Content uploaded by Simina Margareta Stanc
Author content
All content in this area was uploaded by Simina Margareta Stanc on Feb 07, 2019
Content may be subject to copyright.
Beavers (Castor fiber) in the Past:
Holocene Archaeological Evidence for
Beavers in Romania
L. BEJENARU,
a
* S. STANC,
a
M. POPOVICI
a
AND A. BALASESCU
b
a
‘Alexandru Ioan Cuza’University, Carol I Bd., 11, Iasi 700506, Romania
b
National Museum of Romanian History, Calea Victoriei, 12, 030026, Bucuresti Romania
ABSTRACT Archaeological beaver (Castor fiber) remains from Romanian sites dating from the Mesolithic to the Middle
Ages are described in terms of their frequencies (based on the number of identified specimens), morphology
and size. A summary of previous archaeozoological studies in the geographical and historical regionalization
of the Romanian territory (i.e. Banat, Dobrudja, Moldavia, Muntenia, Oltenia and Transylvania) shows that
temporal and regional variation characterizes the assemblages. The data also reveal that beaver hunting
contributed little to local economies, although some spatial and temporal variations are apparent and are here
compared with the evidence from the historical record. In addition, univariate, bivariate and geometric
morphometric analyses are employed to examine different anatomical elements. Studies of the lower third
molar (M
3
) reveal that there is a statistically significant intraspecific variability between the Neolithic and Iron
Age populations, situated also in different regions, Muntenia and Moldavia, respectively. Copyright © 2013
John Wiley & Sons, Ltd.
Key words: archaeozoology; beaver (Castor fiber); Holocene; Romania
Supporting information may be found in the online version of this article.
Introduction
The European beaver (Castor fiber Linnaeus, 1758), a
mammal adapted to the aquatic environment, is the
biggest and strongest rodent in Europe. In terms of
paleoecology, the beaver is a very important indicator
species because of its preference for living on the banks
of rivers, rich in forests of oaks, ashes, elms, poplars and
willows (Filipascu, 1969). Within these environments,
beavers will cut tree to build their dams, heavily trans-
forming the landscape they populate by reducing wood-
land on vast areas around freshwaters (Coles, 2006).
Until recently, the beaver was locally extinct in
Romania, but increased protection measures based on
complex scientific research have supported an import-
ant demographic recovery (Ducroz et al., 2005). This
has been facilitated by an active campaign of repopula-
tion, which begun in 1998 along the important rivers in
Romania: Olt, Mures and Ialomita (http://www.beaver.
icaswildlife.ro/). Whilst much attention has been given
to modern beaver populations, little is known about
their ancient history. This paper brings together, for
the first time, archaeozoological and historical data to
examine the population dynamics of the Romanian
beaver from the Mesolithic to the 19
th
century.
Material and methods
Data have been collated from a large number (n=119)of
faunal assemblages corresponding to the main pre- and
historical ages recognized for Romania (Vulpe, 1997;
Ursulescu, 2002; Berindei & Candea, 2001): Mesolithic
(8500–6500 B.C.), Neolithic-including Chalcolithic
(6600–3000/2500 B.C.), Bronze Age (3000/2500
B.C.–1200/1150 B.C.), Iron Age (1200/1150 B.C.–
106 A.D.), Antiquity (1
st
–5
th
centuries) and Middle Ages
(6
th
–16
th
centuries). The assemblages were grouped
according to geographical criteria into the five zones
recognized for Romania, namely, Moldavia (eastern
Romania), Dobrudja (south-eastern Romania), Wallachia –
including Muntenia and Oltenia (southern Romania),
Banat (south-western Romania) and Transylvania (central
and western Romania) (Figure S1).
* Correspondence to: Luminita Bejenaru, ‘Alexandru Ioan Cuza’University,
Carol I Bd., 11, Iasi 700506, Romania.
e-mail: lumib@uaic.ro
Copyright © 2013 John Wiley & Sons, Ltd. Received 26 February 2012
Revised 19 December 2012
Accepted 10 January 2013
International Journal of Osteoarchaeology
Int. J. Osteoarchaeol. 25: 375–391 (2015)
Published online 25 February 2013 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/oa.2306
Archaeological representation
The relative frequencies of beaver remains were calcu-
lated based on the number of identified specimens
(NISP) and expressed as a percentage of the total number
of identified mammal remains of the site. Frequencies
based on the minimum number of individuals were not
used because this information was not available for the
majority of the sites.
There are some possible biases in this study that
concern variable sample size and differential collection
of animal remains. Only five assemblages out of 119 have
less than 100 NISP, and almost half of them (57 assem-
blages) are large samples with more than 1000 NISP.
The majority of the assemblages were collected by hand,
and this caused an underrepresentation of medium and
smaller species, including the beaver. Sieving was carried
out only at some Chalcolithic sites from Dobrudja
(Isaccea, Harsova, Luncavita and Navodari) and from
Muntenia (Bordusani, Sultana and Bucsani).
Multivariate analysis
Multivariate analyses, such as correspondence analysis
(CA), have gained prominence in archaeology over the
past few decades, being applied to a variety of archaeolo-
gical datasets, including subsistence data. This analytical
technique is especially useful in that it allows multiple
cases (e.g. contexts, sites, periods) to be considered sim-
ultaneously with multiple variables, producing solutions
that can ‘map’associations (VanDerwarker, 2010). It is a
descriptive technique designed to analyze simple
two-way and multi-way tables containing some measure
of correspondence between the rows and columns. CA
partly solves the problem of differences in sample size
allowing the introduction of small assemblages in the
analysis.
Osteometrics
All available metric data from archaeozoological publica-
tions have been collated, to which we have added new
measurements taken on beaver skeleton samples from
the National Museum of Romanian History in Bucharest
and Faculty of Biology in Iasi. The measurements were
taken according to von den Driesch, 1976 (Table S1).
A caliper rule was used in measurements.
Ageing
Beaver teeth were aged according to Ognev (1963). The
age of animals in the first and second year of life may be
determined by the degree of closure of the pulp cavities
and the state of tooth eruption (incisors at birth, all
molars by 5.5months and premolars at 10 months).
Hatting (1969), van Nostrand and Stephenson (1964)
explain the structure of age in similar mode: the eruption
of teeth is in the following order: deciduous molar, first
molar, second molar, third molar and premolar (in
Mayhew, 1978). The eruption of the deciduous molar
occurs at the age of about one month, and the three
molars are erupted by 6 months. The premolar comes
into wear between 10 months and 1 year. At eruption,
the four cheek teeth of the permanent dentition consist
of hypsodont crowns of enamel, dentine and cement with
the enamel folded in the characteristic 3 + 1 pattern of
castorids. An overview of occlusal surface for basic pat-
tern is presented in Figure 1a. Mayhew (1979) said that
this method may be applied with excellent results to
subfossil material yielding age estimates reliable to within
plus or minus one year. On the basis of this method and
dental wear stages, the age of examined beavers was
assessed to be as belonging adult individuals. The teeth
increase in size nearly linearly up to the adult age and
show little size increase afterwards (Stefen, 2009).
ab
Figure 1. Description of the lower third molar: a. occlusal view; b. position of landmarks (1–11) on the occlusal surface.
376 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Geometric morphometrics
Geometric morphometrics were used to compare the
shape configurations of the lower third molar (M
3
), a
variable element that was selected because of its poten-
tial to inform on inter-population variability. General-
ized Procrustes Analysis (Mitteroecker & Gunz, 2009)
was used, minimizing the sum of squared distances
between homologous landmarks by translating, rotating
and scaling them to best fit (Rohlf & Slice, 1990; Slice,
2007; Seetah et al., 2012).
A total of 35 lower third molars (M
3
) were used for the
geometric morphometric analysis analysed: 20 came
from the Neolithic period (samples of Bucsani and
Vitanesti, from Muntenia), and 15 dated to the Iron
Age (sample of Brad, from Moldavia). Only Neolithic
and Iron Age material was examined as no samples dating
to other periods were found. In all the samples, the teeth
are contemporary with the specified cultural levels
coming from areas of household refuse and dwellings.
Bucsani and Vitanesti are small tell sites of Gumelnita
culture (4600–3500 cal BC), which are still excavated
(Brehard & Balasescu, 2012). Cutting traces have been
identified on the beaver remains found at Vitanesti,
proving the use of this species as food resource, and also
for the fur. The site of Brad represents a developed
fortified settlement (with the antic name Zargidava) in
the Antic Dacia, situated in the valley of the Siret River,
datedfortheLaTeneperiod(IV
th
BC–II
nd
AD centuries)
(Ursachi, 1995).
Sexual dimorphism should be taken into account in
morphometric studies, but it is impossible to differentiate
males and females in fossil specimens except where
dimorphism is great. Information about sexual dimorph-
ism of beaver is rare, but Nowak (1991) notes that
‘sexes are approximately the same size’and Lavrov
(1979), Frahnert & Heidecke (1992) all pooled sexes
for craniometrical analyses across populations (in
Kitchener & Lynch, 2000). Kitchener & Lynch (2000)
ignore the effects of sex in their study; therefore, we also
assumed that the degree of sexual dimorphism was
similar in all samples. We have also examined the data
without differentiating between sides (right/left).
