXLUHGWRFRYHUWKLVGLIIHUHQFHLVJLYHQE\

$V LVFKDQJHVWKHSORWRI YHUVXV VKRXOGEH
OLQHDU7KHUHVXOWLQJSRZHUODZ>@LV

)'LVQRZJLYHQE\WKHHTXDWLRQ

ZKHUH LV WKHGLPHQVLRQRIWKHVLJQDO IRU LPDJHV
6RPHUHVHDUFKHUVSUHIHUWRXVHDVOLJKWO\GLIIHUHQW'9DULD
WLRQGLPHQVLRQJLYHQE\

,QHLWKHU FDVH LW LV WKH YDOXH  WKDWJLYHVWKHPHDVXUHRI
WKHURXJKQHVVRIWKHLPDJH6LQFHWKLVLVDGLIIHUHQFHYROXPH
WH[WXUHVWKDWDUHVLPLODU\HWLOOXPLQDWHGGLIIHUHQWO\ZLOOKDYH
VLPLODUYDOXHVIRU 
,9'
,5(&7,21$/
)
5$&7$/
)
2508/$7,21
3ULRU HIIRUWV WR FRQVWUXFW D IUDFWDO WH[WXUH PRGHO ZLWK
GLUHFWLRQDO VHOHFWLYLW\ IRFXVHG XSRQ PHDVXUHVRI WKH IUDFWDO
GLPHQVLRQDWVSHFLILHGRULHQWDWLRQV7KHQXPEHURIGLUHFWLRQV
XVHGUDQJHVIURPIRXU   DQG UDGLDQV
>@WRQLQHW\HYHU\ UDGLDQVIURP WR >@ZKHUH
WKH;D[LVKRUL]RQWDOLVWKH UDGLDQGLUHFWLRQ,QWKHVHWZR
FDVHV WKH IUDFWDO GLPHQVLRQ ZDV FDOFXODWHG XVLQJ D YDULD
WLRQDOPHWKRGDQGD)RXULHUWUDQVIRUPPHWKRGUHVSHFWLYHO\
6LQFH RXU PRGHO ZDV EDVHG XSRQ D ORFDO ' YDULDWLRQ
PHWKRGZHFKRVHWRIROORZWKH DSSURDFKRI0HQGR]DHWDO
>@DQGOLPLWWKHFDOFXODWLRQRIDGLUHFWLRQDOPHDVXUHWRRUL
HQWDWLRQV DOLJQHG KRUL]RQWDOO\ YHUWLFDOO\DQG DORQJ WKH WZR
PDMRUGLDJRQDOV
7KH LPSOHPHQWDWLRQ RI WKHVH GLUHFWLRQDO )' FRPSRQHQWV
ZDVQRWJLYHQLQ>@EXWDSSHDUVWREHD'YDULDWLRQDOPHD
VXUHFDOFXODWHGIRUHDFKSRVVLEOHSL[HOSRVLWLRQLQHDFKRIWKH
IRXUGLUHFWLRQV:KLOHWKHFDOFXODWLRQRIWKH)'XVLQJWKH'
 u
6X ,[X\X X>@
((
6QDNH
6XXG
³
((
LQW
6X(
LPJ
6X(
FRQ
6XXG
³
(
LQW
D
 Xw
w6X
XG E

X
w
w6X
XG
6 6
D
E
3
(
LQW
(
LQW
D

X
w
w6X
XG
3
(
3UHVVXUH
U6w
Xw

©¹
§·
A
NH±
N
H
H)'
VHHG
)'
FQWOSW
±
H
N
H
N
UUu
S
PLQ
S
PD[
9U
9U U
S
PD[
S
PLQ
±
U
9ORJ
UORJ
9U &U
V
)' V±
V
V
'
'
V

±
V
V
Se
Se
Se
Se
S
526
YDULDWLRQPHWKRG LV FRPSXWDWLRQDOO\HIILFLHQWZH IRXQG WKH
RYHUKHDG RI FDOFXODWLQJ WKH )' DORQJ VL[WHHQ SRLQWV RXU
PD[LPXPIRUWKHSDUDPHWHU LQHDFKGLUHFWLRQWREHH[FHV
VLYH:HLQVWHDGFKRVHWRPRGHOWKHGLUHFWLRQDOPHDVXUHVDVD
' YDULDWLRQDO PHDVXUH XWLOL]LQJ D VLQJOH URZ FROXPQ RU
GLDJRQDOOLQHRISL[HOVFHQWHUHGRQWKHFRQWUROSRLQWORFDWLRQ
6LPLODUWRWKH' YDULDWLRQPHDVXUH WKH'PHDVXUHFDO
FXODWHV WKH PLQLPXPDQG PD[LPXP FXUYHV DORQJ D OLQH RI
SL[HOV7KH SDUDPHWHU GHWHUPLQHVWKHVL]H RI D VXEUHJLRQ
DFWXDOO\DVXEOLQHRYHUZKLFKWKHGLIIHUHQFHDUHDLVFDOFX
ODWHG $ HVWLPDWLRQ HTXDWLRQ VLPLODU WR (TXDWLRQ  FDQ EH
IRUPXODWHG

