ArticlePDF Available

Cordyceps militaris (L.) Link Fruiting Body Reduces the Growth of a Non-Small Cell Lung Cancer Cell Line by Increasing Cellular Levels of p53 and p21

Authors:

Abstract and Figures

Cordyceps militaris (L.) Link, an edible entomopathogenic fungus widely used in traditional Chinese medicine, has numerous potential medicinal properties including antitumor activity. The methanolic extract of C. militaris fruiting body was recently shown to have tumor cell growth inhibitory activity in several human tumor cell lines. Nonetheless, the mechanism of action involved is still not known. This work aimed at further studying the effect of the methanolic extract of C. militaris regarding its antitumor mechanism of action, using the non-small cell lung cancer cell line (NCI-H460) as a model. Results showed that treatment with the extract decreased cellular proliferation, induced cell cycle arrest at G0/G1 and increased apoptosis. In addition, the extract increased the levels of p53 and p21. Moreover, an increase in p-H2A.X and 53BP1 levels, together with an increase in the number of 53BP1 foci/cell (all indicative of DNA damage), were also observed after treatment with the extract. This work suggests that this extract affected NCI-H460 cellular viability through a mechanism involving DNA damage and p53 activation. This further supports the potential of this extract as a source of bioactive compounds, which may be used in anticancer strategies.
Effect of treatment with C. militaris methanolic fruiting body extract in NCI-H460 cellular DNA damage. Cells were treated for 48 h with complete medium (Blank), 25 μg/mL or 50 μg/mL extract or with the highest vehicle (H2O) concentration. (a) Analysis of the expression of P-H2AX by Western blot. Actin was used as loading control. Left Panel: Representative images. Right Panel: Densitometry analysis of the Western blots. Results are expressed after normalization of the P-H2AX values with the values for actin and further expressed in relation to treatment with 50 μg/mL extract. Results are the mean ± SEM of, at least, three independent experiments (except for solvent control (H2O) which results from two experiments only); (b) Analysis of the expression of 53BP1 by Western blot. Actin was used as loading control. Left Panel: Representative images. Right Panel: Densitometry analysis of the Western blots. Results are expressed after normalization of the 53BP1values with the values for actin and further expressed in relation to blank. Results are the mean of two experiments only; (c) Analysis of the number of 53BP1 foci per cell. Left Panel: Representative fluorescence microscopy images of 53BP1 foci (green) and DAPI stained nuclei (blue). Bar corresponds to 20 μm. Right Panel: Quantification of 53BP1 foci. Results are the mean ± SEM of three independent experiments (except for the control (H2O), which results from two experiments only). * p ≤ 0.05 and ** p ≤ 0.01 blank vs. treatment.
… 
Content may be subject to copyright.
Molecules 2015, 20, 13927-13940; doi:10.3390/molecules200813927
molecules
ISSN 1420-3049
www.mdpi.com/journal/molecules
Article
Cordyceps militaris (L.) Link Fruiting Body Reduces the Growth
of a Non-Small Cell Lung Cancer Cell Line by Increasing
Cellular Levels of p53 and p21
Ana Bizarro 1,2, Isabel C. F. R. Ferreira 3,*, Marina Soković 4, Leo J. L. D. van Griensven 5,
Diana Sousa 1,6,7, M. Helena Vasconcelos 1,6,7 and Raquel T. Lima 6,7,8,*
1 Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy,
University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal;
E-Mails: sofiabizarro@gmail.com (A.B.); dsousa@ipatimup.pt (D.S.);
hvasconcelos@ipatimup.pt (M.H.V.)
2 Department of Biology, School of Sciences, University of Minho, Campus de Gualtar,
Braga 4710-057, Portugal
3 Mountain Research Center (CIMO), ESA, Polytechnic Institute of Bragança, Apartado 1172,
Bragança 5301-855, Portugal
4 Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”,
University of Belgrade, 11000 Belgrade, Serbia; E-Mail: mris@ibiss.bg.ac.rs
5 Plant Research International, Wageningen University and Research Centre, 6700AA Wageningen,
The Netherlands; E-Mail: leo.vangriensven@wur.nl
6 i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
7 Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the
University of Porto, IPATIMUP, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal
8 Department of Pathology and Oncology, Faculty of Medicine, the University of Porto,
Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
* Authors to whom correspondence should be addressed; E-Mails: iferreira@ipb.pt (I.C.F.R.F.);
rlima@ipatimup.pt (R.T.L.); Tel.: +351-273-303-219 (I.C.F.R.F.); +351-225-570-700 (R.T.L.);
Fax: +351-273-325-405 (I.C.F.R.F.); +351-225-570-799 (R.T.L.).
Academic Editor: Derek J. McPhee
Received: 17 June 2015 / Accepted: 27 July 2015 / Published: 31 July 2015
Abstract: Cordyceps militaris (L.) Link, an edible entomopathogenic fungus widely used
in traditional Chinese medicine, has numerous potential medicinal properties including
antitumor activity. The methanolic extract of C. militaris fruiting body was recently shown to
OPEN ACCESS
Molecules 2015, 20 13928
have tumor cell growth inhibitory activity in several human tumor cell lines. Nonetheless, the
mechanism of action involved is still not known. This work aimed at further studying the
effect of the methanolic extract of C. militaris regarding its antitumor mechanism of action,
using the non-small cell lung cancer cell line (NCI-H460) as a model. Results showed that
treatment with the extract decreased cellular proliferation, induced cell cycle arrest at G0/G1
and increased apoptosis. In addition, the extract increased the levels of p53 and p21. Moreover,
an increase in p-H2A.X and 53BP1 levels, together with an increase in the number of
53BP1 foci/cell (all indicative of DNA damage), were also observed after treatment with the
extract. This work suggests that this extract affected NCI-H460 cellular viability through a
mechanism involving DNA damage and p53 activation. This further supports the potential of
this extract as a source of bioactive compounds, which may be used in anticancer strategies.
Keywords: Cordyceps militaris methanolic extract; p53; p21; cell cycle arrest; DNA damage
1. Introduction
Cordyceps militaris (L.) Link, an edible Ascomycete, is an entomopathogenic fungus widely used
in traditional Chinese medicine [1]. Indeed, it has been described as having numerous potent medicinal
properties such as antitumor, anti-oxidant and anti-inflammatory [1,2].
Several studies, both in vitro as well as in human tumor xenografts in mice, refer to the antitumor
activity of C. militaris [3,4]. The majority of these studies have been mainly carried out with water
extracts [5–9] or with isolated compounds (namely cordycepin) [10,11].
On the other hand, information on the antitumor potential of methanolic extracts of C. militaris is
still scarce, even though such activity has previously been described for the methanolic extracts of
C. sinensis (a mushroom from the Cordyceps genus that is relatively similar to C. militaris, both at the
biological as well at the chemical levels), in different tumor cell lines [1,12–14]. A previous study
from some of us has shown that a methanolic extract of C. militaris fruiting body presented activity as
inhibitor of cell growth towards a panel of human tumor cell lines (while not affecting the proliferation
of non-tumor porcine liver primary cells). This effect was further confirmed in other human tumor
cell lines, in a recently published work in which the composition and antitumor activity of methanolic
extracts from the mycelia and fruiting body of C. militaris were compared [15]. However, to date,
there is no information regarding the mechanism of action of this extract.
Therefore, the present study aimed at understanding the mechanism of action of a methanolic
extract of C. militaris, particularly its effect in cellular proliferation, cell cycle, apoptosis and DNA
damage, using the NCI-H460 non-small cell lung cancer cell line as a model.
2. Results and Discussion
2.1. Effect of C. militaris Methanolic Extract in NCI-H460 Cell Viability
We have previously shown that a methanolic extract from C. militaris fruiting body could inhibit cell
growth in human tumor cell lines and was not toxic to non-tumor liver porcine primary cells (PLP2) [16].
Molecules 2015, 20 13929
Decreased cell growth following treatment with this extract was recently further observed in various
other human tumor cell lines [15]. Nevertheless, the mechanism of action of this extract has never been
investigated. The present study aimed at gaining insight into the mechanism of action of the extract in
a non-small cell lung cancer cell line (NCI-H460). The reason for selecting this cell line is that non-small
cell lung cancer (NSCLC) is still a cause for many of the deaths related to cancer and, in addition, this cell
line has wild-type p53 which would allow detecting p53 dependent mechanisms of action.