Images of the lower third molar (M
3
)wereacquired
using digital camera Canon PowerShot A800. The
occlusal surface was oriented parallel with the lens of
camera and distance between the lens, and the occlusal
surface was kept the same for all images; all photos
were made with the same scale. The coordinates of 11
landmarks were digitized using tpsDig2 (Rohlf, 2003).
These landmarks are points of maximum curvature of
the outline (Figure 1b, Table S2) and correspond as type
2landmarksensu Bookstein (1991). We have to remark
that the extremity of the mesoflexid curvature has not
been marked because of this morphological variability.
The overall molar size was evaluated using centroid
size (CS) values and visualized in box plot and tested
with one-way ANOVA. The CS is a geometric scale
which is defined by the square root of the sum of
squared distances between all landmarks and their
centroid (Zelditch et al., 2004). CS has been performed
using tpsRelw 1.45 (Rohlf, 2010). To meet the assump-
tion of normality of the size distribution, we have used
Log-transformed CS values (Cucchi et al., 2011).
The shape was evaluated with Cartesian landmark
coordinates. The PCA was used in order to define the
greatest axes of molar shape variation in the dataset.
The visualization of the shapes differences was made
with Thin-plate spline deformation grids. Multivariate
analysis of variance (MANOVA) and discriminant
function analysis (DFA) were used to evaluate the sig-
nificance and the visualization of the main traits of dif-
ference in molar shape between the two samples. The
reliability of the separation was assessed with a leave
one-out cross-validation with 1000 permutations.
The form analysis performed with MANOVA and
discriminant linear analysis using log-CS and the most
important principal components.
Statistical analyses were performed using tpsDig,
tpsRelw 1.45 (Rohlf, 2010), MorphoJ 1.02b (Klingenberg,
2008), PAST version 2.08b (Hammer et al., 2001), SPSS
version 13.00 and Excel package program.
Results and discussions
Assemblage variability
The archaeological representation of beavers is detailed
in Table 1. It demonstrates that, in general, beaver
remains constitute a small proportion of archaeological
animal bone assemblages, although there is some inter-
period and -regional variation. Overall, their NISP
decreases from Neolithic (average of 0.85%) to the Mid-
dle Ages (average of 0.11%). The highest frequency was
revealed in Wallachia (average of 1.33%) and Dobrudja
(average of 0.83%) in Neolithic; the smallest frequencies
of beaver remains were identified in archaeological sites
dating from Middle Ages in Dobrudja (average of
0.1%) and Antiquity in Wallachia (average of 0.1%).
In order to identify the relationships between
regions and periods, we used CA based on frequencies
of Castor fiber remains from archaeozoological samples
(Greenacre, 2002). The results are projected on the
first two principal axes which accounted for 86.43%
of the overall variance (the first axis 59.75% and the
second axis 26.68%). Eigenvalues and variances of the
377Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Table 1. Frequencies of beaver remains (NISP) in archaeozoological samples; percentages of wild mammal and beaver remains are reported to the total mammal remains
Region Period Culture/Epoch Sample Reference
Total
mammals
Total wild
mammals
Beaver
(Castor
fiber)
NISP NISP %NISP %
Banat Mesolithic ~ 8000–6500
CAL BC
Ostrovul Banului Balasescu, unpublished 308 238 77.27 13 4.22
Ostrovul Corbului Haimovici, 1987 1689 1651 97.75 4 0.23
Neolithic (including
Chalcolithic) ~
6600–3000 CAL BC
Star
cevo-Cris ~6600–
5500 CAL BC
Moldova Veche Rat El Susi, 1996 424 186 43.86 2 0.47
Dudestii Vechi El Susi, 2001 546 263 48.16 2 0.36
Foeni-Gaz El Susi, 2001 502 99 19.72 1 0.19
Pojejena-Nucet El Susi, 1996 210 102 48.57 1 0.47
Vin
ca ~ 5500–4500
CAL BC
Gornea Caunita El Susi, 1987 1612 482 29.90 1 0.06
Foeni El Susi, 1998 3765 959 25.47 2 0.05
Foeni Cimitirul Ortodox El Susi, 2003 16037 3920 24.44 10 0.06
Liubcova-Ornita Necrasov et al., 1977 4774 1338 28.02 6 0.12
Liubcova-Ornita Luca, 1998 1668 805 48.26 2 0.11
Parta I El Susi, 1995 4296 2257 52.53 1 0.02
Parta tell II El Susi, 1998 2012 604 30.01 4 0.19
Salcuta ~4600–4000
CAL BC
Cuptoare-Sfogea El Susi, 1993 887 397 44.75 1 0.11
- Parta Bolomey, 1988 2095 590 28.16 1 0.04
Bronze Age ~
3000–1150
CAL BC
Cotofeni ~ 3000–2800
CAL BC
Moldova Veche-Ostrov El Susi, 1993; El Susi, 1995;
El Susi, 1996
1058 362 34.21 6 0.56
- Foeni Cimitirul Ortodox El Susi, 2001 1365 363 26.59 2 0.14
Middle Ages XI
th
–XIII
th
centuries Moldova Veche Rat El Susi, 1996 361 73 20.22 2 0.55
Dobrudja Neolithic (including
Chalcolithic) ~
6600–3000 CAL BC
Hamangia ~ 5200–4800
CAL BC
Cernavoda Balasescu et al., 2005 354 225 63.55 21 5.93
Boian ~ 5300–4600
CAL BC
Isaccea Balasescu et al., 2005 795 257 32.32 15 1.88
Gumelnita ~4600–3500
CAL BC
Carcaliu Haimovici, 1996 481 275 57.17 4 0.83
Harsova Balasescu et al., 2005 5310 1273 23.97 32 0.60
Luncavita Balasescu, 2003; Balasescu
et al., 2005
924 488 52.81 2 0.21
Navodari Balasescu et al., 2005 425 96 22.58 1 0.23
Cernavoda ~4200–3700
CAL BC
Harsova Balasescu et al., 2005 358 143 39.94 8 2.23
Cernavoda Haimovici & Ureche, 1968 285 52 18.24 1 0.35
Antiquity IV
th
–VI
th
centuries Garvan-Dinogetia Haimovici, 1991 106 10 9.43 1 0.94
IV
th
–VII
th
centuries Murighiol El Susi, 2008 2849 605 21.23 5 0.17
Middle Ages X
th
–XI
th
centuries Oltina Stanc & Bejenaru, 2005;
Stanc, 2006
940 60 6.38 2 0.21
Capidava Haimovici & Ureche, 1979 1028 66 6.42 1 0.09
XI
th
–XII
th
centuries Piatra Frecatei Stanc, 2009 3920 843 21.50 5 0.12
XI
th
–XIII
th
centuries Isaccea Bejenaru, 2003; Bejenaru,
2007;
Bosniceanu, 2008; Cot, 2008
6890 481 6.98 2 0.02
Harsova Bejenaru, 1995; Bejenaru, 2003 698 57 8.16 1 0.14
Moldavia Neolithic(including
Chalcolithic)
~ 6600–3000 CAL BC
Linear Pottery ~ 5500–
5000 CAL BC
Traian Dealul Fintinilor Necrasov & Bulai-Stirbu, 1965 553 207 37.43 2 0.36
Traian Dealul Viei Necrasov & Bulai-Stirbu, 1965 7650 1149 15.01 31 0.40
(Continues)
378 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Table 1. (Continued)
Region Period Culture/Epoch Sample Reference
Total
mammals
Total wild
mammals
Beaver
(Castor
fiber)
NISP NISP %NISP %
Precucuteni ~ 5200–
4600 CAL BC
Isaiia Coroliuc, 2009 1162 247 21.25 1 0.08
Targu Frumos Coroliuc, 2009 17912 3541 19.76 9 0.05
Tirpesti Necrasov & Stirbu, 1979 4320 231 5.34 5 0.11
Cucuteni ~4600–3700
CAL BC
Cucuteni Baiceni Haimovici, 1969 693 134 19.33 1 0.14
Draguseni Bolomey & El Susi, 2000 2471 722 29.21 3 0.12
Fulgeris Haimovici & Vornicu, 2005 673 193 28.67 3 0.44
Hoisesti Cavaleriu & Bejenaru, 2009 1557 635 40.78 1 0.06
Mihoveni Haimovici, 2004 157 27 17.19 1 0.63
Poduri Cavaleriu & Bejenaru, 2009 3260 443 13.58 10 0.30
Poduri Oleniuc, 2010 8967 929 10.36 12 0.13
Preutesti-Halta Haimovici, 2003;
Haimovici, 2004
86 24 27.90 1 1.16
Tirpesti Necrasov & Stirbu, 1981 1505 151 10.03 2 0.13
Tirpesti Necrasov & Bulai-Stirbu, 1965 427 36 8.43 1 0.23
Traian Dealul Fintinilor Necrasov & Bulai-Stirbu, 1965 2006 1033 51.49 40 1.99