$JDLQ DV  LV FKDQJHV WKH SORWRI  YHUVXV
VKRXOGEHOLQHDU7KHUHVXOWLQJSRZHUODZLV

7KH)' DORQJ DGLUHFWLRQ DOLQH RI SL[HOV LV QRZJLYHQ E\
WKHHTXDWLRQ

6LQFH WKH GLUHFWLRQDO PHDVXUHV FDUU\ OHVV LQIRUPDWLRQ
DERXWDFRQWUROSRLQW¶VORFDOWH[WXUHWKDQRXURULJLQDOLVRWUR
SLFIUDFWDO GLPHQVLRQ ZH FRPELQHWKLVGLUHFWLRQDO LQIRUPD
WLRQZLWKWKH1RQGLUHFWLRQ)'1)'FDOFXODWHGE\WKH'
YDULDWLRQ 7KHUH DUH VHYHUDO DSSURDFKHV WR FRPELQLQJWKHVH
PHDVXUHV ZH KDYH VHOHFWHG WKUHH GLIIHUHQW DSSURDFKHV WR
LQYHVWLJDWHLQRXUZRUN:HKDYHQDPHGWKHVHDSSURDFKHV
%RROHDQ'RPLQDQW 'LUHFWLRQ  9HFWRUHG 'RPLQDQW'LUHF
WLRQDQG3XUH9HFWRU
$ %RROHDQ'RPLQDQW'LUHFWLRQ
7KHVLPSOHVWDSSURDFK WR GLUHFWLRQDOVHOHFWLYLW\LVWRFDO
FXODWHWKH'LUHFWHG)'')'DORQJWKHIRXUPDMRUGLUHFWLRQV
DQG FRPSDUH WKHVH PHDVXUHV WR GHWHUPLQH WKH GRPLQDQW
GLUHFWLRQLIRQHH[LVWVLQWKHVHHGUHJLRQ$PDWFKLQGRPL
QDQWGLUHFWLRQVLVWKHQUHTXLUHGWRKDYHDWH[WXUDOPDWFK
7KHWHUP DERYHYDULHVIURP WR ZLWK EHLQJQR
YDULDWLRQWKHVLJQDOLVVPRRWKDQG EHLQJPD[LPXPYDULD
WLRQWKHVLJQDOLVPD[LPDOO\URXJK:HUDQNRUGHUWKHIRXU
')'PHDVXUHVUHIHUUHGWRDV WKURXJK DQGGHWHUPLQH
LIWKHGRPLQDQWGLUHFWLRQWKHRQHZLWKWKHODUJHVW H[FHHGV
WKHVHFRQGODUJHVWGLUHFWLRQE\DWOHDVWRIWKHURXJKQHVV
FDSDFLW\RI 7KHIROORZLQJHTXDWLRQGHWHUPLQHVLIDGRPL
QDQWGLUHFWLRQDOFRPSRQHQWLQWKHWH[WXUHH[LVWV

ZKHUH LVWKHILUVWUDQNHGGLUHFWLRQDQG  LVWKHVHFRQG
UDQNHGGLUHFWLRQ(TXDWLRQ  LV WKHQDXJPHQWHGWRUHTXLUH
QRWRQO\DPDWFKLQJ1)'DFFRUGLQJWRWKHLVRWURSLF(TXDWLRQ
EXWDOVRDPDWFKDVGHILQHGE\H[KLELWLQJWKHVDPHGRP
LQDQWGLUHFWLRQ7KDWLV
 ,IWKH1)'PDWFKHVDQGWKHGRPLQDQWGLUHFWLRQ 
PDWFKHVWKHRULJLQDOVHHGUHJLRQWKHVQDNHH[SDQGV
DWWKHFXUUHQWFRQWUROSRLQW
 ,IWKH1)'PDWFKHVEXWWKHGRPLQDQWGLUHFWLRQ
HLWKHUGRHVQRWH[LVWRULVDGLIIHUHQWGLUHFWLRQIURP
WKHRULJLQDOVHHGUHJLRQWKHSUHVVXUHLVQHJDWLYHDQG
WKHVQDNHFRQWUDFWV
 ,IWKH1)'GRHVQRWPDWFKWKHSUHVVXUHLVQHJDWLYH
DQGWKHVQDNHZLOOFRQWUDFW
% 9HFWRUHG'RPLQDQW'LUHFWLRQ
7KHVHFRQGYDULDQWRIWKH')'LVWRLGHQWLI\WKHGRPLQDQW
GLUHFWLRQDVLQWKH%RROHDQ'RPLQDQW'LUHFWLRQEXW WKHQWR
XVHWKHGRPLQDQW GLUHFWLRQ¶V')'PHDVXUHLQDWZRHOHPHQW
IHDWXUHYHFWRUZLWKWKH1)'7KLVWZRHOHPHQWYHFWRULVWKHQ
FRPSDUHG WR WKH VDPH WZRHOHPHQWV IURPWKH RULJLQDO VHHG
UHJLRQ7KH GLVWDQFHLVFDOFXODWHGDQGFRPSDUHGWRDIDF
WRUEDVHGXSRQ LQ(TXDWLRQ:HQRZKDYH
DQG