The GI50 concentration of the methanolic extract of C. militaris had been previously found to be
47.8 μg/mL for the NCI-H460 cells, using the sulforhodamine B (SRB) assay [16]. To further confirm
this, the effect of the extract in NCI-H460 cells was analyzed in terms of cell viability, using the trypan
blue exclusion assay. To observe a possible dose/response effect, two concentrations were selected,
50 μg/mL (corresponding to the GI50 concentration) and 25 μg/mL (corresponding to half the GI50
concentration). Results showed that the extract significantly decreased the NCI-H460 cell viability in
a dose-dependent manner. Indeed, treatment with 25 μg/mL of extract reduced cell viability to
42.3% ± 1.2% (in relation to blank cells) and treatment with 50 μg/mL further decreased cell viability
to 28.0% ± 3.1% (Figure 1).
Figure 1. Effect of C. militaris methanolic fruiting body extract on NCI-H460 cell viability.
Viable cell number was analyzed 48 h after incubation with complete medium (Blank),
25 μg/mL or 50 μg/mL extract or with the highest vehicle concentration (H2O). Results are
presented as a percentage of viable cells in relation to blank cells and are the mean ± SEM
of six independent experiments. ** p 0.001 blank vs. treatment.
As expected, the vehicle (H2O) presented no effect on cell viability. From these results, we concluded
that treatment with 50 μg/mL (GI50) caused a greater reduction of cell viability than expected (since
the GI50 concentration reduces cell growth by 50%). The observed discrepancy between the GI50
concentration determined with the SRB assay and the determination of viable cell number with that
same concentration is not abnormal in these types of studies and may be justified by the differences in
the methodologies used in both studies. Indeed, the SRB assay (which was carried out in the study by
Reis et al. to determine the GI50 concentration [16]) was carried out in 5% FBS culture medium, whereas
all the assays carried out in the present study were performed in 10% FBS supplemented medium.
To assess the mechanisms involved in the decrease in cell viability induced by treatment with the
extract, cell cycle profile and apoptosis were then analyzed.
Molecules 2015, 20 13930
2.2. Effect of the Extract on NCI-H460 Cellular Proliferation and Cycle Profile
To understand if the extract was affecting proliferation of NCI-H460 cells, BrdU incorporation was
analyzed after 48 h treatment of cells with the extract. Results revealed a significant and dose-dependent
decrease in the levels of proliferation following treatment with the extract (Figure 2a). This was
observed by a reduction in the percentage of BrdU-incorporating cells from 32.0% (Blank) to 18.7%
following treatment with 25 μg/mL, which was further reduced to 4.1% following treatment with the
50 μg/mL concentration.
Figure 2. Effect of C. militaris methanolic fruiting body extract on NCI-H460 cellular
proliferation (a); and cell cycle distribution (b). Cells were treated for 48 h with complete
medium (Blank), 25 μg/mL or 50 μg/mL extract or with the highest vehicle (H2O)
concentration. (a) Left panel: Representative fluorescence microscopy images of BrdU
incorporation (green); and DAPI stained nuclei (blue). Bar corresponds to 20 μm. Right
panel: % of BrdU-incorporating cells; (b) Left panel: Representative cell cycle histograms.
Right panel: Distribution of cells in cell cycle phase. Results are the mean ± SEM of, at
least, three independent experiments. * p 0.05 and ** p 0.001 blank vs. treatment.
These results indicated that the extract might be affecting the normal cell cycle progression. Therefore,
the cell cycle profile of NCI-H460 cells treated with the extract was analyzed by flow cytometry. This
allows to easily estimate the percentage of cells in the different phases of the cell cycle [17]. Results
showed clear alterations in the cell cycle profile of NCI-H460 cells following treatment with the extract,
which were however only considered to be statistically significant with the highest concentration
(50 μg/mL; Figure 2b). Indeed, treatment with this concentration of extract (50 μg/mL) caused an increase
in the percentage of cells at the G0/G1 phase from 52.6% (Blank) to 71.7%. This was accompanied by
Molecules 2015, 20 13931
a decrease in percentage of cells in both the S and the G2/M phases. Indeed, a decrease in the S phase
from 29.1% (Blank) to 17.1% (following treatment) was observed, as well as a decrease in the G2/M
phase from 18.1% (Blank) to 7.0% (following treatment).
Interestingly, a previous study using C. militaris and its mycelial fermentation has shown a similar
effect in human glioblastoma cells, with both fractions arresting glioblastoma GBM8401 cells in the
G0/G1 phase [18]. Nevertheless, in that same study, an arrest at the G2/M phase was also observed
with the same extracts but in a different cell line (U-87MG cells). This suggests that the effect of the
extract might depend on the genetic background of the tumor cells being treated [18]. Of interest in this
context is another study in which cordycepin (an isolated compound from Cordyceps species, which
seems to be present in the methanolic extract of C. militaris [15]) inhibited cell cycle progression of
colorectal cancer cells at the G0/G1 phase [19]. We do not know which compounds are responsible for
the cell cycle arrest in G0/G1 verified in the present study, but it is possible that cordycepin might be
involved in such activity. Further studies aiming at confirming the presence of cordycepin in the studied
extract and evaluating the effect of cordycepin in NCI-H460 cells, would allow further exploration of
this possibility.
2.3. Effect of the Extract on NCI-H460 Cellular Apoptosis
The decrease in cellular viability that had been observed following treatment of NCI-H460 cells
with the extract could also be due to increased cell death. Thus, the effect of the methanolic extract
(25 and 50 µg/mL) on apoptosis was also investigated. Preliminary results showed a decrease in total
PARP levels analyzed by Western blot (data not shown), which might indicate that PARP was being
cleaved (considered a useful hallmark of apoptosis). To confirm the involvement of apoptosis in the
mechanism of action of the extract, a specific apoptosis assay was used consisting in flow cytometric
analysis of cells after labeling them with Annexin V-FITC/PI. Results showed that the extract induced
apoptosis in cells treated with either of the concentrations being tested (Table 1). This was observed by a
statistically significant increase in the levels of early apoptosis from 5.9% (in Blank cells) to 13.7% and
21.4% (in NCI-H460 cells treated with 25 µg/mL or 50 µg/mL of the extract, respectively).
Table 1. Apoptosis levels in NCI-H460 cells treated with C. militaris fruiting body
methanolic extract.
% Apoptosis
Early Late
Blank 5.9% ± 1.2% 1.5% ± 0.8%
H2O 6.3% ± 2.0% 2.2% ± 0.5%
C. militaris 25 µg/mL 13.7% ± 1.4% * 3.4% ± 0.3%
50 µg/mL 21.4% ± 4.2% * 5.0% ± 5.3%
Results are the mean ± SEM of three independent experiments. * p 0.05 blank vs. treatment.
Several studies have previously referred the apoptotic activity of other types of C. militaris extracts
(namely aqueous extracts) in human tumor cell lines, including human leukemia cells [6,9], human
breast cancer cells [8] and human lung carcinoma cells [20]. Interestingly, some of the C. militaris
isolated compounds, namely cordycepin (described as being present in another methanolic extract of
Molecules 2015, 20 13932
C. militaris fruiting body [15]), have shown activity as apoptosis inducers in several human tumor
cells [10,11,21].
2.4. Effect of the Extract in p53 and p21 Protein Levels in NCI-H460 Cells
Given that the previous results showed that the methanolic extract caused cell cycle arrest (at G0/G1
phase) and induced apoptosis in NCI-H460 cells, it was then decided to analyze the expression levels
of p53 and p21 proteins in NCI-H460 cells following treatment with the extract. Results from the
Western blot analysis clearly showed an increase in the expression of p53 protein following treatment
with the extract. In addition, the levels of p21 (Figure 3) (a p53 transcriptional target [22] described as
being a G1-checkpoint cyclin-dependent kinase inhibitor [23]), were also found to increase, supporting
the idea that this extract exerts its function via p53.
Figure 3. Expression of p53 and p21 in NCI-H460 cells following treatment with
C. militaris methanolic fruiting body extract. Cells were treated for 48 h with complete
medium (Blank), 25 μg/mL or 50 μg/mL of the extract or with the highest vehicle (H2O)
concentration. Actin was used as a loading control. (a) Representative Western blot images
of, at least, three independent experiments; (b) Densitometry analysis of the Western blots.