Trusesti Haimovici, 1960 394 215 54.56 1 0.25
Horodistea-
Foltesti ~ 3700–3500
CAL BC
Foltesti Haimovici, 1972 188 64 34.04 1 0.53
Horodistea Haimovici & Popescu, 1978;
Haimovici, 1979
473 140 29.59 1 0.21
Bronze Age
~3000–1150 CAL BC
Monteoru ~2300–1600
CAL BC
Bogdanesti Haimovici, 1966 671 49 7.30 2 0.29
Mindrisca Haimovici, 1980 3135 259 8.26 10 0.31
Noua ~ 1600–1150
CAL BC
Girbovat Haimovici, 1991 6773 174 2.56 1 0.01
Piatra Neamt Haimovici, 1964 610 56 9.18 6 0.98
Iron Age ~ 1150
CAL BC–100 AD
Hallstatt ~ 1150–450
CAL BC
Siret-Dealul Ruina Haimovici, 2004 190 23 12.10 1 0.52
Stincesti Haimovici, 1974 9675 1525 15.76 4 0.04
La Tene ~ 450 CAL
BC–100 AD
Brad Marian, 2008; Haimovici,
unpublished
8370 1018 12.16 23 0.27
Piatra Soimului Haimovici, 1993 929 204 21.95 2 0.21
Poiana-Tecuci Marian, 2008 7029 394 5.60 1 0.01
Poiana Dulcesti-Varnita Haimovici & Teodorescu, 1995;
Haimovici, 2000
1079 22 2.03 2 0.18
Racatau Marian, 2008 7327 243 3.31 2 0.02
Vladiceni Haimovici & Panove, 1990;
Haimovici, 2000
1799 24 1.33 1 0.05
Carniceni Tarcan-Hriscu, 1995 584 31 5.30 1 0.17
Middle Ages VII
th
–VIII
th
centuries Lozna Strateni Haimovici, 1986 721 62 8.59 1 0.13
Middle Ages VIII
th
–IX
th
centuries Poiana Stanc & Bejenaru, 2003;
Stanc, 2006
867 69 7.95 1 0.11
Modern period XIX
th
century Negrilesti Balasescu & Radu,
unpublished
69 1 1.44 1 1.44
Muntenia Neolithic(including
Chalcolithic)
~ 6600–3000 CAL BC
Starcevo-Cris ~6600–
5500 CAL BC
Magura Balasescu & Radu,
unpublished
4398 368 8.36 7 0.15
Seciu Popa et al., 2011 10 1 10.00 1 10.00
Boian ~ 5200–4600
CAL BC
Laceni Balasescu et al., 2005 226 53 23.45 1 0.44
Silistea Balasescu et al., 2005 141 45 31.91 2 1.41
(Continues)
379Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Table 1. (Continued)
Region Period Culture/Epoch Sample Reference
Total
mammals
Total wild
mammals
Beaver
(Castor
fiber)
NISP NISP %NISP %
Vladiceasca Balasescu & Udrescu, 2005 2655 352 13.25 1 0.03
Izvoarele Necrasov & Gheorghiu, 1970 1136 67 5.89 4 0.35
Radovanu Stirbu, 1980 4239 378 8.91 7 0.16
Gumelnita
~ 4600–3500
CAL BC
Seciu Popa et al., 2011 259 97 37.45 2 0.77
Bordusani Balasescu et al., 2005 9317 2054 22.04 97 1.04
Insuratei Balasescu et al., 2005 581 281 48.36 1 0.17
Bucsani Balasescu et al., 2005 808 289 35.76 21 2.59
Cascioarele Balasescu et al., 2005 2829 2378 84.05 16 0.56
Gumelnita Necrasov & Haimovici, 1966 2325 291 12.51 1 0.04
Vitanesti Balasescu et al., 2005 12751 7970 62.50 478 3.74
Cucuteni ~4600–3700
CAL BC
Sarata Monteoru Bejenaru et al., 2011 875 118 13.48 1 0.11
Cernavoda I ~ 4200–3700
CAL BC
Rimnicelu Balasescu et al., 2005 2838 874 30.79 9 0.31
Saveni Balasescu & Radu,
unpublished
641 130 20.28 1 0.15
Bronze Age
~3000–1150
CAL BC
Glina ~ 3000–2500
CAL BC
Glina Haimovici, 1997 1416 37 2.61 8 0.56
Moara Vlasiei Popa & Balasescu,
unpublished
312 181 58.01 4 1.28
Monteoru ~2500–1600
CAL BC
Monteoru Haimovici, 1994 441 55 12.47 1 0.22
Tei ~2500–1600
CAL BC
Militari Campul lui Boja Moise, 2000 77 4 5.19 1 1.29
- Popesti Haimovici, 1963 184 14 7.60 1 0.54
Iron Age ~ 1150
CAL BC–100 AD
La Tene ~450
BC–100 AD
Cirlomanesti Udrescu, 1985 2820 125 4.43 3 0.10
Radovanu Udrescu, 1985 3916 205 5.23 18 0.45
Piscul Crasani Udrescu, 1985 4955 238 4.80 3 0.06
Vladiceasca Udrescu, 1990 1905 261 13.70 1 0.05
Pietroasa Mica-Gruiul Darii Stan & Balasescu, 2006 1195 38 3.17 1 0.08
Gradistea Udrescu, 1992 573 124 21.64 3 0.52
Oltenia Neolithic (including
Chalcolithic) ~
6600–3000 CAL BC
Star
cevo-Cris ~6600–
5500 CAL BC
Carcea-La Viaduct Balasescu et al., 2005 349 38 10.88 2 0.57
Gumelnita ~4600–3500
CAL BC
Draganesti Olt Balasescu et al., 2005 719 211 29.34 2 0.27
Draganesti Olt Balasescu et al., 2005 1515 623 41.12 5 0.33
Salcuta ~4600–4000
CAL BC
Draganesti Olt Balasescu et al., 2005 994 487 48.99 1 0.10
Antiquity Roman ~ 50 BC–400 AD Stolniceni Udrescu, 1979 932 74 7.93 1 0.10
Transylvania Neolithic (including
Chalcolithic) ~
6600–3000 CAL BC
Star
cevo-Cris ~6600–
5500 CAL BC
Gura Baciului Bindea, 2008 414 35 8.45 1 0.24
Letul Vechi Necrasov &
Bulai-Stirbu, 1970
49 3 6.12 1 2.04
Cluj-Cheile-Turzii-Lumea
Noua-Iclod
(CCTLNI) ~ 5500–5000
CAL BC
Cheile Turzii Bindea, 2008 218 32 14.67 1 0.45
Iclod El Susi, 1993 3828 1784 46.60 3 0.07
Cheile Turzii Bindea, 2008 340 52 15.29 1 0.29
(Continues)
380 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
first two axes are presented in Table 2, where the con-
tributions of variables are also presented. Figure 2 shows
how the region points plot in relation to the period
points, the resulting patterns revealing the association
between the two. For instance, the Mesolithic point
plots near the Banat point because Banat is the only
region where Mesolithic beaver remains were found.
However, the Banat region also produced considerable
quantities of beaver remains dating to the Middle Ages.
Thus, these three variables (Banat, Middle Ages and
Mesolithic) have a great contribution to Axis 1; all the
sites of this group are situated on the banks of the
Danube. Along to Axis 2 Dobrudja and Antiquity as
closely associated. The association between Wallachia,
Moldavia and Transylvania is explained by the similar
values of beaver frequencies obtained for Bronze Age
and Iron Age in these regions (Figure 2).
Overall, the Mesolithic and Neolithic appear to
have been periods of relatively significant use of bea-
vers by people. The beaver evidence from Mesolithic
comes from two sites situated in the Iron Gates gorge
section of the Danube Valley, on the left bank (Figure
S1a), dated for 8100 to 7630 BP (Bonsall et al., 2002).
The distribution of Neolithic evidences extends across
almost the entire territory of Romania, with finds of
beaver remains corresponding to watercourses, in par-
ticular the Danube River and its tributaries (Figure
S1a). It seems probable that, in Neolithic, both beavers
and human farming communities were important insti-
gators of environmental changes. From the Neolithic
to the Middle Ages, as humans intensified their
exploitation of domestic resources, beaver populations
probably reduced because their habitat along
Table 1. (Continued)
Region Period Culture/Epoch Sample Reference
Total
mammals
Total wild
mammals
Beaver
(Castor
fiber)
NISP NISP %NISP %
Petresti ~4800–4400
CAL BC
Cucuteni ~4600–3700
CAL BC
Bod Bindea, 2008 + + +
Ariusd Bindea, 2008 + + +
Tiszapolgar ~4400–3700
CAL BC
Santana Bindea, 2008 230 24 10.43 2 0.86
Cheile Turzii Bindea, 2008 291 59 20.27 2 0.68
Herpaly ~4000–3400
CAL BC
Pestis Bindea, 2008 + + +
Bronze Age
~3000–1150 CAL BC
Otomani ~2500–1600
CAL BC
Otomani Haimovici, 1987 2244 275 12.25 2 0.08
Salacea Bindea, 2008 5400 1499 27.75 1 0.01
Mediesu Aurit-Potau Bindea, 2008 1330 328 24.66 17 1.27
Noua ~16001150
CAL BC
Zoltan Bindea, 2008;
El Susi, 2002
5463 432 7.90 10 0.18
Iron Age ~1150
CAL BC–100 AD
Hallstatt ~ 1150450
CAL BC
Bernadea El Susi, 2001;
Bindea, 2008
280 39 13.92 1 0.35
La Tene ~ 450
CAL BC–100 AD
Meresti Bindea, 2008 659 82 12.44 1 0.15
Simleu Silvaniei Bindea, 2008 1010 418 41.38 5 0.49
Antiquity Roman ~ 50 BC–400 AD Micia Udrescu, 1985 1789 123 6.87 3 0.16
Table 2. Eigenvalues and scores for the two principle axes.