6LQFHWKH LQ(TXDWLRQLVVHOHFWHGIRUDVLQJOH)'PHD
VXUH PXVWEHVFDOHGDFFRUGLQJO\6LQFH LVIRUDVLQJOH
GLPHQVLRQ LW VFDOHG UHSUHVHQWDWLRQ IRU D  YHFWRU GLV
WDQFHLV

7KHPXOWLSOLHURQ LVVLPSO\WKHQXPEHURIHOHPHQWVLQWKH
YHFWRU,QFRPSDULVRQIRURQO\RQHHOHPHQWWKHUHVXOWLVVLP
SO\  DV LQ (TXDWLRQ  $ PDWFK LV GHFODUHG LI  LQ
(TXDWLRQGRHV QRW H[FHHG  DVFDOFXODWHG LQ (TXDWLRQ

& 3XUH9HFWRU
7KH 3XUH 9HFWRU PHDVXUH VLPSO\ WDNHV WKH  GLVWDQFH
PHWULFIURPWKH9HFWRUHG'RPLQDQW'LUHFWLRQDQGH[SDQGVLW
WRLQFOXGHDOO')'PHDVXUHV7KDWLV
DQG

PXVWDJDLQEHVFDOHGDFFRUGLQJO\
U
U
$U US
PD[
S
PLQ
±
U
$ORJ
UORJ
$U &U
V
)' V±
V
G
G
V
V
G
L
G
M
±!
G
L
G
M
G
L
/
N
6HHG G
6
G
L
6
&QWUOSW G
&
G
L
&
HG
6 G
&±
G
L
6 G
L
&±
N
N
N
u
N
N
N
H
N
/
6HHG
G
6
G
6
G
6
G
6
G
6
&QWUOSW
G
&
G
&
G
&
G
&
G
&
HG
N
6 G
N
&±
N
¦
N
527