Results are the mean ± SEM and are expressed after normalization of the values obtained for
each protein with the values obtained for actin and further expressed in relation to treatment
with 50 μg/mL extract. ** p < 0.01 blank vs. treatment.
There has been increasing interest in finding strategies to increase p53’s activity in cancer therapy;
p53 is considered the guardian of the genome and its activation is known to result in cell cycle delay
(to allow DNA repair) and also to trigger cell death by apoptosis [24]. About 50% of all human cancers
harbor mutations or loss of p53 expression [25,26], and even wild-type (wt) p53 cancers may also have
downstream members of p53 regulatory signaling affected, which may lead to disruption in p53
functions [27]. Therefore, strategies which result in p53 activation and of its targets could result in
p53-dependent increase in cell death and cell cycle arrest, ultimately affecting tumor development in
wt p53 tumors.
2.5. Effect of the Extract in DNA Damage of NCI-H460 Cells
Activation of p53 may result from DNA damage [22,28]. Therefore, to assess if the extract was
causing DNA damage in NCI-H460 cells, the phosphorylation of H2A.X (a highly specific and sensitive
molecular marker for DNA damage [29]) was analyzed in this study. Results showed an increase in the
Molecules 2015, 20 13933
levels of p-H2A.X following treatment with the extract (Figure 4a). Moreover, the levels of 53BP1 protein,
an important mediator of the DNA damage response [30,31], were also found to increase after treatment
with the extract (Figure 4b), together with an increase in its distribution at nuclear foci (Figure 4c), typical
of cellular response to DNA damage [32]. Overall, these results suggest that the methanolic extract of
C. militaris induces DNA damage.
Figure 4. Effect of treatment with C. militaris methanolic fruiting body extract in NCI-H460
cellular DNA damage. Cells were treated for 48 h with complete medium (Blank), 25 μg/mL
or 50 μg/mL extract or with the highest vehicle (H2O) concentration. (a) Analysis of the
expression of P-H2AX by Western blot. Actin was used as loading control. Left Panel:
Representative images. Right Panel: Densitometry analysis of the Western blots. Results are
expressed after normalization of the P-H2AX values with the values for actin and further
expressed in relation to treatment with 50 μg/mL extract. Results are the mean ± SEM of,
at least, three independent experiments (except for solvent control (H2O) which results from
two experiments only); (b) Analysis of the expression of 53BP1 by Western blot. Actin
was used as loading control. Left Panel: Representative images. Right Panel: Densitometry
analysis of the Western blots. Results are expressed after normalization of the 53BP1values
with the values for actin and further expressed in relation to blank. Results are the mean
of two experiments only; (c) Analysis of the number of 53BP1 foci per cell. Left Panel:
Representative fluorescence microscopy images of 53BP1 foci (green) and DAPI stained
nuclei (blue). Bar corresponds to 20 μm. Right Panel: Quantification of 53BP1 foci. Results
are the mean ± SEM of three independent experiments (except for the control (H2O), which
results from two experiments only). * p 0.05 and ** p 0.01 blank vs. treatment.
Molecules 2015, 20 13934
In conclusion, our results showed that the methanolic extract of C. militaris at the 25 μg/mL
concentration significantly inhibited cell proliferation and induced apoptosis of NCI-H460 cells. However,
this concentration did not significantly inhibited p53 and p21 expression and DNA damage (even though
statistically significant increases in the concentrations of these proteins were verified with 50 μg/mL).
These results suggest that C. militaris may have other intracellular mechanisms leading to apoptosis of
NCI-H460 cells. This will be investigated in future work.
3. Experimental Section
3.1. Extract
The methanolic extract used in this study was obtained from cultivated fruiting bodies of
Cordyceps militaris (L.) Link (strain: MCI 10304, Meshtech Cordyceps Institute, Bangkok, Thailand),
as published in [16]. The chemical characterization of the studied extract is provided in the same
publication. Briefly, lyophilized sample was extracted by stirring with methanol for 1 h and filtered
through Whatman No. 4 paper. The residue was then extracted with methanol for 1 h. The combined
methanolic extracts were evaporated at 40 °C to dryness. A stock solution at 8 mg/mL in H2O was kept
at 20 °C.
3.2. Cell Culture
The non-small cell lung cancer cell line NCI-H460 (a kind gift from NCI, Bethesda, MD, USA) was
maintained in RPMI-1640 medium with UltraGlutamine I and 25 mM Hepes (Lonza, Basel, Switzerland)
supplemented with 10% FBS (Biowest, Nuaillé, France) at 37 °C in a humidified incubator with 5%
CO2 in air. Cell number and viability were assessed with Trypan blue exclusion assay. All experiments
were carried out with exponentially growing cells (presenting more than 90% cell viability).
3.3. Cell Treatments with C. militaris Extract
Cells (1 × 105 cells/well) were plated in 6-well plates and incubated for 24 h at 37 °C in 5% CO2 to
allow cell adhesion. Cells were then treated for 48 h with 25 μg/mL or 50 μg/mL of the extract for
48 h. Cells were also treated with complete medium (Blank) or with the corresponding concentrations
of the extract solvent (H2O, Control). Following treatment, cells were processed according to different
protocols, as follows.
3.3.1. Analysis of Cell Cycle Profile by Flow Cytometry
Following 48 h treatment, cell pellets were fixed in ice-cold 70% ethanol for at least 12 h. Cells
were then resuspended in 5 μg/mL propidium iodide and 0.1 mg/mL RNase A in PBS. Cellular DNA
content was analyzed using a FACSCalibur flow cytometer (BD Biosciences). The percentage of cells
in the different phases of cell cycle (G0/G1, S and G2/M) was determined by plotting at least 20,000
events per sample, after excluding cell debris and aggregates [33], using the FlowJo 7.6.5 software
(Tree Star, Inc., Ashland, OR, USA).
Molecules 2015, 20 13935
3.3.2. Analysis of Cellular Proliferation with the BrdU Incorporation Assay
Following 47 h treatment, cells were incubated for 1 h with 10 μM 5-bromo-2-deoxyuridine (BrdU,
Sigma-Aldrich) at 37 °C and 5% CO2. Cells were then washed, fixed in 4% paraformaldehyde and
cytospins prepared. Following a DNA denaturation step consisting of 20 min incubation in 2 M HCl at
room temperature, cells were incubated with mouse anti-BrdU antibody (1:10; Dako) for 1 h at room
temperature and further incubated in the dark with anti-mouse-Ig-FITC (1:100; Dako, Glostrup,
Denmark) for 30 min. Cells were then washed again twice with PBS-T-B and slides were prepared with
Vectashield mounting medium with DAPI (Vector Laboratories Inc, Burlingame, CA, USA). BrdU
incorporation was analyzed using a fluorescence microscope (Leica DM2000) and the percentage of
BrdU incorporating cells determined by a counting at least 500 cells for each condition [34].
3.3.3. Analysis of Apoptosis by Flow Cytometry
Following 48 h treatment, analysis of apoptotic cell death was carried out using the “Annexin
V-FITC Apoptosis Detection kit” (Bender MedSystems, Vienna, Austria) as previously described [35].
Cells were analyzed by flow cytometry in a FACSCalibur flow cytometer (BD Biosciences, San Jose,
CA, USA). All data was analyzed using the FlowJo 7.6.5 software (Tree Star, Inc., Ashland, OR, USA),
plotting at least 20,000 events per sample.
3.3.4. Analysis of Protein Expression by Western Blot
Following 48 h treatment with the extract, total protein lysates were prepared by lysing cell pellets
in Winman’s Buffer (1% NP-40, 0.1 M Tris-HCl pH 8.0, 0.15 M NaCl and 5 mM EDTA). Total
protein content was quantified using the “DC Protein assay kit” (Bio-Rad) and protein (30 µg) was
subjected to SDS-PAGE (12% Bis-Tris gel). Following electrophoretic transfer onto nitrocellulose
membranes (GE Healthcare), membranes were incubated with the following primary antibodies:
Mouse anti-p53 (1:200; Thermo-Scientific, Waltham, MA, USA), mouse anti-p21 (1:250; Calbiochem,
San Diego, CA, USA), mouse anti-53BP1 (1:400; Santa Cruz Biotechnology), p-Histone H2A.X
(Ser 139) (1:200; Santa Cruz Biotechnology Inc, Heidelberg, Germany) and goat anti-Actin (1:2000;
Santa Cruz Biotechnology). The following secondary antibodies were then used: Anti-mouse IgG-HRP;
anti-rabbit IgG-HRP or anti-goat IgG-HRP (all diluted 1: 2000, Santa Cruz Biotechnology). Signal was
detected with the ECL Western blot Detection kit (GE Healthcare, Buckinghamshire, UK), Hyperfilm
ECL (GE Healthcare) and the Kodak GBX developer and fixer (Sigma) [36,37]. The intensity of the bands
obtained in each film was quantified using the Quantity One software (BioRad, Hercules, CA, USA).