Eigenvalues and variance percentages
F1 F2
Eigenvalue 0.666 0.297
% variance 59.757 26.680
Cumulative % 59.757 86.437
Contributions of the periods (%):
F1 F2
Mesolithic 51.18 2.44
Neolithic 12.86 0.01
Bronze Age 0.35 20.30
Iron Age 2.73 31.72
Antiquity 12.66 44.03
Middle Ages 20.21 1.51
Contributions of the regions (%):
F1 F2
Banat 72.94 1.55
Dobrudja 15.76 56.38
Moldavia 0.00 7.74
Walachia 7.15 14.86
Transylvania 4.15 19.46
381Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
watercourses was also the preferred area for farming com-
munities to settle. Furthermore, Coles (2006) has sug-
gested that beaver structures and accumulations of wood
may have been targeted by humans for their own use,
which may also have impacted upon beaver populations.
At the beginning of the second millennium A.D.,
the beaver was still living on the Danube banks,
proven by the discoveries in Oltina (Stanc, 2009),
Capidava (Haimovici & Ureche, 1979), Harsova
(Bejenaru, 2003), Piatra Frecatei (Stanc, 2009) and
Moldova Veche (El Susi, 1996). The first four sites
are in Dobrudja, the last is in Banat. The archaeozoo-
logical evidence of beaver for these settlements fits
with the relative high frequencies of game at these
sites (Bejenaru et al., 2010), probably due to rich and
diversified biotopes found in the valley of the Danube
River. Still, one should mention that the all four set-
tlements from Dobrudja are Byzantine military forts
where hunting must have also been a regular practice.
The historical sources also indicate the presence of
the beaver in other regions of Romania (Transylvania,
Moldavia). The medieval documents of Transylvania,
dating to A.D. 1211–1452, often mention the Hungarian
term ‘hodos’,whichmean‘places with a lot of beavers’,
and also refer to specialist beaver hunters. In the 14
th
century, according to the documents, the beavers were
still abundant in Transylvania. They were caught when
young and maintained in captivity for their delicious meat
and for their fur. Place-names derived from ‘hodos’or from
‘breb’(the old Romanian term for beaver) have stayed in
use, even after beaver numbers had declined. In present
day, at least six rural settlements from Transylvania have
names derived from ‘hodos’(Hodos/Hodosa/Hodis), and
about 11 rural settlements from entire Romania have
names derived from ‘breb’(Brebu/Breb/Brebi/Brebeni/Brebina)
(http://enciclopediaromaniei.ro).
After the 18
th
century, all evidence for the presence
of the beaver becomes scarce. They are documented
for the last time in 1823, when the pharmacist Schmitz
wrote that beavers were living on the Danube shores
(settlement of Moldova Veche) (Nania, 1991). A single,
but important, archaeological specimen of beaver tooth
from a 19
th
century pit excavated at Negrilesti (Galati
County, Figure S1d) could be evidence that the beaver
survived in Romania until the Modern Period, living in
remote, wild and inaccessible places.
Morphological and biometrical characteristics
Much of the metrical data considered in this paper were
recorded by different specialists; therefore, the Grubs’s
test was applied to correct for measurement errors.
Univariate analysis was performed for all variables. The
lack of abundant samples from different historical peri-
ods rendered it more difficult to study inter-population
variability. The differences between means of variables
were tested with Difference Index: DI% = (greater
valuesmall value/greater value) 100 (Ocal et al.,
2004). We described the variability using coefficient of
variation (CV% = SD/M*100). Differences between
variables from different region and periods were tested
with one-way ANOVA. Relationships between length
and width of molars were reported by means of correla-
tion (Pearson’scoefficient) and regression analysis.
Univariate analysis of skeletal elements. The most representa-
tive indices which characterized a population are given
in Tables 3. Comparisons were not performed for all
variables because the number of samples for each mea-
surement differs.
The sorting of variables of anatomical elements by
decreasing value of CV% highlights the largest variations
for LG in scapula (CV: 17.92%) and length of the
(axes F1 and F2: 86.44 %)
Mesolithic
Neolithic
Bronze Age
Iron Age
Antiquity
Middle Ages
Banat
Dobrudja
Moldavia
Walachia
Transylvania
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
-1.5 -1 -0.5 0 0.5 1 1.5 2
-- axis F1 (59.76 %) -->
-- axis F2 (26.68 %) -->
Figure 2. Plot of the correspondence analysis (bi-dimensional representation).
382 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Table 3. Variation in size of anatomical elements: n - number of analyzed specimens; SD - standard deviation; Min - minimum; Max -
maximum range; CL - confidence level; CV - coefficient of variation. Abbreviations of variables are described in Table S1 (according to
von den Driesch, 1976)
Period Variable n Mean SD Min Max CL (95%) CV%
Maxilla
Neolithic 9 9 38.36 2.04 35 40.2 1.57 5.32
10 4 50.67 1.53 49.2 52 - -
Mandible
Mesolithic 1 - - - - - - -
2 1 37.3 - - - - -
3 1 63.5 - - - - -
4-- - - - - -
5-- - - - -
5a - - - - - - -
LS - - - - - - -
Neolithic 1 5 103.1 13.73 81.5 116 17.05 13.32
2 56 37.94 2.12 32.5 41.7 0.57 5.58
3 22 65 4.64 55.5 73.6 2.06 7.14
4 23 26.8 3.08 23 33.8 1.33 11.5
5 18 53.83 4.19 45.5 59.6 2.08 7.78
5a 17 48.62 4.45 40.8 56 2.29 9.14
LS 22 45.9 4.95 37 54.3 2.19 10.78
Bronze Age 1 2 98.5 3.54 96 101 - -
2 5 35.2 3.27 31 40 4.06 9.29
3-- - - - - -
4 1 33 - - - - -
5 1 57 - - - - -
5a - - - - - - -
LS 2 45.5 - 45 46 - -
Lower dentition
Neolithic LP
4
39 9.53 1.41 6.91 12.42 0.46 14.84
BP
4
39 7.64 0.81 5.7 10 0.26 10.64
LM
1
45 8.59 0.57 7.47 10 0.17 6.61
BM
1
45 8.21 0.71 6.86 9.74 0.21 8.64
LM
2
42 8.26 0.56 7.12 9.54 0.17 6.77
BM
2
41 8.06 0.86 6.51 9.89 0.27 10.62
LM
3
37 8.19 0.66 7.14 9.54 0.22 8.05
BM
3
37 6.9 0.86 3.74 9 0.29 12.53
LM
1
–M
3
36 26.26 1.32 23.78 28.73 0.45 5.05
Iron Age LP
4
19 9.57 1 7.31 11.6 0.48 10.48
BP
4
18 8.78 0.69 7.31 9.88 0.34 7.88
LM
1
20 8.71 0.6 7.46 9.94 0.28 6.94
BM
1
19 8.91 0.74 7.46 10.3 0.36 8.31
LM
2
19 8.61 1.01 7.27 11.46 0.49 11.71
BM
2
18 8.5 0.81 7.27 9.94 0.4 9.52
LM
3
15 7.94 0.93 6.31 9.29 0.52 11.73
BM
3
14 7.14 0.56 6.31 8.33 0.33 7.89
LM
1
–M
3
10 27.05 1.97 24 30.4 1.41 7.29
Scapula
Chalcolithic (Gumelnita Culture:
assemblage of Bordusani)
SLC 2 15.9 - 15.3 16.5 - -
GLP 1 24.5 - - - - -
BG 2 13.35 - 13.2 13.5 - -
Chalcolithic (Gumelnita Culture:
assemblage of Harsova)
HS 1 94 - - - - -
SLC 3 13.23 0.4 13 13.7 - -
GLP 2 22.65 - 22.5 22.8 - -
LG 3 19.83 0.76 19 20.5 - -
BG 4 12.5 0.24 12.2 12.8 - -
Chalcolithic (Gumelnita Culture:
assemblage of Vitanesti)
HS 1 86 - - - - -
SLC 13 14.05 0.97 12 15.5 0.59 6.89
GLP 11 22.36 0.83 21 24 0.56 3.7
LG 12 18.33 3.29 12.4 21.5 2.09 17.92
BG 15 13.61 0.63 13 14.8 0.35 4.6
(Continues)
383Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
premolar P
4
(CV: 14.84%); the lowest variation (CV:
2.91%) was showed in Dd of humerus.