$VEHIRUHDPDWFKLVGHFODUHGLI LQ(TXDWLRQGRHVQRW
H[FHHG DV FDOFXODWHGLQ(TXDWLRQ7KH DSSHDO RIWKLV
PHWKRGLVWKDWQRDUWLILFLDOFXWRIIIRUGLPHQVLRQDOGRPLQDQFH
LV XVHG ,I WKH WUXH RULHQWDWLRQ RI WKH WH[WXUH OLHV H[DFWO\
EHWZHHQWZRRIWKHGLUHFWLRQVDORQJZKLFKWKH')'LVFDOFX
ODWHGPDNLQJWKHVHWZR PHDVXUHV DSSUR[LPDWHO\HTXDO WKH
3XUH9HFWRUDSSURDFKVWLOO FODVVLILHVWKHWH[WXUHVEDVHG XSRQ
WKHLUDSSDUHQWRULHQWDWLRQ 2Q WKHRWKHU KDQG WKLV DSSURDFK
LQWURGXFHV HUURUV GXH WRRIID[LV FRPSRQHQWV RI WKH WH[WXUH
:HDQWLFLSDWHWKHVHHUURUVZRXOGEHPRUHVXVFHSWLEOHWRQRLVH
LQWKHFXUUHQWLPDJH
9  (
;3(5,0(17$/
5
(68/76
,QRXULQLWLDOWHVWVRIWKHSURSRVHGWHFKQLTXHVZHXVHGWKH
VDPHWH[WXUHVDQGWHVWHGHDFKRIWKHIRXUPHWKRGVRQWKHWH[
WXUH'HIRUPDEOHPRGHOV KDYH D WHQGHQF\WR URXQGRIIFRU
QHUVGXHWRWKHLQIOXHQFHRIWKH WHUPLQ(TXDWLRQVR
ZHVHOHFWWH[WXUHWDUJHWVWKDWDUHFLUFXODU$SHUIHFWO\FLUFXODU
VQDNHPHDQV WKDW  KHQFH WKH DFFXUDF\RIWKHILQDO
VHJPHQWDWLRQ UHOLHV RQO\ XSRQ WKH TXDOLW\ RI WKH WH[WXUH
PDWFKLQJWHFKQLTXH
:HFRQWLQXHWRWHVWWKHLVRWURSLF LQLVRODWLRQWRGHPRQ
VWUDWHWKDWWKHV\VWHPLVVWLOOFRUUHFWZLWKUHVSHFWWR  VLQFH
WKH FRPSXWDWLRQRI WKH ')'¶V DQG1)' PDNHV WKH SURFHVV
VLJQLILFDQWO\PRUHFRPSOH[)LJXUH
$ $FFXUDF\DQGWLPHWRFRQYHUJH
:HVWDUWZLWK DUWLILFLDO WHVW SDWWHUQV IRUPHG E\ EODFN DQG
ZKLWHEDUV)LJXUH VKRZVWKHUHVXOWVRIWKH%RROHDQ'RPL
QDQW'LUHFWLRQ%''RQDWHVWSDWWHUQZLWKRUWKRJRQDO WH[
WXUHV7KHDFFXUDF\RIWKHVHJPHQWDWLRQLVTXLWHKLJKDQGWKH
WLPHWDNHQ WRPLQLPL]HWKHHQHUJ\IXQFWLRQDORIWKHVQDNH LV
ORZ 
,WLVZRUWKQRWLQJWKDWWKHWLPHWRPLQLPL]HLVORQJHUVLQFH
ZHPHDVXUHGIURPLQLWLDOVHHGVHOHFWLRQWKHPRGHOVWDUWVDVD
FLUFOHZLWKDGLDPHWHURISL[HOVXQWLOFRQWUROSRLQWPRWLRQ
IDOOVEHORZWKHPLQLPL]DWLRQWKUHVKROGLQWKHRULJLQDO VQDNH
PRGHO:KHQWUDFNLQJDWH[WXUHUHJLRQWKHWLPHWRPLQLPL]H
ZRXOGEHVLJQLILFDQWO\OHVVVLQFHWKH FRQWURO SRLQW ORFDWLRQV
EHJLQ DW WKH ILQDO SRVLWLRQV IURP WKH SULRUSURFHVVHG YLGHR
IUDPH
)LJXUH  VKRZV WKH VDPHWH[WXUHV ZLWK WKH VQDNH EHLQJ
GULYHQE\WKH9HFWRUHG'RPLQDQW'LUHFWLRQ9''DSSURDFK
7KH DFFXUDF\ RI WKH VHJPHQWDWLRQ LV VOLJKWO\ EHORZ WKDW
DWWDLQHGE\%''EXWLWLVVWLOOTXLWHJRRG7KHWLPHWRPLQL
PL]HLVHTXLYDOHQWWR%''
)LQDOO\WKH 3XUH 9HFWRU39 DSSURDFK ZDV XVHG DJDLQVW
WKHVDPHWH[WXUHWDUJHWVHH)LJXUH7KHDFFXUDF\LVFOHDUO\
LQIHULRUWRWKHRWKHUWZRDSSURDFKHV7KH39DSSURDFKVQDNH
N
H
N
(
LQW
(
LQW
G
G
)LJXUH5HJUHVVLRQWHVWLQJXVLQJRQO\
G
VHFRQGV
ā
#
)LJXUH%''UHVXOWVRQRUWKRJRQDOWH[WXUHV
)LJXUH9''UHVXOWVRQRUWKRJRQDOWH[WXUHV
)LJXUH39UHVXOWVRQRUWKRJRQDOWH[WXUHV
528
WHQGV WR KRYHU LQVLGH WKH WUXH WH[WXUH ERXQGDU\6KDGRZLQJ
RQWKHWRSHGJHRI WKHFLUFXODUDSHUWXUHLQWURGXFHVQRLVH2I
WKHWKUHHDSSURDFKHVWRGULYLQJWKHVQDNHZLWK')'GDWDWKH
SXUH YHFWRU DSSURDFKLV WKH PRVW VXVFHSWLEOH WR VXFKQRLVH
7KHWLPH WR PLQLPL]H LV VOLJKWO\ORQJHUZKHQ XVLQJ WKH 39
DSSURDFK   EXW VWLOO ZLWKLQ UHDVRQ IRU UHDO
WLPHDSSOLFDWLRQV
6LQFHWKHWH[WXUHVDUHWKHVDPHEXWRULHQWHGRUWKRJRQDOO\