3.3.5. Analysis of 53BP1 Expression by Immunofluorescence
Following 48 h treatment with the extract, cells were fixed in 4% paraformaldehyde and cytospins
were prepared. Cells were incubated for 10 min in 50 mM NH4Cl in PBS and permeabilized in
ice-cold 0.2% Triton X-100 in PBS for 10 min. After a blocking step with 2% BSA in PBS for 20 min,
cells were incubated with rabbit 53BP1 antibody (Santa Cruz Biotechnology) diluted 1:200 in 2% BSA
in PBS, overnight at 4 °C. Cells were then washed with 2% BSA in PBS and further incubated with
rabbit-IgG-FITC antibody (1:100; Dako) for 1 h, at room temperature. Slides were mounted in
Molecules 2015, 20 13936
Vectashield Mounting Media with DAPI (Vector Laboratories Inc, Burlingame, CA, USA) and cell
images were taken using a fluorescence microscope ZEISS Axio Imager.Z1 coupled with ApoTome
Imaging System microscope. Exported images in TIFF format were decompressed with Irfanview
(ver. 4.35, Irfan Skiljan, Vienna, Austria) and analyzed with ImageJ software (version 1.46r). This was
carried out using a program written by Dr. Niklas Schultz (GMT Department, Stockholm University,
Sweden [38]) which analyses DAPI and FITC channels independently, detects cell nuclei and registers
foci parameters within the nuclear area. Different parameters such as foci area, intensity and the
number of foci per nucleus were given in the output file [39].
3.4. Statistical Analysis
All presented data results were obtained from at least three independent experiments (unless otherwise
stated in the results section). All data was statistically analyzed with the two-tailed paired Student’s
t-test (except for the data presented in Figure 2b and in Table 1, which were analyzed with the unpaired
Student’s t-test). Results were considered statistically significant when p 0.05.
4. Conclusions
This study showed that a methanolic extract of Cordyceps militaris fruiting body reduced the number
of viable NCI-H460 human tumor cells by decreasing cellular proliferation, increasing the number of
cells in the G0/G1 phase of the cell cycle and inducing cell death by apoptosis. Moreover, this extract
was shown to probably induce DNA damage and to increase the cellular levels of p53 and p21. This is
particularly interesting since p53 is an attractive therapeutic target and molecules causing an increase
in p53 wt levels may contribute to the development of anticancer therapies. However, in order to
further confirm the mechanism of action of this extract further studies would be required, namely
studies on the effect of this extract on NCI-H460 cells following p53 silencing and on other tumor cell
lines without p53 or with a p53 mutation. Furthermore, additional studies on the effect of compounds
isolated from this extract would also be important. Indeed, the chemical characterization of this extract
has already allowed the identification of p-hydroxybenzoic and cinnamic acids [16]. In addition,
cordycepin (an isolated compound from Cordyceps species) seems to be present in methanolic extract
of C. militaris [15]. The effect of all these compounds has been previously studied in NCI-H460 cells,
with both cordycepin and cinnamic acid showing in vitro cell growth inhibitory activity [40,41].
Nevertheless, when addressing the possibility of using extracts/isolated compounds in vivo, extrapolation
of the results obtained using cell line models must be carefully analyzed. Pharmacokinetic studies, as well
as the optimization of treatment conditions, are needed in order to be successful. Overall, this work
further supports the potential of C. militaris extracts in the search for bioactive compounds, which may
be of use in anticancer strategies.
Acknowledgments
IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT, the Portuguese
Foundation for Science and Technology. This work is funded by FEDER funds through the Operational
Programme for Competitiveness Factors (COMPETE) and National Funds through the FCT, Foundation
Molecules 2015, 20 13937
for Science and Technology, under the projects “PEst-C/SAU/LA0003/2013” and FCOMP-01-0124-
FEDER-015752 (ref FCT PTDC/SAU-FAR/110848/2009). The authors also thank: FCT for the grant to
R.T.L. (SFRH/BPD/68787/2010) and QREN for the grant of D.S. (NORTE-07-0124-FEDER-000023).
Author Contributions
M.H.V., I.C.F.R.F. and R.T.L. conceived and designed experiments. A.B. and R.T.L. performed
research and data organization. A.B. and D.S. carried out experiments. A.B. and R.T.L. performed
statistical analysis. A.B., I.C.F.R.F., M.H.V. and R.T.L. wrote the manuscript. M.S., L.J.L.D.G. and
I.C.F.R F. revised the manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
References
1. Das, S.K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal uses of the mushroom
Cordyceps militaris: Current state and prospects. Fitoterapia 2010, 81, 961–968.
2. Park, N.S.; Lee, K.S.; Sohn, H.D.; Kim, D.H.; Lee, S.M.; Park, E.; Kim, I.; Je, Y.H.; Jin, B.R.
Molecular cloning, expression, and characterization of the Cu, Zn superoxide dismutase (SOD1)
gene from the entomopathogenic fungus Cordyceps militaris. Mycologia 2005, 97, 130–138.
3. Park, S.E.; Kim, J.; Lee, Y.W.; Yoo, H.S.; Cho, C.K. Antitumor activity of water extracts from
Cordyceps militaris in NCI-H460 cell xenografted nude mice. J. Acupunct. Meridian Stud. 2009,
2, 294–300.
4. Yoo, H.S.; Shin, J.W.; Cho, J.H.; Son, C.G.; Lee, Y.W.; Park, S.Y.; Cho, C.K. Effects of
Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol. Sin. 2004, 25,
657–665.
5. Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological
review. J. Pharm. Pharmacol. 2013, 65, 474–493.
6. Park, C.; Hong, S.H.; Lee, J.Y.; Kim, G.Y.; Choi, B.T.; Lee, Y.T.; Park, D.I.; Park, Y.M.;
Jeong, Y.K.; Choi, Y.H. Growth inhibition of U937 leukemia cells by aqueous extract of
Cordyceps militaris through induction of apoptosis. Oncol. Rep. 2005, 13, 1211–1216.
7. Lim, H.; Kwon, Y.; Cho, S.; Kim, J.; Yoon, G.; Lee, S.; Kim, H. Antitumor activity of
Cordyceps militaris on human cancer cell line. Korean J. Pharmacogn. 2004, 35, 364–367.
8. Jin, C.Y.; Kim, G.Y.; Choi, Y.H. Induction of apoptosis by aqueous extract of Cordyceps militaris
through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231
Cells. J. Microbiol. Biotechnol. 2008, 18, 1997–2003.
9. Lee, H.; Kim, Y.J.; Kim, H.W.; Lee, D.H.; Sung, M.K.; Park, T. Induction of apoptosis by
Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull.
2006, 29, 670–674.
Molecules 2015, 20 13938
10. Baik, J.S.; Kwon, H.Y.; Kim, K.S.; Jeong, Y.K.; Cho, Y.S.; Lee, Y.C. Cordycepin induces apoptosis in
human neuroblastoma SK-N-BE(2)-C and melanoma SK-MEL-2 cells. Indian J. Biochem. Biophys.
2012, 49, 86–91.
11. Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: A bioactive metabolite with
therapeutic potential. Life Sci. 2013, 93, 863–839.
12. Shrestha, B.; Zhang, W.; Zhang, Y.; Liu, X. The medicinal fungus Cordyceps militaris: Research
and development. Mycol. Prog. 2012, 11, 599–614.
13. Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Evaluation of the anti-inflammatory and anti-proliferation
tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum
bark extracts. J. Ethnopharmacol. 2007, 114, 78–85.
14. Huang, H.; Wang, H.; Luo, R.C. Inhibitory effects of cordyceps extract on growth of colon cancer
cells. Zhong Yao Cai J. Chin. Med. Mater. 2007, 30, 310–313.