Comparative analysis of the dentition of Neolithic and
Iron Age beavers revealed some significant differences for
the lower premolar (P
4
) and the lower first molar (M
1
).
Premolar in Iron Age are wider (DI = 12.98%), and CV
% are larger than in Neolithic period (one-way ANOVA:
F= 18.3; p= 0.000). In case of M
1
it is also obvious
that Iron Age beaver teeth were wider (DI = 7.85%)
(One-way ANOVA: F= 7.75; p= 0.008). There were no
significant inter-period differences in molar length
(Table 3). No size significant difference was observed in
the lower third molar (M
3
), but a greater variability in form
was observed, which was reviewed by geometric
Table 3. (Continued)
Period Variable n Mean SD Min Max CL (95%) CV%
Humerus
Chalcolithic GL 6 92.28 3.7 89 98.8 3.89 4.01
GLC 4 92.43 4.45 89 98.5 - -
Bp 8 27.96 1.84 25 31 1.54 6.57
Dp 6 21.15 1.03 19.6 22 1.08 4.87
SD 18 11.19 1.07 9 13.3 0.53 9.54
Bd 31 33.49 1.38 31 37 0.51 4.12
Dd 18 11.77 0.34 11.2 12.5 0.17 2.91
Bronze Age Bd 4 31.13 1.03 30 32 - -
Iron Age Bd 2 27 - 23 31 - -
Ulna
Chalcolithic (Gumelnita Culture:
assemblage of Bucsani)
LO 2 26.5 - 25.5 27.5 - -
DPA 19 16.67 1.02 15 18.8 0.49 6.13
SDO 17 13.38 1.04 12 15 0.54 7.8
BPC 24 13.29 1.02 11 14.8 0.43 7.64
Pelvis
Chalcolithic (Gumelnita Culture:
assemblage of Bordusani)
LA 3 24.73 0.46 24.2 25 - -
LAR 3 21.43 0.49 21.1 22 - -
SH 3 15.23 1.78 13.2 16.5 - -
SB 4 16 1.98 13.2 17.7 - -
LFo 1 63.2 - - - - -
Chalcolithic (Gumelnita Culture:
assemblage of Harsova)
LA 4 23.48 2.46 20.2 26 - -
LAR 3 21.83 1.26 20.5 23 - -
SH 6 14.12 0.69 13.5 15 0.73 4.92
SB 5 13.24 1.93 10 14.8 2.4 14.58
LFo 1 54.2 - - - - -
Chalcolithic (Gumelnita Culture:
assemblage of Vităneşti)
LA 13 24.22 1.77 21 26.8 1.07 7.3
LAR 10 21.77 0.74 20.8 22.8 0.53 3.39
SH 18 14.38 1.54 12.2 16.6 0.76 10.69
SB 18 14.52 1.47 11.5 16.7 0.73 10.13
LFo 1 52 - - - - -
Femur
Early Neolithic Bd 1 39 - - - - -
Dd 1 28.5 - - - - -
Middle Neolithic Bp 2 45 - 42 48 - -
SD 2 23.5 - 22 25 - -
Chalcolithic GL 2 122.5 - 122 123 - -
GLC 2 116.25 - 115 117.5 - -
Bp 8 45.35 1.8 42 48 1.5 3.97
BTr 23 43.21 3.54 35.5 50 1.53 8.2
Dp 1 28.6 - - - - -
DC 9 17.68 0.58 17.2 19 0.44 3.27
SD 19 24.05 1.46 21.8 28 0.7 6.05
Bd 12 39.75 1.66 36.5 41.3 1.05 4.16
Dd 6 28.4 2.69 24 31.8 2.83 9.48
Tibia
Chalcolithic (Gumelnita and
Cucuteni Cultures)
GL 3 144.5 4.44 139.5 148 - -
Bp 7 36.8 1.33 35.2 39 1.23 3.62
Dp 9 32.41 2.98 29 37 2.29 9.21
SD 34 11.68 0.84 9.5 13.2 0.29 7.19
Bd 17 22.64 1.1 20 24.8 0.56 4.85
Dd 8 18.86 0.97 17.5 20.2 0.81 5.13
384 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
morphometric approach. We can classify the analyzed M
3
specimens as belonging to three main forms (Figure 3):
a) basic pattern: (3 + 1 folds): paraflexid, mesoflexid,
paraflexid and hypoflexid;
b) islet between paraflexid and mesoflexid;
c) paraflexid isolated and ramified.
Most of the analyzed material (almost 60%) belongs
to the first type (‘a’) and 30% belong to the second type
(‘b’). The rest of material showed the intermediate forms
between these two types and the third type (‘c’). In both
periods, Neolithic and Iron Age, the proportion of the
three types of form is similar. The presence of an islet
resulting from the fusion of paraflexid and mesoflexid
was also recorded by Mayhew (1979) in a subfossil
Anglian sample, with the mention that the analyzed M3
cover the first10yearsoflife,andsosuchanisletis
not related in a clear way to age.
Bivariate analysis of dentition. The specimens for which
bivariate analysis was undertaken date from the Neolithic
period (samples of Bucsani and Vitanesti, from Muntenia)
and the Iron Age (sample of Brad, from Moldavia). The
results of the dentition correlation analysis are given in
Table S3. A positive and significant correlation was found
between the length and breadth of the molars, excepting
the lower second molar (M
2
) for which the relationship
between these two variables was insignificant
(p= 0.076). The strongest correlation was revealed for
Neolithic teeth (P
4
and M
2
)(r>0.8, p= 0.000), while
the relationship between length and breadth of the lower
first and third molar (M
1
and M
3
) are almost the same for
these two historical periods (r=0.6, p<0.05).
The regression equations for the data, which can be
useful in archaeozoological studies where whole bones
are seldom available, are presented in Figures S2–S5.
The coefficient of determination R
2
is also related in
scatterplots. It is the proportion of variability in the data
set that is accounted for by the statistical model, and
the major function of this is the prediction of future
outcomes on the basis of other related information.
In the correlation analysis, a stronger association
between the length and breadth of the premolars and
molars investigated is more obvious for the Neolithic
contexts than those dating to the Iron Age. The result
of the linear regression shows the same thing; the
coefficient of determination R2 marks a stronger rela-
tionship between variables of molar in Neolithic con-
text (the R2 values for all Neolithic molars are more
than 0.5). The same degree of association was observed
for the variables in the lower third molar (M
3
). The
same degree of correlation could be explained through
the molar’s lack of freedom to grow in length, because
of the limited size of the jaw and its caudal position
(Stefen, 2009).
Geometric morphometric (size and shape) analysis of the lower
third molar (M
3
). One-way ANOVA tests show insig-
nificant differences between M
3
size in the Neolithic
and Iron Age samples (F= 0.26; p= 0.6): the distribu-
tion of the log-transformed CS shows that the range
of M
3
sizes of Neolithic beavers overlaps with those
from the Iron Age (Figure S6).
The phenetic relationships between the Neolithic and
Iron Age samples are displayed on the first three
principal components which summarize 84.16% of total
variance (Figure 4, Table 4). Along PC1 (57.19%), the
trend in shape is towards the narrow and the paraflexid
tends to anterior position; along PC2 (15.65%), the
shape tends to be wider and shorter; the paraflexid and
hypoflexid tend to be deeper (Figure 5). The trends
along the PC3 are as paraflexid becomes deeper, meta-
flexid and hipoflexid become shorter, and the distal part
of molar is reduced.
Figure 3. The lower third molar (M
3
)ofCastor fiber: variation in wear surface enamel pattern in studied material (a: basic pattern; b: islet between par-
aflexid and mesoflexid; c: paraflexid isolated and ramified; scale: 5 mm).
385Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
DFA on apriorigroups yielded a high level of separation
among shape of M
3
among groups (Mahalanobis distance:
49.48; P-value <0.0001). P-values for permutation tests
(1000 permutation runs) confirm the significant differences
(Procrustes distance: <.0001. T-square: <.0001) (Figure S7).
The M
3
shape changes between Neolithic and Iron Age
beavers. This is evidenced by the direction of the vectors
on landmarks (excepting landmarks 4, 5 and 6) showing
that in Iron Age period, the M
3
of beavers were wider
than M
3
in Neolithic beavers; the M
3
of Iron Age spe-
cimens exhibit a posterior displacement of paraflexid
and anterior displacement of hypoflexid (Figure 6).
MANOVA and DFAs provide a highly significant
discrimination of pattern of M
3
form in Neolithic and
Iron Age samples with 100% of correct classification by
leave-one-out cross-validation (Hotelling’s t2 = 516.88;
F= 50.95; p<0.05). Logarithm CS and the first
seven principal components were used as variables in this
analysis.