ZLWKUHVSHFWWRHDFKRWKHUWKLVWHVWSDWWHUQSURYLGHVDQH[FHO
OHQW WHVW RI WKH FRPSHWLQJ DSSURDFKHV IRU DFFXUDF\ 7KH
ERXQGDU\RIWKHFLUFXODUWH[WXUHUHJLRQ LV VKDUSO\GHILQHGLQ
WKH')'PHDVXUHVEXW LV QRQH[LVWHQW LQ WKH 1)' PHDVXUH
FOHDUO\GHPRQVWUDWHGLQ)LJXUH7KLVWHVWSDWWHUQGRHV
QRW SURYLGH D JRRG WHVW RI W KH VHQVLWLYLW\ RI WKH FRPSHWLQJ
DSSURDFKHV
% 6HQVLWLYLW\
2QFH VDWLVILHG ZLWK WKH UHVXOWV RQ WKH RUWKRJRQDOWH[WXUH
WHVWSDWWHUQZHPRYHWRDVHULHVRIWHVWVWKDWGHPRQVWUDWHWKH
VHQVLWLYLW\RIWKHYDULRXVDSSURDFKHVWRFKDQJHVLQWKHUHOD
WLYHDQJOHEHWZHHQWKHWZRWH[WXUDOUHJLRQV6LQFHWKHOLQHRI
SL[HOVXVHGWRPHDVXUHD')'FRPSRQHQWZLOOUHVSRQGPRVW
VWURQJO\WRDSDWWHUQWKDWLV RUWKRJRQDOWRWKDWOLQHZHNQRZ
WKDWWKH')'¶VZLOOEHPRVWVHQVLWLYHDWWKHIRXUGLUHFWLRQVRI
WKH')'FRPSRQHQWV   DQG UDGLDQV
7KHUHIRUHWKHQH[WVHWRIWHVW SDWWHUQV VWDUWZLWKWKH FHQWUDO
FLUFOHFORVHO\PDWFKLQJWKH FRPSRQHQW7KHFHQWUDODUHD
LV WKHQ URWDWHG WR DSSUR[LPDWHO\  DQG WK HQ WR DSSUR[L
PDWHO\ :HH[SHFWWKHDSSURDFKHVWRIDLORQWKH
UDGLDQVRI URWDWLRQ VLQFH RXU VXUURXQGLQJWH[WXUHLV RULHQWHG
DW UDGLDQV7KLVPHDQVWKDWERWKWH[WXUHVZLOOKDYHVLPLODU
UHVSRQVHVLQWKH')'FRPSRQHQWV
)LJXUHJLYHVWKHUHVXOWVIRUWKH SDWWHUQ7KHVHQVL
WLYLW\ RI WKH WKUHH DSSURDFKHV DOORZV XV  WR HDVLO\ FRQFOXGH
WKDWWKH39DSSURDFKLV SUHIHUDEOHWRHLWKHUWKH%'' RU WKH
9''DSSURDFKHV
7KHQH[WWHVWSDWWHUQKDVWKHFHQWHUFLUFOHURWDWHGWRDQRUL
HQWDWLRQWKDWFRUUHVSRQGVWRDOLQHRI SL[HOVDW UDGLDQV
$JDLQ ZH ORRN DW WKH VHQVLWLYLW\ H[KLELWHG E\ HDFK RI WKH
FRPSHWLQJDSSURDFKHV LQ )LJXUH  7KLV WH[WXUHVKRXOGSUR
YLGHDGRPLQDQWUHVSRQVHDWWKH ')'EXWWKH ')'
VKRXOGEHLQFUHDVLQJLWVUHVSRQVH,QGHHGZKDWZHREVHUYHLV
WKDWWKHVHQVLWLYLW\H[KLELWHGE\WKHDSSURDFKHVPDNHVWKH39
DSSURDFK WKH OHDGHU)RU WKH %'' DQG WKH 9'' WKH 9''
DSSURDFKLVVOLJKWO\EHWWHUDWFDSWXULQJWKHWDUJHWWH[WXUH
2XUODVWWHVWSDWWHUQKDVWKHFHQWHUFLUFOHURWDWHGWRDQRUL
HQWDWLRQWKDWFRUUHVSRQGVWRDOLQHRISL[HOVDW UDGLDQV
)LJXUHVKRZVWKDW DOOWKUHHDSSURDFKHVVXIIHUIURPVLJQLIL
FDQWIDLOXUHV%\ IDUWKH%''PHWKRGLVZRUVWSURGXFLQJD
VHJPHQWDWLRQ RI WKH HQWLUH WH[WXUDO ILHOG %RWK WKH YHFWRU
PHWKRGV9''DQG39IDLOWRVWD\ZLWKLQWKHERXQGVRIWKH
WDUJHWWH[WXUHDUHDDQGSURYLGHXQXVDEOHUHVXOWV
& 1RQ7HVW3DWWHUQV
7KH RYHUDOO SHUIRUPDQFH RI WKH WKUHH DSSURDFKHV KDV
VKRZQWKDWWKHYHFWRUEDVHGDSSURDFKHVDSSHDUWRRXWSHUIRUP
WKHVLPSOHVWDSSURDFKWKH%RROHDQ'RPLQDQW'LUHFWLRQ
VHFRQGV
ā
#
G
Se
Se
Se
Se
Se
Se
Se
)LJXUH5HVXOWVRQD UDGLDQWDUJHW
Se
%'' 9''
39
Se
Se
)LJXUH5HVXOWVRQD UDGLDQWDUJHW
Se
%'' 9''
39
Se
Se
)LJXUH5HVXOWVRQD UDGLDQWDUJHW
Se
%'' 9''
39
529
:H QRZ WXUQ WR LPDJHU\ WKDWKDV QRW EHHQ GHVLJQHG IRU
WHVWLQJ RXU DSSURDFKHV 8VLQJ D VWDQGDUG ]HEUD LPDJH WKH
UHVXOWVIRUWKHYDULRXVDSSURDFKHV)LJXUHDQG)LJXUHWKH
UHVXOWVVXSSRUWWKH%''DQG39DSSURDFKHVZKLOHWKH9''
DSSURDFK JLYHV WKH ORZHVW SHUIRUPDQFH RQ YHUWLFDO VWULSHV
DQG IDLOHG WR SURGXFH D VHJPHQWDWLRQ RQ WKH KRUL]RQWDO
VWULSHV
9,&
21&/86,216