15. Liu, X.; Huang, K.; Zhou, J. Composition and Antitumor Activity of the Mycelia and Fruiting
Bodies of Cordyceps militaris. J. Food Nutr. Res. 2014, 2, 74–79.
16. Reis, F.S.; Barros, L.; Calhelha, R.C.; Ciric, A.; van Griensven, L.J.; Sokovic, M.; Ferreira, I.C.
The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant,
antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem.Toxicol. Int. J.
Publ. Br. Ind. Biol. Res. Assoc. 2013, 62, 91–98.
17. Jayat, C.; Ratinaud, M.H. Cell cycle analysis by flow cytometry: Principles and applications.
Biol. Cell Auspices Eur. Cell Biol. Organ. 1993, 78, 15–25.
18. Yang, C.H.; Kao, Y.H.; Huang, K.S.; Wang, C.Y.; Lin, L.W. Cordyceps militaris and mycelial
fermentation induced apoptosis and autophagy of human glioblastoma cells. Cell Death Dis. 2012,
3, doi:10.1038/cddis.2012.172.
19. He, W.; Zhang, M.F.; Ye, J.; Jiang, T.T.; Fang, X.; Song, Y. Cordycepin induces apoptosis
by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2
pro-apoptotic molecules. J. Zhejiang Univ. Sci. B 2010, 11, 654–660.
20. Park, S.E.; Yoo, H.S.; Jin, C.Y.; Hong, S.H.; Lee, Y.W.; Kim, B.W.; Lee, S.H.; Kim, W.J.;
Cho, C.K.; Choi, Y.H. Induction of apoptosis and inhibition of telomerase activity in human lung
carcinoma cells by the water extract of Cordyceps militaris. Food Chem. Toxicol. Int. J. Publ. Br.
Ind. Biol. Res. Assoc. 2009, 47, 1667–1675.
21. Jeong, J.W.; Jin, C.Y.; Park, C.; Hong, S.H.; Kim, G.Y.; Jeong, Y.K.; Lee, J.D.; Yoo, Y.H.;
Choi, Y.H. Induction of apoptosis by cordycepin via reactive oxygen species generation in human
leukemia cells. Toxicol. Int. J. Publ. Assoc. BIBRA 2011, 25, 817–824.
22. Lakin, N.D.; Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 1999,
18, 7644–7655.
23. Abukhdeir, A.M.; Park, B.H. p21 and p27: Roles in carcinogenesis and drug resistance. Expert
Rev. Mol. Med. 2008, 10, doi:10.1017/S1462399408000744.
24. Amundson, S.A.; Myers, T.G.; Fornace, A.J., Jr. Roles for p53 in growth arrest and apoptosis:
Putting on the brakes after genotoxic stress. Oncogene 1998, 17, 3287–3299.
25. Soussi, T.; Dehouche, K.; Beroud, C. p53 website and analysis of p53 gene mutations in human
cancer: Forging a link between epidemiology and carcinogenesis. Hum. Mutat. 2000, 15, 105–113.
Molecules 2015, 20 13939
26. Vassilev, L.T. p53 Activation by small molecules: Application in oncology. J. Med. Chem. 2005,
48, 4491–4499.
27. Athar, M.; Elmets, C.A.; Kopelovich, L. Pharmacological activation of p53 in cancer cells.
Curr. Pharm. Des. 2011, 17, 631–639.
28. Kuribayashi, K.; El-Deiry, W.S. Regulation of programmed cell death by the p53 pathway.
Adv. Exp. Med. Biol. 2008, 615, 201–221.
29. Mah, L.J.; El-Osta, A.; Karagiannis, T.C. gammaH2AX: A sensitive molecular marker of DNA
damage and repair. Leukemia 2010, 24, 679–686.
30. Wang, B.; Matsuoka, S.; Carpenter, P.B.; Elledge, S.J. 53BP1, a mediator of the DNA damage
checkpoint. Science 2002, 298, 1435–1438.
31. Mallette, F.A.; Richard, S. K48-linked ubiquitination and protein degradation regulate 53BP1
recruitment at DNA damage sites. Cell Res. 2012, 22, 1221–1223.
32. Fadlalla, K.; Watson, A.; Yehualaeshet, T.; Turner, T.; Samuel, T. Ruta graveolens extract induces
DNA damage pathways and blocks Akt activation to inhibit cancer cell proliferation and survival.
Anticancer Res. 2011, 31, 233–241.
33. Abreu, R.M.; Ferreira, I.C.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.;
Queiroz, M.J. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity
of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: In vitro evaluation,
cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806.
34. Preto, A.; Goncalves, J.; Rebocho, A.P.; Figueiredo, J.; Meireles, A.M.; Rocha, A.S.;
Vasconcelos, H.M.; Seca, H.; Seruca, R.; Soares, P.; et al. Proliferation and survival molecules
implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic
mutations. BMC Cancer 2009, 9, 387, doi:10.1186/1471-2407-9-387.
35. Queiroz, M.J.; Peixoto, D.; Calhelha, R.C.; Soares, P.; dos Santos, T.; Lima, R.T.; Campos, J.F.;
Abreu, R.M.; Ferreira, I.C.; Vasconcelos, M.H. New di(hetero)arylethers and di(hetero)arylamines in
the thieno[3,2-b]pyridine series: Synthesis, growth inhibitory activity on human tumor cell lines
and non-tumor cells, effects on cell cycle and on programmed cell death. Eur. J. Med. Chem.
2013, 69, 855–862.
36. Oliveira, M.; Reis, F.S.; Sousa, D.; Tavares, C.; Lima, R.T.; Ferreira, I.C.; Santos, T.D.;
Vasconcelos, M.H. A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth
of a gastric cancer cell line and affects cellular autophagy and cell cycle. Food Funct. 2014, 5,
1389–1394.
37. Lima, R.T.; Martins, L.M.; Guimaraes, J.E.; Sambade, C.; Vasconcelos, M.H. Chemosensitization
effects of XIAP downregulation in K562 leukemia cells. J. Chemother. 2006, 18, 98–102.
38. Markova, E.; Schultz, N.; Belyaev, I.Y. Kinetics and dose-response of residual 53BP1/gamma-H2AX
foci: Co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Biol.
2007, 83, 319–329.
39. Seca, H.; Lima, R.T.; Almeida, G.M.; Sobrinho-Simoes, M.; Bergantim, R.; Guimaraes, J.E.;
Vasconcelos, M.H. Effect of MiR-128 in DNA Damage of HL-60 Acute Myeloid Leukemia Cells.
Curr. Pharm. Biotechnol. 2014, 15, 492–502.
Molecules 2015, 20 13940
40. Aramwit, P.; Bang, N.; Ratanavaraporn, J.; Nakpheng, T.; Srichana, T. An Anti-Cancer Cordycepin
Produced by Cordyceps militaris Growing on the Dead Larva of Bombyx mori Silkworm. J. Agric. Sci.
2014, 6, 41–54.
41. Vaz, J.A.; Almeida, G.M.; Ferreira, D.F.; Ferreira, I.C. F.R.; Martins, A.; Vasconcelos, M.H.
Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line:
Identification of phenolic acids with cytotoxic potential. Food Chem. 2012, 132, 482–486.
Sample Availability: Samples of the studied mushrooms are available from the authors.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).
... Cordyceps militaris extract exhibited antitumor effects mainly through the induction of apoptosis, inhibition of angiogenesis, and suppression of invasion and metastasis in cancer cells. [13][14][15] Cordyceps militaris has recently received considerable attention as a potential source of anticancer drugs. However, the molecular mechanism underlying the inhibitory effects of C. militaris on tumor cell growth remains unclear. ...
... A few studies have reported the anticancer activity of C. militaris. 15,16,24 In our previous study, we investigated the anticancer effect of C. militaris on human ovarian cancer and nonsmall-lung adenocarcinoma cells. We found that C. militaris reduced the viability and migration activities, indicative of its potential ability to mediate apoptosis. ...