Figure 4. Distribution of M
3
specimens in PCA; projection on the three principal components (grey - Neolithic; black - Iron Age).
Table 4. PCA for the lower third molar (M
3
): eigenvalues and
variance
PC Eigenvalues %Variance %Cumulative
1 0.00559988 57.194 57.194
2 0.00153282 15.655 72.850
3 0.00110771 11.314 84.163
4 0.00050008 5.108 89.271
5 0.00036020 3.679 92.949
6 0.00029748 3.038 95.988
7 0.00021915 2.238 98.226
8 0.00013631 1.392 99.618
9 0.00002007 0.205 99.823
10 0.00000739 0.075 99.899
11 0.00000398 0.041 99.939
12 0.00000286 0.029 99.968
13 0.00000144 0.015 99.983
14 0.00000074 0.008 99.991
15 0.00000048 0.005 99.996
16 0.00000027 0.003 99.998
17 0.00000011 0.001 100.000
18 0.00000005 0.000 100.000
386 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
The intraspecific morphological variability of the
lower third molar (M
3
) derives most probably from en-
vironmental variation and geographically separation of
the analyzed populations. Phenotypic variation within
castor populations might indicate different genetic
and non-genetic factors. Considering that all of the evi-
dence examined comes from human exploitation of bea-
ver, we cannot exclude a possible correlation between
the shape of the lower third molar (M
3
) and another
morphological character, which could have been a cri-
terion for human in selection. If differences in shape are
not associated with a reduction of genetic fluxes, these
differences could depend on vegetation (dietary prefer-
ence), physical geography or other environmental fac-
tors, which may have favoured local adaptations of
species. The high plasticity of teeth to respond to chan-
ging ecological niches even at a microscopic level (i.e.
variation in tooth shape) would convey a strong evolu-
tionary advantage (Seetah et al., 2012).
Conclusions
Based on the archaeozoological evidence, the beaver
(Castor fiber) and the people from the territory of Romania
have interacted for many millennia. This mammal
Figure 5. Trend in M
3
shape along the principal components (PC1, PC2 and PC3).
Figure 6. Vectors in M
3
shape change from the mean shape of Neo-
lithic beavers to the mean shape of Iron Age specimens.
387Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
species has provided nutritional, economical and cul-
tural/spiritual sustenance to human communities from
the Romanian past.
The frequency of beavers in the archaeozoological
record varies from one period to another, as well as from
region to region, mainly due to local environmental and
cultural factors. The beaver is generally present only in
low frequencies, which decline progressively from the
Neolithic to Middle Ages, mainly as result of an excess
of hunting, combined with forest clearance and other
environmental pressure. However, archaeological and
documentary evidence indicate that the extinction of
the Romanian beaver occurred relative recently, in the
19
th
century. A rising human population must be largely
responsible for the beaver’s population decline and
probably also resulted in the extinction of other species,
such as the aurochs, and the bison. As a paleoecological
indicator for aquatic and forested places, the beaver is
better represented in the samples found along the
Danube Valley, from Banat as far as Dobrudja.
The beaver assemblages are generally small and
fragmented, making morphometrical analysis difficult.
Despite these problems, our statistical study has revealed
a variability of certain dimensions, in time and space. For
instance, the analysis of beaver teeth, in particular the
morphology of the lower third molar (M
3
), has revealed
that there is a statistically significant intraspecificvaria-
bility between the Neolithic and Iron Age populations,
situated also in different regions, Muntenia and Molda-
via, respectively. This intraspecific variability probably
results from environmental variation and geographically
separation of the analyzed populations, but also prob-
ably as a result of human selection of other characters
correlated with the shape of this tooth.
This paper provides the foundation on which other
projects can now be built. For instance, our morphometric
data offers a baseline for future work on archaeological
and biological specimens, which could potentially become
an important means of distinguishing between genetic
groups within a species. The dataset presented here
also offer a deep-time perspective concerning
human–beaver relationships which will allow changing
patterns of beaver exploitation (e.g. increase in fur trade
or increased human consumption of beaver meat in spe-
cific historical periods) to be examined in more detail.
Acknowledgements
We are grateful to Naomi Sykes for his help in translating
the paper into English.
This study was supported by the Romanian research
programs CNCSIS-PN II Idei_2116/2008 (L. Bejenaru,
S. Stanc); POSDRU/89/1.5/S/49944 (M. Popovici);
and CNCS-UEFISCDI, PN-II-ID-PCE-2011-3-1015
(A. Balasescu). M. Popovici thanks Dr. Thomas Cucchi
and Dr. Chris Klingenberg for introducing in geometric
morphometric analysis.
References
Balasescu A. 2003. L`étude de la faune des mammiferes
decouverts a Luncavita. Peuce I(XIV): 453–468.
Balasescu A, Udrescu M 2005. Materiaux osteologiques
du site eneolithique (niveau Boian, phase Vidra) de
Vladiceasca-Valea Argovei, dep. Calarasi. Studii de preistorie
2: 115–133.
Balasescu A, Radu V, Moise D. 2005. Omul si mediul animal intre
mileniile VII-IV i.e.n. la Dunarea de Jos. Editura Cetatea de
Scaun: Targoviste.
Bejenaru L. 1995. Analiza unui material arheozoologic
apartinand Evului Mediu timpuriu din cetatea Harsova.
Arheologia Moldovei 18: 321–328.
Bejenaru L. 2003. Arheozoologia spatiului romanesc medieval.
Editura Universitatii „Alexandru Ioan Cuza”Iasi.
Bejenaru L. 2007. Date arheozoologice privind cetatea si
asezarea extramuros de la Isaccea-Noviodunum (campa-
niile 2001, 2003-2004). Peuce III-IV: 399–410.
Bejenaru L, Stanc S, Zamfirescu SR. 2010. Wild mammals from
the Middle Ages in Romania. Archaeofauna 19:121–131.
Bejenaru L, Stanc S, Cavaleriu R. 2011. Preliminary analysis of
an archaeozoological assemblage discovered in the
Cucuteni B settlement from Sarata Monteoru (Buzau
County). Analele Stiintifice ale Universitatii „Alexandru Ioan Cuza”
Iasi, s. Biologie animal LVII:141–146.
Berindei D, Candea V (eds.). 2001. Istoria romanilor. Editura
Enciclopedica: Bucuresti.
Bindea D. 2008. Arheozoologia Transilvaniei in pre- si protoistorie.
Editura Teognost: Cluj Napoca.
Bolomey A. 1988. Preliminarii despre resturile de animale
din statiunea neo-eneolitica de la Parta. Studii si Cercetari
de Istorie Veche si Arheologie 39(3): 207–221.
Bolomey A, El Susi G. 2000. The Animals. Draguseni A
Cucutenian Comunity, Marinescu-Bilcu S, Bolomey A (eds.).
Editura Enciclopedica-Wasmuth Verlag: Bucuresti-Tübingen,
159–177.
Bonsall C, Macklin MG, Payton RW, Boroneant A. 2002.
Climate, floods and river gods: environmental change
and the Meso–Neolithic transition in southeast Europe.
Before Farming 2002/3_4 (2).
Bookstein FL. 1991. Morphometric Tools for Landmark Data. Geometry
and Biology. Cambridge University Press: Cambridge.
Bosniceanu C. 2008. Date arheozoologice privind resursele
animale si strategia de exploatare a lor de catre locuitorii
asezarii de la Isaccea. Lucrare de licenta. Universitatea
“Alexandru Ioan Cuza”Iasi, Facultatea de Biologie.
Brehard S, Balasescu A. 2012. What’s behind the tell
phenomenon? An archaeozoological approach of Eneo-
lithic sites in Romania. Journal of Archaeological Science 39:
3167–3183.
388 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Cavaleriu R, Bejenaru L. 2009. Cercetari arheozoologice privind
Cultura Cucuteni faza A. Editura Universitatii „Alexandru
Ioan Cuza: Iasi.
Coles BJ. 2006. Beavers in Britain’s Past. WARP Occasional
Paper 19, Oxbow Books and WARP: Oxford.
Coroliuc A. 2009. Studiul anatomo-comparat al materialului
arheozoologic provenit din statiunea precucuteniana de la
Targu Frumos in corelatie cu materialele din alte statiuni
neo-eneolitice de pe teritoriul Moldovei Centrale. Teza de
doctorat. Universitatea „Alexandru Ioan Cuza”Iasi, Faculta-
tea de Biologie.
Cot I. 2008. Cercetari arheozoologice privind situl medieval
de la Isaccea. Lucrare de licenta. Universitatea “Alexandru
Ioan Cuza”Iasi, Facultatea de Biologie.
Cucchi T, Hulme-Beaman A, Yuan J, Dobney K. 2011. Early
Neolithic pig domestication at Jiahu, Henan Province,
China: clues from molar shape analyses using geometric
morphometric approaches. Journal of Archaeological Science
38:11–22.
von den Driesch A. 1976. A guide to the measurement of animal
bones from archaeological sites. Peabody Museum of Archae-
ology and Ethnology: Harvard University.