,Q WKLV SDSHU ZH KDYH SUHVHQWHG WKUHH DOWHUQDWLYH
DSSURDFKHVIRUGLUHFWHGIUDFWDOGLPHQVLRQPHDVXUHV7KHIRU
PXODWLRQV DUH HIILFLHQW DQG DFFXUDWH XQGHU PRVW FRQGLWLRQV
EXWWKH\IDLO WR DFKLHYH UHDVRQDEOHVHJPHQWDWLRQ XQGHU RQO\
VOLJKWRULHQWDWLRQYDULDWLRQRIWKHWH[WXUHWDUJHW
7KHWKUHHDSSURDFKHV%RROHDQ'RPLQDQW'LUHFWLRQ9HF
WRUHG 'RPLQDQW 'LUHFWLRQ DQG 3XUH 9HFWRU KDYH YDU\LQJ
VXFFHVVDFURVVWHVWSDWWHUQVDQGRXULFRQLF]HEUDLPDJH2YHU
DOO WKH 3XUH 9HFWRU DSSURDFK JLYHV DGHTXDWH SHUIRUPDQFH
DFURVV WKH ZLGHVW UDQJH RI WH[WXUH RULHQWDWLRQV SHUIRUPLQJ
ZHOOZLWKUHVSHFWWRWLPHWRPLQLPL]HDFFXUDF\DQGVHQVLWLY
LW\WRVPDOORULHQWDWLRQYDULDWLRQV
7KH UHVXOWV LQGLFDWH WKDW WKLV SDUWLFXODU IRUPXODWLRQ RI
GLUHFWHGIUDFWDOGLPHQVLRQKDVSURPLVHEXWVRIDUIDOOVVKRUW
RIWKHSHUIRUPDQFHUHTXLUHGIRULWVXVHLQURERWLFVDQGLQWHOOL
JHQWV\VWHPVDSSOLFDWLRQV
2XU IXWXUH ZRUN ZLOO FRQFHQWUDWH RQ WKH 3XUH 9HFWRU
DSSURDFKVLQFHRXUUHVXOWVGHPRQVWUDWHGLWVSRWHQWLDOSHUIRU
PDQFH DFURVV D ZLGHU UDQJH RI YDULDWLRQV WKDQ WKH RWKHU
DSSURDFKHVZHLQYHVWLJDWHG
5
()(5(1&(6
>@ ; +XDQJ = 4LDQ 5 +XDQJ DQG ' 0HWD[DV ³'H IRUPDEOHPRGHO
EDVHGWH[WXUHGREMHFWVHJPHQWDWLRQ´3URFHHGLQJVRI(QHUJ\0LQLPL]D
WLRQ0HWKRGVLQ&RPSXWHU9LVLRQDQG3DWWHUQ5HFRJQLWLRQ
>@ 23XMRO DQG 35DGHYD ³7H[WXUHVHJPHQWDWLRQ E\ VWDWLVWLFDOGHIRUP
DEOH PRGHOV´ ,QWHUQDWLRQDO -RXUQDO RI ,PDJH DQG *UDSKLFV 
SS
>@ * 6DSLUR³9HFWRUVHOIVQDNHVDJHRPHWULF IUDPHZRUNIRUFRORUWH[
WXUHDQGPXOWLVFDOHLPDJHVHJPHQWDWLRQ´3URFHHGLQJVRIWKH,QWHUQD
WLRQDO&RQIHUHQFHRQ,PDJH3URFHVVLQJ
>@ &6PLWK³)DVW WUDFNLQJRIQDWXUDOWH[WXUHVXVLQJIUDFWDOVQDNHV´3UR
FHHGLQJVRIWKH ,((( ,QWHUQDWLRQDO&RQIHUHQFHRQ 6\VWHPV 0DQ DQG
&\EHUQHWLFV
>@ $3 3HQWODQG ³)UDFWDOEDVHG GHVFULSWLRQ RI QDWXUDO VFHQHV´ ,(((
7UDQVDFWLRQV RQ 3DWWHUQ $QDO\VLV DQG 0DFKLQH ,QWHOOLJHQFH 
SS
>@ % &KDXGKXUL DQG 1 6DUNDU ³7H[WXUH VHJPHQWDWLRQ XVLQJ IUDFWDO
GLPHQVLRQ´ ,((( 7UDQVDFWLRQV RQ 3DWWHUQ $QDO\VLV DQG 0DFKLQH
,QWHOOLJHQFHSS
>@ '+HHJHU DQG -%HUJHQ³3\UDPLGEDVHG WH[WXUHDQDO\VLVV\QWKHVLV´
3URFHHGLQJV RI WKH QG $QQXDO &RQIHUHQFH RQ &RPS XWHU *UDSKLFV
DQG,QWHUDFWLYH7HFKQLTXHV
>@ 5 +DUDOLFN ³6WDWLVWLFDO DQG VWUXFWXUDO DSSURDFKHV WR WH[WXUH´ 3UR
FHHGLQJVRIWKH,(((SS
>@ $%RYLN0&ODUNDQG:*HLVOHU³0XOWLFKDQQHOWH[WXUHDQDO\VLV
XVLQJORFDOL]HG VSDWLDOILOWHUV´,(((7UDQVDFWLRQVRQ3DWWHUQ$QDO\VLV
DQG0DFKLQH,QWHOOLJHQFHSS
>@ /.DSODQ DQG&.XR ³)DVWIUDFWDOIHDWXUHH[WUDFWLRQ IRUWH[WXUHVHJ
PHQWDWLRQ XVLQJZDYHOHWV´ 3URFHHGLQJV RI 63,(V  ,QWHUQDWLRQDO
6\PSRVLXPRQ2SWLFV,PDJLQJDQG,QVWUXPHQWDWLRQ
>@ $9DUG$0RQDGMHPL.-DPVKLGLDQG10RYDKKHGLQLD³)DVWWH[
WXUH HQHUJ\ EDVHG LPDJH VHJPHQWDWLRQ XVLQJ GLUHFWLRQD O :DOVK± +DG
DPDUG WUDQVIRUP DQG SDUDPHWULF DFWLYH FRQWRXU PRGHOV´ ([SHUW
6\VWHPVZLWK$SSOLFDWLRQVSS
>@ ) 0HQGR]D 1 9DORXV 3 $OOHQ 7 .HQQ\ 3 :DUG DQG ' 6XQ
³$QDO\VLV DQG FODVVLILFDWLRQ RI FRPPHUFLDO KDP VOLFH LPDJHVXVLQJ
GLUHFWLRQDO IUDFWDO GLPHQVLRQ IHDWXUHV´0HDW 6FLHQFH SS 