Article
Full-text available
This study aimed to investigate the effect of Cordyceps militaris extract on the proliferation and apoptosis of carboplatin- resistant SKOV-3 and determine the underlying mechanisms for overcoming carboplatin resistance in human ovarian cancer. We cultured the carboplatin-resistant SKOV-3 cells in vitro until the exponential growth phase and then treated with different concentrations of C. militaris for 24, 48, and 72 hours. We performed cell proliferation assay, cell morphological change assessment using transmission electron microscopy, apoptosis assay, and immunoblotting to measure the protein expression of caspase-3 and -8, poly (ADP-ribose) polymerase (PARP)-1, B-cell lymphoma (Bcl)-2, and activating transcription factor 3 (ATF3)/TP53 signaling-related proteins. As a result, C. militaris reduced the viability of carboplatin-resistant SKOV-3 and induced morphological disruptions in a dose- and time-dependent manner. The gene expression profiles indicated a reprogramming pattern of the previously known and unknown genes and transcription factors associated with the action of TCTN3 on carboplatin-resistant SKOV-3 cells. We also confirmed the C. militaris-induced activation of the ATF3/TP53 pathway. Immunoblotting indicated that cotreatment of C. militaris and carboplatin-mediated ATF3/TP53 upregulation induced apoptosis in the carboplatin-resistant SKOV-3 cells, which are involved in the serial activation of pro-apoptotic proteins, including Bcl-2, Bax, caspases, and PARP-1. Further, when the ATF3 and TP53 expression increased, the CHOP and PUMA expressions were upregulated. Consequently, the upregulated CHOP/PUMA expression activated the positive regulation of the apoptotic signaling pathway. In addition, it decreased the Bcl-2 expression, leading to marked ovarian cancer cells sensitive to carboplatin by enhancing apoptosis. We then corroborated these results using in vivo experiments. Taken together, C. militaris inhibits carboplatin-resistant SKOV-3 cell proliferation and induces apoptosis possibly through ATF3/TP53 signaling upregulation and CHOP/PUMA activation. Therefore, our findings provide new insights into the treatment of carboplatin-resistant ovarian cancer using C. militaris.
... Panaxnotoginseng's saponin components also control lung cancer cells' apoptosis and showe anti-carcinogenic properties during animal testing [15][16][17]. Cordyceps militaris can control the mechanism of non-small-cell lung cancer cells as well as the mechanism of apoptosis in other lung cancer cells [18][19][20]. Boswellia carterii BIRDWOOD's anti-carcinogenic mechanisms are slowly coming into the light, and the combination of these four substances are expected to block the various possible progressions of lung cancer cells' apoptosis as well as preventing further metastasis [21]. ...
Article
Full-text available
HAD-B1 is a herbal formula originated from Korean Traditional Medicine that used to treat lung cancer patients. Herein we assessed acute and sub-chronic toxicity of HAD-B1 in beagle dogs. Acute study, 4 weeks dose rate finding (DRF) study and sub chronic toxicity study for 13 weeks were done by oral administration at doses of 0, 500, 1000, and 2000 mg/kg. Neither oral acute toxicity study nor DRF study showed any significant clinical signs, death, or weight changes. Based on that, a sub-chronic study for 13-weeks was performed. As a result, HAD-B1 caused a decrease of mean daily feed consumption in females, infiltration of intestinal inflammatory cells in both sexes, a significant decrease in total cholesterol (TCHO) in females, Kupffer cell hypertrophy/hyperplasia in the liver as well as dilation of the sinusoid. However, there were no significant toxic effects in the treated group compared to the control group. Therefore, the No Observed Adverse Effect Level (NOAEL) of the HAD-B1 is at least 2,000 mg/kg/day when administrated orally for 13 consecutive weeks. These results demonstrate that HAD-B1 consumption is relatively non-toxic and safe for clinical usage.
... These extracts exhibited antitumor effects mainly through the induction of apoptosis in tumor cells, inhibition of angiogenesis, and the suppression of invasion and metastasis. [24][25][26][27] Several reports over the past few years have shown that cordycepin (3′-deoxyadenosine), a major bioactive component extracted from C militaris, is reported to inhibit cell proliferation, [28][29][30] induce apoptosis, [31][32][33] inhibit platelet aggregation, regulate steroidogenesis, and reduce inflammation. 34 Moreover, cordycepin possesses antitumor activities. ...
Article
Full-text available
This study aimed to investigate the effect of Cordyceps militaris extract on the proliferation and apoptosis of non–small cell lung cancer (NSCLC) cells and determine the underlying mechanisms. We performed a CCK-8 assay to detect cell proliferation, detection of morphological changes through transmission electron microscopy (TEM), annexin V–FITC/PI double staining to analyze apoptosis, and immunoblotting to measure the protein expression of apoptosis and hedgehog signaling–related proteins, with C militaris treated NSCLC cells. In this study, we first found that C militaris reduced the viability and induced morphological disruption in NSCLC cells. The gene expression profiles indicated a reprogramming pattern of genes and transcription factors associated with the action of TCTN3 on NSCLC cells. We also confirmed that the C militaris–induced inhibition of TCTN3 expression affected the hedgehog signaling pathway. Immunoblotting indicated that C militaris–mediated TCTN3 downregulation induced apoptosis in NSCLC cells, involved in the serial activation of caspases. Moreover, we demonstrated that the C militaris negatively modulated GLI1 transcriptional activity by suppressing SMO/PTCH1 signaling, which affects the intrinsic apoptotic pathway. When hedgehog binds to the PTCH1, SMO dissociates from PTCH1 inhibition at cilia. As a result, the active GLI1 translocates to the nucleus. C militaris clearly suppressed GLI1 nuclear translocation, leading to Bcl-2 and Bcl-xL down-regulation. These results suggested that C militaris induced NSCLC cell apoptosis, possibly through the downregulation of SMO/PTCH1 signaling and GLI1 activation via inhibition of TCTN3. Taken together, our findings provide new insights into the treatment of NSCLC using C militaris.
... Both in vivo and in vitro experiments have demonstrated the anti-proliferative and apoptotic activities of C. militaris extract (CME) against human tumor cell lines. CME was demonstrated antitumor effects mainly through other various researched that suggested the induction of cell death and apoptosis, inhibition of angiogenesis, and suppression of invasion and metastasis by CME in human cancer cells [12][13][14][15]. Cordyceps militaris has recently received considerable attention as a potential source of anticancer drugs [16]. ...
Article
Full-text available
Background: Cordyceps militaris (L.) Fr. (C. militaris) exhibits pharmacological activities, including antitumor properties, through the regulation of the nuclear factor kappa B (NF-κB) signaling. Tumor Necrosis Factor (TNF) and TNF-α modulates cell survival and apoptosis through NF- κB signaling. However, the mechanism underlying its mode of action on the NF-κB pathway is unclear. Methods: Here, we analyzed the effect of C. militaris extract (CME) on the proliferation of ovarian cancer cells by confirming viability, morphological changes, migration assay. Additionally, CME induced apoptosis was determined by apoptosis assay and apoptotic body formation under TEM. The mechanisms of CME were determined through microarray, immunoblotting and immunocytochemistry. Results: CME reduced the viability of cells in a dose-dependent manner and induced morphological changes. We confirmed the decrease in the migration activity of SKOV-3 cells after treatment with CME and the consequent induction of apoptosis. Immunoblotting results showed that the CME-mediated upregulation of tumor necrosis factor receptor 1 (TNFR1) expression induced apoptosis of SKOV-3 cells via the serial activation of caspases. Moreover, CME negatively modulated NF-κB activation via TNFR expression, suggestive of the activation of the extrinsic apoptotic pathway. The binding of TNF-α to TNFR results in the disassociation of IκB from NF-κB and the subsequent translocation of the active NF-κB to the nucleus. CME clearly suppressed NF-κB translocation induced by interleukin (IL-1β) from the cytosol into the nucleus. The decrease in the expression levels of B cell lymphoma (Bcl)-xL and Bcl-2 led to a marked increase in cell apoptosis. Conclusion: These results suggest that C. militaris inhibited ovarian cancer cell proliferation, survival, and migration, possibly through the coordination between TNF-α/TNFR1 signaling and NF-κB activation. Taken together, our findings provide a new insight into a novel treatment strategy for ovarian cancer using C. militaris.
... 11 Especially in NSCLC, it has been reported that the methanolic extract of Cordyceps militaris affects the cell viability of NCI-H460 cells through involving DNA damage and p53 activation. 12 However, Cordyceps militaris is composed of various components, and the components related to its anti-cancer effects remain to be further elucidated. ...