Ducroz J-F, Stubbe M, Saveljev AP, Heidecke D, Saamjaa R,
Ulevicius A, Stubbe A, Durka W. 2005. Genetic variation
and population structure of the Eurasian beaver (Castor
fiber) in Eastern Europe and Asia. Journal of Mammalogy
86(6): 1059–1067.
El Susi G. 1987. Economia animaliera a comunitatii vin-
ciene timpurii de la Gornea-Caunita de Sus. Banatica
IX:43–56.
El Susi G. 1993a. La faune de l’établissement énéolithique
de Cuptoare-Sfogea (département Caras Severin). Banatica
12(1): 53–65.
El Susi G. 1993b. Studiul resturilor de fauna din asezarea
culturii Cotofeni de la Moldova Veche Ostrov (Caras-
Severin). Tibiscum 8:35–40.
El Susi G. 1993c. Studiul faunei din asezarea neolitica de la
Iclod. Acta Mvsei Napocensis 26-30, I/1: 187–204.
El Susi G. 1995a. Economia animaliera a comunitatilor neo-
eneolitice de la Parta (jud. Timis). Banatica 13(I): 23–51.
El Susi G. 1995b. The animal husbandry during the late Neo-
lithic and Bronze Age settlements of Danube Valley
(Southern Banat). Spatiul cultural al Dunarii Mijlocii si
Inferioare: traditii si perspective ale convietuirii, Resita, 65–72.
El Susi G. 1996. Vanatori, pescari si crescatori de animale in Banatul
mileniilor VI i.Ch.-I d.Ch. Editura Mirton: Timisoara.
El Susi G. 1998a. Archaeozoological researches in the Neolithical
sites of Foeni (Timis County). The late Neolithic of the middle
Danube region, International Symposium on the Problems of the Transition
from Middle to Late Neolithic in the Middle Danube Region, June 1997.
Editura Eurobit: Timisoara; 139–163.
El Susi G. 1998b. Studiu preliminar al resturilor de fauna din
asezarea neolitica de la Parta-tell II (jud. Timis). Analele
Banatului 6: 129–151.
El Susi G. 2001a. Cercetari arheozoologice preliminare in
situri Starcevo Cris timpurii din Campia Banatului. Fauna
de la Foeni-Gaz si Dudestii Vechi (jud.Timis). Analele
Banatului 9:15–40.
El Susi G. 2001b. Archaezoological Researches. I. The Site
at Foeni-“Cimitirul Ortodox”(Timis County). Fauna of
the Bronze Age Levels. II. The Analyses of the Faunal
Remains from the Hallstattian Site at Bernadea (Mures
County). Thraco-Dacica XXII(1-2): 223–246.
El Susi G. 2002. Cercetari arheozoologice in asezarea de
Epoca Bronzului (cultura Noua) de la Zoltan (jud. Covasna).
Angustia 7:153–172.
El Susi G. 2003. Analogii si diferente intre economiile animal-
iere ale comunitatilor Vinca C si grupul Foeni din Banat.
Banatica 16/1:135–151.
El Susi G. 2008. Data about hunting practices by Halmiris
(Murighiol, Tulcea County) inhabitants in 4
th
-7
th
centur-
ies A.D. Cultura si Civilizatie la Dunarea de Jos 24: 201–210.
Filipascu A. 1969. Salbaticiuni din vremea stramosilor nostri.
Editura Stiintifica: Bucuresti.
Frahnert S, Heidecke D. 1992. Kraniometrische Analyse
Eurasischer Biber, Castor fiber L. (Rodentia, Castoridae)-
Erste Ergebnisse. In Materialen des 2. Internationalen Sympo-
siums Semiaquatische Säugetiere, Schröpfer R, Stubbe M,
Heidecke D (eds.), Martin-Luther Universität: Halle/
Saale; 175–189.
Greenacre M. 2002. The Use of Correspondence Analysis in the
Exploration of Health Survey Data. Fundacion BBVA, 7–11.
Haimovici S. 1960. L’étude de la faune néolithique de Trusesti.
Analele stiintifice ale Universitatii Iasi, Stiinte naturale VI(2):
355–376.
Haimovici S. 1963. Studiul resturilor de fauna din asezarea
de la Popesti, apartinand epocii bronzului. Analele Stiintifice
ale Universitatii “Alexandru Ioan Cuza" Iasi 9(1):147–156.
Haimovici S. 1964. Studiu asupra resturilor de fauna desco-
perite in asezarile apartinand culturii Noua de la Barlad si
Piatra Neamt. Arheologia Moldovei II-III: 217–236.
Haimovici S. 1966. Studiul materialului descoperit in
asezarea din epoca bronzului (cultura Monteoru) de la
Bogdanesti. Arheologia Moldovei IV: 119–136.
Haimovici S. 1969. Studiu preliminar al resturilor de fauna
descoperite in sapaturile din 1961 in statiunea neolitica
de la Cucuteni-Baiceni. Arheologia Moldovei VI: 317–319.
Haimovici S. 1972. Studiul resturilor faunistice provenite din
asezarea apartinand perioadei de trecere de la neolitic la
epoca bronzului de la Foltesti. Arheologia Moldovei 7:97–102.
Haimovici S. 1974. Studiul resturilor faunistice descoperite
in cetatile traco-getice de la Stincesti Botosani (sec. VI-
III i.e.n.) si importanta lor pentru cunoasterea vietii locui-
torilor din aceasta asezare. Din trecutul judetului Botosani,
Muzeul judetean Botosani, 55–62.
Haimovici S. 1979. Caracteristicile paleofaunei din asezarile
perioadei de tranzitie de la eneolitic la epoca bronzului din
Moldova. Studii si cercetari de istorie veche si arheologie 1/30:11–20.
Haimovici S. 1980. Studiul materialului faunistic din asezarea
de la Mindrisca (Valea Seaca) apartinand culturii Monteoru.
Carpica XII:191
–201.
Haimovici S. 1986. Studiul resturilor paleofaunistice din
asezarea de la Lozna-Strateni datand din secolele VII-VIII
e.n. Hierasus VI:83–95.
Haimovici S. 1987a. L’étude de la faune découverte dans
l’établissement mésolithique de Ostrovul Corbului (Culture
389Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Schela Cladovei). La genèse et l’évolution des cultures paléolithiques
sur le territoire de la Roumanie. Bibliotheca Archaeologica Iassiensis
2, Universitatea “Alexandru Ioan Cuza”Iasi, 123-138.
Haimovici S. 1987b. Studiul paleofaunei din asezarea eponima a
culturii Otomani –epoca bronzului. Crisia XVII:37–54.
Haimovici S. 1991a. Studiul arheozoologic al resturilor de la
Dinogetia (Garvan), apartinand epocii romane tarzii. Peuce
X: 355–360.
Haimovici S. 1991b. Materialul faunistic de la Girbovat.
Studiu arheozoologic. Arheologia Moldovei 14: 153–166.
Haimovici S. 1993. Materialul provenit din dava de la Piatra Soi-
mului. Studiu arheozoologic. Thraco-Dacica 14(1–2): 169–177.
Haimovici S. 1994. Studiul unui lot de paleofauna provenit
din asezarea eponima a culturii Monteoru. Arheologia
Moldovei XVII: 309–319.
Haimovici S. 1996. Studiul arheozoologic al materialului
provenit din statiunea gumelniteana de la Carcaliu. Peuce
12: 377–392.
Haimovici S. 1997. Studiul arheozoologic al unui lot de fauna
descoperitin asezarea eponima de la Glina. Thraco-Dacica 18
(1-2): 231–238.
Haimovici S. 2000. Studiul economiei animaliere a dacilor
liberi din nordul si centrul Moldovei (secolele II-III). Studii
si cercetari de istorie veche si arheologie 51(3-4): 175–192.
Haimovici S. 2003. Analiza materialului arheozoologic. Preutesti
Halta. O asezare cucuteniana pe Valea Somuzului Mare, Ursulescu
N, Ignatescu S (eds.). Casa Editoriala Demiurg: Iasi; 95–105.
Haimovici S. 2004a. Studiul unor resturi animaliere prove-
nite din situl cucutenian –faza B –de la Mihoveni. Carpica
33: 317–325.
Haimovici S. 2004b. Studiul materialului arheozoologic
cucutenian de la Preutesti-Halta (jud. Suceava). Suceava.
Anuarul complexului muzeal Bucovina 29-30: 227–238.
Haimovici S. 2004c. Studiul arheozoologic al resturilor
osoase provenite din asezarea hallstattiana de la Siret-
Dealul Ruina (jud. Suceava). Anuarul complexului muzeal
Bucovina 29-30(1): 317–329.
Haimovici S, Panove C. 1990. Studiu arheozoologic asupra
materialului provenit din statiunea din sec. II-III e.n. de la
Vladiceni (jud. Neamt). Thraco-dacica 11(1-2): 253–262.