>@ $ $YROLR ' -RQHV DQG 0 7DID]]ROL6KDGSRXU ³4XDQWLILFDWLRQ RI
DOWHUDWLRQV LQ VWUXFWXUH D QG IXQFWLRQ RI HODVWLQ LQ WKH DUWHULDO  PHGLD´
+\SHUWHQVLRQSS
>@ 0.DVV$:LWNLQDQG'7HU]RSRXORV³6QDNHVDFWLYHFRQWRXUPRG
HOV´ ,QWHUQDWLRQDO -RXUQDO RI &RPSXWHU 9LVLRQ  SS 

>@ '3HUULQDQG&6PLWK³5HWKLQNLQJFODVVLFDOLQWHUQDOIRUFHVIRUDFWLYH
FRQWRXU PRGHOV´ 3URFHHGLQJV R I WKH ,((( ,QWHUQDWLRQDO &RQIHUHQFH
RQ&RPSXWHU9LVLRQDQG3DWWHUQ5HFRJQLWLRQ
>@ :$EG$OPDJHHGDQG& 6PLWK³0L[WXUH PRGHOVIRUG\QDPLFVWDWLV
WLFDOSUHVVXUHVQDNHV´3URFHHGLQJVRIWKH,QWHUQDWLRQDO&RQIHUHQFHRQ
3DWWHUQ5HFRJQLWLRQ
>@ :$EG$OPDJHHG & 6PLWK DQG 6 5DPDGDQ³.HUQHO VQDNHV QRQ
SDUDPHWULFDFWLYHGHIRUPDEOHPRGHOV´3URFHHGLQJVRIWKH,(((,QWHU
QDWLRQDO&RQIHUHQFHRQ6\VWHPV0DQDQG&\EHUQHWLFV
>@ + 6FKDXE DQG & 6PLWK  ³&RORU VQDNHV IRU G\QDPLF OLJK WLQJ FRQGL
WLRQVRQPRELOHPDQLSXODWLRQSODWIRUPV´3URFHHGLQJVRIWKH,(((56-
,QWHUQDWLRQDO&RQIHUHQFHRQ,QWHOOLJHQW5RERWVDQG6\VWHPV
>@ 5.UDIWDQG-.DXHU³(VWLPDWLQJWKHIUDFWDOGLPHQVLRQIURPGLJLWL]HG
LPDJHV´ 7HFKQLFDO 5HSRUW 0XQLFK 8QLYHUVLW\ RI 7HFKQRORJ\ 
:HLKHQVWHSKDQ
>@ 5 'XEXF - 4XLQLRX & 5RTX HV&DUPHV & 7ULFRW DQG 6 =XFNHU
³(YDOXDWLQJ WKH IUDFWDO GLPHQVLRQ RI SURILOHV´ 3K\VLFDO 5HYLHZ $
SS
>@ $ 5LQJOHU ³7H[WXUH VHJPHQWDWLRQ E\ ORFDO IUDFWDO GLPHQVLRQ DV
DSSOLHGWRRFHDQLFVHDUFKDQGUHVFXH´3URFHHGLQJVRIWKH,QWHUQDWLRQDO
&RQIHUHQFH RQ ,QIRUPDWLRQ &RPPXQLFDW LRQV DQG 6LJQDO 3URFHVVLQJ