Article
Full-text available
Background: The anticancer effects of cordyceps on various tumors have been reported. However, little is known about the role of selenium (Se)-enriched Cordyceps militaris in non-small cell lung cancer (NSCLC). In this study, the effects of Se-enriched Cordyceps militaris on cell proliferation, cell apoptosis and cell cycle in NSCLC cell line NCI-H292 and A549 were investigated. Methods: CCK-8 assay was used to determine the appropriate concentrations of Se-enriched Cordyceps militaris in NSCLC (namely NCI-H292 and A549) cells. Colony formation assay, flow cytometric and Hoechst 33342 staining assays, and flow cytometric analysis were separately employed to assess the effect of increased Se-enriched Cordyceps militaris on NSCLC cell viability, cell apoptosis and cell-cycle distribution. Finally, the qPCR and Western blot assays were, respectively, applied to evaluate the effects of Se-enriched Cordyceps militaris on the expression of pro-apoptotic member BAX and the anti-apoptotic member BCL-2, as well as of G2/M cell cycle regulatory proteins CDK1 and cyclin B1. Results: The concentration of Se-enriched Cordyceps militaris was 0, 4, 8, 12 mg/mL for NCI-H292 cells, and 0, 12.5, 25, 50 mg/mL for A549 cells. NSCLC cells treated with increased Se-enriched Cordyceps militaris showed the inhibited cell viability. Se-enriched Cordyceps militaris induced NSCLC cell apoptosis in concentration-dependent manner. Consistently, Se-enriched Cordyceps militaris diminished the ratio of anti-apoptotic member BCL-2 and pro-apoptotic member BAX at mRNA and protein levels in NSCLC cells. The percentage in G2/M phase was increased in NSCLC cells treated with increased Se-enriched Cordyceps militaris. Downregulation of G2/M cell cycle regulatory proteins CDK1 and cyclin B1 at mRNA and protein levels in NSCLC cells further confirmed the effects of Se-enriched Cordyceps militaris on cell cycle. Conclusion: This study demonstrated the inhibitory role of Se-enriched Cordyceps militaris in cell proliferation and its facilitating role in cell apoptosis and cell cycle in NSCLC cells, suggesting an alternative therapeutic strategy for NSCLC treatment.
... Cordyceps militaris (L.) Link, another Cordyceps species, has been widely cultured manually and also has numerous potential medicinal properties including antitumor activity. 6,7 A monocarbohydrate, xylitol, isolated from C. militaris, could induce apoptotic death of malignant melanoma but not in normal human broblasts, suggesting that C. militaris extract was a potential antitumor agent. 7 Silkworm has been reported to promote the growth and production of stromata of C. militaris (L.) Link as parasite insect media. ...
Article
Full-text available
Silkworms have been reported to promote the growth and production of the stromata of C. militaris (L.) Link as a parasite insect medium and may improve its metabolites. The effects of Tussah silkmoth pupae (TG group) and rice (RG group) on the metabolic profile of C. militaris (L.) Link were compared by metabolomics. Meanwhile, the profile of natural C. sinensis (NG group) was also analyzed. The functions of these metabolites from different groups and cordycepin were tested using breast cancer cells and an animal model. 292 metabolites were detected, including 51, 31 and 23 unique metabolites from the TG, RG and NG groups, respectively. The level of 3-deoxyadenosine (cordycepin with anti-tumor activity) was highest in the TG group. Tussah silkmoth pupae induced the biosynthesis of cordycepin and unsaturated fatty acids, which may be beneficial in the prevention of breast cancer. The TG group and cordycepin had significant inhibitory activities on breast cancer cells and in animal models when compared with the two other groups. Tussah silkmoth pupae improved the metabolic profile of C. militaris (L.) Link, which has more pharmaceutical metabolites than C. sinensis.
Article
Full-text available
Chinese Cordyceps is a valuable source of natural products with various therapeutic effects. It is rich in various active components, of which adenosine, cordycepin and polysaccharides have been confirmed with significant immunomodulatory and antitumor functions. However, the underlying antitumor mechanism remains poorly understood. In this review, we summarized and analyzed the chemical characteristics of the main components and their pharmacological effects and mechanism on immunomodulatory and antitumor functions. The analysis revealed that Chinese Cordyceps promotes immune cells’ antitumor function by via upregulating immune responses and downregulating immunosuppression in the tumor microenvironment and resetting the immune cells’ phenotype. Moreover, Chinese Cordyceps can inhibit the growth and metastasis of tumor cells by death (including apoptosis and autophagy) induction, cell-cycle arrest, and angiogenesis inhibition. Recent evidence has revealed that the signal pathways of mitogen-activated protein kinases (MAPKs), nuclear factor kappaB (NF-κB), cysteine–aspartic proteases (caspases) and serine/threonine kinase Akt were involved in the antitumor mechanisms. In conclusion, Chinese Cordyceps, one type of magic mushroom, can be potentially developed as immunomodulator and anticancer therapeutic agents.
Article
Full-text available
This article is a brief, informative work about the health effects of Scarlet Caterpillarclub (Cordyceps militaris). Fődi A: Gyógyhatású gombák : A vörös rovarrontógomba (Cordyceps militaris) gyógyhatása. In: Magyar Gombász, 2017. vol. 15. (12th official volume) No. 43. pp. 17–18. [Medicinal Mushrooms : Healing properties of Cordyceps militaris, in Hungarian]. Magyar Gombász ISSN 1788-4136
Chapter
Among all types of human cancer, lung cancer is one of the most common and leading causes of cancer mortality worldwide. In the past few years, the growing understanding of molecular and tumor biology has dramatically changed the paradigms of cancer treatment. This involves designing more efficient and less toxic treatments, such as immunotherapy, targeted therapy, and cancer vaccines, as well as improving decades-old therapies, viz., radiation therapy, chemotherapy, and surgery. Various signaling pathways have been identified to be responsible in the pathophysiology of lung cancer. Advancements in technology and cancer biology and different oncogenic targets for cell signaling pathways are now understood, and these targeted therapies are being considered and established. Specific therapy or molecular-based therapy for each type of lung cancer provides improved outcomes as genomic changes, origin, and growth patterns vary in each subtype of lung cancer. Several natural compounds extracted from plants have been investigated for effective cancer treatment. This chapter reviews the recent developments and current potential of natural compounds derived from plant sources to target various signaling pathways and treatment of lung cancer.
Article
We investigated the antitumor effect of Cordyceps militaris extract (CME) on A549 cisplatin-resistant (CR) lung cancer cells. The proliferation of A549/CR cells was suppressed by CME. Apoptosis of the cells was induced by CME. The cell cycle arrest was observed in the sub-G1 phase in the cells treated with CME. Proteomic profile analysis showed that H-Ras was downregulated in CME-treated cells and it was confirmed by western blot analysis. Collectively, these data demonstrated that CME is an alternative treatment for the anticancer effect.
Article
Full-text available
Ganoderma lucidum is one of the most extensively studied mushrooms as a functional food and as a chemopreventive agent due to its recognized medicinal properties. Some G. lucidum extracts have shown promising antitumor potential. In this study, the bioactive properties of various extracts of G. lucidum, from both the fruiting body and the spores, were investigated. The most potent extract identified was the methanolic fruiting body extract, which inhibited the growth of a gastric cancer cell line (AGS) by interfering with cellular autophagy and cell cycle.
Article
The p53 tumor suppressor gene has proven to be one of the genes most often mutated in human cancers. It involves mainly point mutations leading to amino acid substitutions in the central region of the protein which impairs normal functions. Analysis of the mutational events that target the p53 gene has revealed evidence for both exogenous and endogenous mutational mechanisms. For example, the p53 mutational spectrum reveals evidence for a direct causal effect of ultraviolet radiation in skin cancer, of aflatoxin B1 in liver cancer, and of tobacco smoke in lung cancer. This novel field, molecular epidemiology of human cancer risk, has added a new dimension to classical associative epidemiology by providing a direct link between human cancer and carcinogen exposure. For such analysis, we devised a generic software called UMD (Universal Mutation Database). It was developed as a generic software to create locus-specific databases (LSDBs) with the 4th Dimension® package from ACI. This software includes an optimized structure to assist and secure data entry and to allow the input of various clinical data. Hum Mutat 15:105–113, 2000. © 2000 Wiley-Liss, Inc.