)LJXUH5HVXOWVRQWKH]HEUDLPDJHYHUWLFDOVWULSHV
%'' 9''
39
)LJXUH5HVXOWVRQWKH]HEUDLPDJHKRUL]RQWDOVWULSHV
%'' 9''
39
;
530
ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
This paper introduces a new approach to statistical pressure snakes. It uses statistical modeling for both object and background to obtain a more robust pressure model. The Expectation Maximization (EM) algorithm is used to model the data into a Mixture of Gaussians (MoG). Bayesian theory is then employed as a decision making mechanism. Experimental results using the traditional pressure model and the new mixture pressure model demonstrate the effectiveness of the new models.
Conference Paper
Full-text available
The natural environments that robotic applications often encounter can present difficult problems for image-based task execution. Prior efforts have used both grayscale and color as statistical appearance descriptors in these applications. In the case of natural environments, the statistical measures of luminosity and chromaticity are often ineffective due to relatively constant shades and colors of soil, flora, and fauna. Texture can provide an alternative/additional appearance descriptor in many of these environments; however the common approaches to textural segmentation are computationally intensive and cannot be used for real-time robotic visual servoing. We present a technique for textural segmentation and tracking that can discriminate between natural textures that are otherwise similar in color and brightness. The technique builds upon earlier work in fractal imaging and in statistical deformable models (a.k.a. snakes) to provide a simple and efficient method for extracting target shape and location from an initial textural example. We then give results from the application of this technique on standard texture test patterns. We then demonstrate the effectiveness of the method on natural imagery. Finally, we show how the technique can be applied to challenging robotic applications.
Conference Paper
Full-text available
In this paper, we present a deformable-model based solution for seg- menting objects with complex texture patterns of all scales. The external im- age forces in traditional deformable models come primarily from edges or gra- dient information and it becomes problematic when the object surfaces have complex large-scale texture patterns that generate many local edges within a same region. We introduce a new textured object segmentation algorithm that has both the robustness of model-based approaches and the ability to deal with non-uniform textures of both small and large scales. The main contributions in- clude an information-theoretical approach for computing the natural scale of a "texon" based on model-interior texture, a nonparametric texture statistics com- parison technique and the determination of object belongingness through belief propagation. Another important property of the proposed algorithm is in that the texture statistics of an object of interest are learned online from evolving model interiors, requiring no other a priori information. We demonstrate the potential of this model-based framework for texture learning and segmentation using both natural and medical images with various textures of all scales and patterns.
Article
In this survey we review the image processing literature on the various approaches and models investigators have used for texture. These include statistical approaches of autocorrelation functions, optical transforms, digital transforms, textural edgeness, structural element, gray tone co-occurrence, run lengths, and autoregressive models. We discuss and generalize some structural approaches to texture based on more complex primitives than gray tone. We conclude with some structural-statistical generalizations which apply the statistical techniques to the structural primitives. -Author
Conference Paper
This paper describes a method for synthesizing images that match the texture appearance of a given digitized sample. This synthesis is completely automatic and requires only the “target” texture as input. It allows generation of as much texture as desired so that any object can be covered. The approach is based on a model of human texture perception, and has potential to be a practically useful tool for image processing and graphics applications
Article
In this work, we use the 1D Haar transform fractal estimation algorithm to calculate the local fractal dimension estimates of 2D texture data. The new algorithm provides directed fractal dimension estimates which are used as features for texture segmentation. The method is fast due to the pyramid structure of the Haar transform and nearly optimal in the maximum likelihood sense for fBm data. We compare the low complexity of this new algorithm with the complexity of existing fractal feature extraction techniques, and test our new method on fBm data and real Brodatz textures.
Article
Estimators for the fractal dimension of structures in digitized images are parameters to quantify textural information. The image processor IDOLON 1 ooers three methods to perform fractal image analysis: The box counting procedure for binary images, the 2D variation procedure for binary and greyscale images and the triangular prism surface area procedure for greyscale images. Analysis can be performed for the entire image as well as for parts of the image. The fractal parameters can be taken to supply classiication problems with textural information. Thus the structures under consideration don't have to be fractal at all. For a comparison of the parameters a proper speciication of the method, the image and the range of the scaling factor is required.
Conference Paper
A partial differential equations (PDEs) based geometric framework for segmentation of vector-valued images is described. The first component of this approach is based on two dimensional geometric active contours deforming from their initial position towards objects in the image. The boundaries of these objects are then obtained as geodesics or minimal weighted distance curves in a Riemannian space. The metric in this space is given by a definition of edges in vector-valued images, incorporating information from all the image components. The curve flow corresponding to these active contours holds formal existence, uniqueness, stability, and correctness results. Then, embedding the deforming curve as the level-set of the image, that is, deforming each one of the image components level-sets according to these active contours, a system of coupled PDEs is obtained. This system deforms the image towards uniform regions, obtaining a simplified (or segmented) image. The flow is related to a number of PDEs based image processing algorithms as anisotropic diffusion and shock filters. The technique is applicable to color and texture images, as well as to vector data obtained from general image decompositions
Article
This paper addresses the problems of 1) representing natural shapes such as mountains, trees, and clouds, and 2) computing their description from image data. To solve these problems, we must be able to relate natural surfaces to their images; this requires a good model of natural surface shapes. Fractal functions are a good choice for modeling 3-D natural surfaces because 1) many physical processes produce a fractal surface shape, 2) fractals are widely used as a graphics tool for generating natural-looking shapes, and 3) a survey of natural imagery has shown that the 3-D fractal surface model, transformed by the image formation process, furnishes an accurate description of both textured and shaded image regions. The 3-D fractal model provides a characterization of 3-D surfaces and their images for which the appropriateness of the model is verifiable. Furthermore, this characterization is stable over transformations of scale and linear transforms of intensity. The 3-D fractal model has been successfully applied to the problems of 1) texture segmentation and classification, 2) estimation of 3-D shape information, and 3) distinguishing between perceptually ``smooth'' and perceptually ``textured'' surfaces in the scene.