Article
We describe the molecular characterization of the Cu,Zn superoxide dismutase (SOD1) gene of Cordyceps militaris, which is one of the entomopathogenic fungi called a vegetable wasp and plant worm. The SOD1 gene of C. militaris spans 922 bp and consisted of three introns and four exons coding for 154 amino acid residues. The deduced amino acid sequence of the C. militaris SOD1 cDNA showed 88% identity to Claviceps purpurea SOD1, 82% to Neurospora crassa SOD1, and 75–64% to SOD1 sequences from other fungi. The C. militaris SOD1 possesses the typical metal binding ligands of six histidines and one aspartic acid common to fungal SOD1s. The cDNA encoding C. militaris SOD1 was expressed as a 17-kDa polypeptide in the baculovirus-infected insect Sf9 cells. The enzyme activity of the purified recombinant C. militaris SOD1 was approximately 568 U per mg⁻¹. Southern blot analysis of the genomic DNA suggested the C. militaris SOD1 was a single gene. Northern and Western blot analysis and enzyme activity assays indicated SOD1 was expressed constitutively. This is the first report of an SOD1 gene from any entomopathogenic fungus.
Article
Cordyceps militaris (CM) has been used as antidiabetics, anticancer, endocrine and sexual functions enhancement in the traditional medicine. Water soluble fractions of CM showed cytotoxic activities on the three kinds of human cancer cell lines, stomachic adenocarcinoma(SNU-1), colorectal adenocarcinoma (SNU-C4), and hepatocellular carcinoma(SNH-354). Cytotoxic activity guided isolation and identification of active fractions afforded cordycepin as an active component.
Article
Cordyceps militaris contains many kinds of bioactive components with the various physiological activities, but has less natural sources of fruiting bodies. Compared with the fruiting bodies from the same origin, the fermented mycelia contained significantly higher amount of protein, crude fat and polysaccharides. The mycelia had more amount of the total amino acids, with proline (3.84 ± 0.12 g 100g -1 ), leucine (2.96 ± 0.10 g 100g -1 ), and aspartic acid (2.68 ± 0.06 g 100g -1 ) as the top three aboundant amino acids, while glutamic acid (3.56 ± 0.07 g 100g - 1 ), aspartic acid (2.52 ± 0.13 g 100g -1 ), and valine (2.35 ± 0.11 g 100g -1 ) in fruiting bodies. The tested minerals in the mycelia were much more than those in fruiting bodies, especially Selenium which was nondetectable in fruiting bodies. However, the mycelia had lower level of cordycepin and mannitol. The mycelia also exhibited higher antitumor activity against six tested human cancer cell lines, with the range of IC50 (μg ml -1 ) from 25.03 ± 1.37 to 39.81 ± 0.54. In the animal test for liver cancer cell Hep G2, even high-dose treatment (250 mg kg-1 BW/day) of the extract of the mycelia inhibited the growth of tumor by only 27.6%, significantly lower than the positive control, CTX (30 mg kg -1 BW/day), but had no influence on body weight. The results confirm the potential of cultivated
Article
In this study, we introduced the dead pupa and larva of Bombyx mori silkworms as nutrition medium for the growing of different fungi including Cordyceps militaris, Isaria tenuipes and Isaria farinose to produce Cordyceps mycelia and anti-cancer cordycepin. The anti-proliferative and anti-migratory activities of cordycepin extracted toward cancer cells were investigated. We found that the dead silk larva which contained high carbohydrate and moisture but low fat content could be a good host for the growth of Cordyceps militaris and Isaria tenuipes to produce Cordyceps. The cordycepin extracted from Cordyceps mycelia of Cordyceps militaris grown on dead silk larva showed the highest anti-proliferative potential toward human non-small cell lung cancer NCI-H460 cells with a half maximal inhibitory concentration (IC 50) of 0.7 µM. Furthermore, the viability of human lung adenocarcinoma epithelial A549 cell line remained < 20% while that of human airway epithelial Calu-3 cell line was < 40% after treated with the cordycepin extracted (0.125-2 µM) due to the disruption of cell membrane by cordycepin. We also found that our cordycepin (0.25-2 µM) could inhibit the migration of A549 cells. On the other hand, the cordycepin was not toxic to small airway epithelial cells (SAEC) of non-cancer cells. Therefore, Cordyceps militaris grown on the dead larva of B. mori silkworms was introduced as a promising source for the production of Cordyceps mycelia and anti-cancer cordycepin without toxicity to non-cancer cells.
Article
miR-128 has been associated with cancer, namely with leukemia. In particular, this miR has been described, together with other miRs, to allow the discrimination between AML (acute myeloid leukemia) and ALL (acute lymphoblastic leukemia). In addition, miR-128 is included in miR signatures which not only allow characterizing a particular subtype of AML but that are also associated with worse clinical outcome in a subgroup of patients with high-risk molecular features of AML. Nevertheless, all the published studies are based on data from expression arrays and no functional studies have been performed. Therefore, in order to further understand the role of miR-128 in AML cells and in their response to some chemotherapy, overexpression of miR-128 was achieved with miR-mimics in an AML cell line (HL-60). This resulted in decreased cellular viability and increased sensitization to both etoposide and doxorubicin. Overexpression of miR-128 increased programmed cell death but had no effect on cell cycle profile, apoptosis or autophagy, as no alterations were observed in the protein levels of PARP, pro-caspase-3, Vps34, Beclin-1 or LC3-II. In addition, miR-128 overexpression increased the levels of DNA damage, as could be concluded by an increase in the comet's tail intensity in the comet assay, an increase in the number of DNA repair foci stained with either γ-H2AX or 53BP1 proteins, and an increase in the levels of these two proteins (observed by Western blot). To the best of our knowledge, this is the first association of miR-128 with DNA damage in a leukemia context.
Article
New fluorinated and methoxylated di(hetero)arylethers and di(hetero)arylamines were prepared functionalizing the 7-position of the thieno[3,2-b]pyridine, using copper (C-O) or palladium (C-N) catalyzed couplings, respectively, of the 7-bromothieno[3,2-b]pyridine, also prepared, with ortho, meta and para fluoro or methoxy phenols and anilines. The compounds obtained were evaluated for their growth inhibitory activity on the human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), HCT15 (colon carcinoma), HepG2 (hepatocellular carcinoma) and HeLa (cervical carcinoma). The most active compounds, a di(hetero)arylether with a methoxy group in the meta position relative to the ether function and two di(hetero)arylamines with a methoxy group either in the ortho or in the meta position relative to the NH, were further tested at their GI50 concentrations on NCI-H460 cells causing pronounced alterations in the cell cycle profile and a strong and significant increase in the programmed death of these cells. The fluorinated and the other methoxylated compounds did not show important activity, presenting high GI50 values in all the cell lines tested. Furthermore, the hepatotoxicity of the compounds was assessed using porcine liver primary cells (PLP2), established by some of us. Results showed that one of the most active compounds was not toxic to the non-tumor cells at their GI50 concentrations showing to be the most promising as antitumoral.
Article
Mushrooms are a possible rich source of biologically active compounds with the potential for drug discovery. The aim of this work was to gain further insight into the cytotoxicity mechanism of action of Clitocybe alexandri ethanolic extract against a lung cancer cell line (NCI-H460 cells). The effects on cell cycle profile and levels of apoptosis were evaluated by flow cytometry, and the effect on the expression levels of proteins related to cellular apoptosis was also investigated by Western blot. The extract was characterised regarding its phenolic composition by HPLC-DAD, and the identified compounds were studied regarding their growth inhibitory activity, by sulforhodamine B (SRB) assay. The effect of individual or combined compounds on viable cell number was also evaluated using the Trypan blue exclusion assay. It was observed that the C. alexandri extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells. In addition, treatment with the GI50 concentration (concentration that was able to cause 50% of cell growth inhibition; 24.8 μg/ml) for 48 h caused an increase in the levels of wt. p53, cleaved caspase-3 and cleaved poly (ADP–ribose) polymerase (PARP). The main components identified in this extract were protocatechuic, p-hydroxybenzoic and cinnamic acids. Cinnamic acid was found to be the most potent compound regarding cell growth inhibition. Nevertheless, it was verified that the concomitant use of the individual compounds provided the strongest decrease in viable cell number. Overall, evidence was found for alterations in cell cycle and apoptosis, involving p53 and caspase-3. Furthermore, our data suggests that the phenolic acids identified in the extract are at least partially responsible for the cytotoxicity induced by this mushroom extract.