Haimovici S, Popescu C. 1978. Studiul resturilor faunistice des-
coperite in asezarea de la Horodistea, apartinand perioadei
de trecere de la neolitic la epoca bronzului. Hierasus I:113–120.
Haimovici S, Teodorescu M. 1995. Studiu arheozoologic al
materialului descoperit in doua situri (Varnita si Siliste) de la
Poiana-Dulcesti (jud. Neamt) apartinand dacilor liberi (sec.
II-III d.Hr.). Memoria antiquitatis XX:195–208.
Haimovici S, Ureche R. 1968. Studiul resturilor de fauna
descoperite in statiunea de la Cernavoda (dealul Sofia).
Lucrarile Sesiunii Stiintifice a Statiunii de Cercetari matine „Prof.
Ioan Borcea”Agigea. Editura Universitatii „Alexandru Ioan
Cuza”Iasi, 291-308.
Haimovici S, Ureche R. 1979. Studiul preliminar al faunei
descoperite in asezarea feudala timpurie de la Capidava.
Pontica XII: 157–170.
Haimovici S, Vornicu A. 2005. Studiul arheozoologic al
resturilor faunistice din situl Fulgeris-Cucuteni A (comuna
Pancesti, jud. Bacau). Carpica 34: 355–370.
Hammer , Harper DAT, Ryan PD. 2001. PAST: Palae-
ontological Statistics Software Package for Education
and Data Analysis. Palaeontologia Electronica 4(1): 1–9.
Hatting T. 1969. Age determination for subfossil beavers
(Castor fiber L.) (Mammalia) on the basis of radiographs
of the teeth. Videnskabelige Meddelelser fra Dansk Naturhistorisk
Forening 132: 115–128.
Kitchener AC, Lynch JM. 2000. A morphometric compari-
son of the skulls of fossil British and extant European
beavers, Castor fiber. Scottish Natural Heritage Review 127.
Klingenberg CP. 2008. MorphoJ. Faculty of Life Sciences,
University of Manchester: UK. http://www.flywings.org.
uk/MorphoJ_page.htm
Lavrov LS. 1979. Species of beavers (Castor) of the Palaearctics.
Zoologicheskii Zhurnal 58:88
–96.
Luca SA. 1998. Liubcova-Ornita. Monografie arheologica. Editura
Macarie: Targoviste.
Marian E. 2008. Cercetari arheozoologice asupra davelor
dacice situate pe Valea Siretului (Hierasus). Teza de doc-
torat. Universitatea “Alexandru Ioan Cuza”Iasi, Facultatea
de Biologie.
Mayhew DF. 1978. Age structure of a sample of subfossil
beavers (Castor fiber L.). Development, Function and Evolution
of Teeth, Butler PM, Joysey KA (eds.). Academic press:
London; 495–505.
Mayhew DF. 1979. Evolution of a dental character in the
beaver Castor fiber L. (Mammalia: Rodentia). Zoological
Journal of the Linnean Society 65: 177–184.
Mitteroecker P, Gunz P. 2009. Advances in Geometric
Morphometrics. Evolutionary Biology 36: 235–247.
Moise D. 2000. Studiul resturilor faunistice de la Militari-
Campul Boja. In “Militari-Campul Boja. Un sit arheologic pe
teritoriul Bucurestilor”, Negru M, Schuster CF and Moise D.
Bucuresti, 153-190.
Nania I. 1991. Vanatul pe teritoriul Romaniei. Editura Sport-
Turism: Bucuresti.
Necrasov O, Bulai-Stirbu M. 1965. Unele aspecte ale vietii
triburilor neolitice din zona Subcarpatilor Orientali. Studii
si Cercetari de Antropologie 2(1): 19–28.
Necrasov O, Bulai-Stirbu M. 1970. L’elevage, la chasse et la
peche durant le neolithique roumain. Actes du VIIeme
Congres International des Sciences Anthropologiques et Ethnologiques,
Moscova 1964, 544–556.
Necrasov O, Gheorghiu G. 1970. Studiul resturilor de fauna
din asezarea neolitica de la Izvoarele. Materiale si Cercetari
Arheologice IX:91–96.
Necrasov O, Haimovici S. 1966. Studiul restuilor de fauna
neolitica descoperite in statiunea Gumelnita. Studii si
cercetari de istorie veche 17(1): 101–108.
Necrasov O, Stirbu M. 1979. Studiul materialului paleofau-
nistic din asezarea precucuteniana de la Tirpesti in
comparatie cu materiale din alte asezari neolitice. Studii si
cercetari antropologice 16:3–10.
Necrasov O, Stirbu M. 1981. The Chalcolithic Paleofauna
from the settlements of Tirpesti (Precucuteni and Cucu-
teni A1-A2 cultures). Tirpesti, From Prehistory to History
in Eastern Romania, Marinescu-Bilcu S (ed.). BAR 107:
Oxford; 174–187.
390 L. Bejenaru et al.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)
Necrasov O, Bulai-Stirbu M, Iacob M. 1977. Paleofauna
neolitica de la Liubcova (jud. Caras-Severin) si unele
aspecte ale ocupatiilor locuitorilor din complexul cultural
Vinca-Turdas. Studii si cercetari antropologice 14:11–17.
Nowak RM. 1991. Walker’s Mammals of the World, Volume I. Johns’
Hopkins University Press: Baltimore.
Ocal M, Sevil F, Parin U. 2004. A quantitative study on the
digital bones of cattle. Annals of Anatomy - Anatomischer
Anzeiger 186(2): 165–168.
Ognev SI. 1963. Mammals of the USSR and Adjacent Countries.
Israel Program for Scientific Translations: Jerusalem.
Oleniuc F. 2010. Cercetari arheozoologice privind Cultura
Cucuteni, faza B. Teza de doctorat. Universitatea “Alexandru
Ioan Cuza”Iasi, Facultatea de Biologie.
Popa E, Radu V, Balasescu A. 2011. Studiul materialului
faunistic eneolitic. Seciu-judetul Prahova un sit din epoca neo-
eneolitica in nordul Munteniei, Frinculeasa A (ed.). Editura
Oscar Print: Bucuresti; 73–84.
Rohlf FJ. 2003. TPS dig version 1.39. Department of Ecology and
Evolution, State University of New York: Stony Brook, NY.
Available from http://life.bio.sunysb.edu/morph/
Rohlf FJ. 2010. TpsRelw 1.49 -Thin plate Spline Relative
Warp, 1.49 ed., Ecology & Evolution. State University at
Stony Brook: New York.
Rohlf FJ, Slice DE. 1990. Extensions of the procrustes
method for the optimal surimpostion of landmarks. Systema-
tic Zoology 39:40–59.
Seetah K, Cardini A, Miracle P. 2012. Can morphospace
shed light on cave bear spatial-temporal variation?
Population dynamics of Ursus spelaeus from Romualdova
pecina and Vindija, (Croatia). Journal of Archaeological
Science 39(2): 500–510.
Slice DE. 2007. Geometric Morphometrics. Annual Review of
Anthropology 36: 261–81.
Stan A, Balasescu A. 2006. Studiul arheozoologic al faunei de
la Gruiul Darii (campanile arheologice 2003-2005). Incinta
archeologica dacica fortificata Pietroasa Mica-Gruiul Darii (II),
Sarbu V, et al. (eds.). Biblioteca Mousaios, Monografii
arheologice 2: Buzau; 109–118.
Stanc S. 2006. Relatiile omului cu lumea animala. Arheozoo-
logia secolelor IV-X pentru zonele extracarpatice de est si
de sud ale Romaniei. Editura Universitatii „Al.I.Cuza”: Iasi.
Stanc S. 2009. Arheozoologia primului mileniu d.Hr. pentru
teritoriul cuprins intre Dunare si Marea Neagra. Editura
Universitatii „Alexandru Ioan Cuza”Iasi.
Stanc S, Bejenaru L. 2003. Archaeozoological study of fauna
remains at the Poiana settlement (the VIIIth-IXth centuries).
Studia antiqua et archaeological 9:419–428.
Stanc S, Bejenaru L. 2005. Exploatarea faunei de catre locui-
torii asezarii de la Oltina (Constanta). Arheologia Moldovei
XXVIII: 321–333.
Stefen C. 2009. Intraspecific variability of beaver teeth
(Castoridae: Rodentia). Zoological Journal of Linnean Society
155: 926–936.
Stirbu M. 1980. Paleofauna neolitica de la Radovanu si unele
aspecte ale ocupatiilor locuitorilor din cultura Boian. Analele
Stiintifice ale Universitatii “Alexandru Ioan Cuza" Iasi 26:107–108.
Tarcan-Hriscu C. 1995. Santierul arheologic Cirniceni (jude-
tul Iasi). Analiza arheozoologica. Cercetari arheologice din
aria nord-traca, Institutul Roman de Tracologie. Bucuresti 1:
79–80.
Udrescu MS. 1979. Asezarea civila romana de la Stolniceni;
unele date despre influenta romana asupra cresterii animal-
elor in Dacia. Studiu arheozoologic. Revista Muzeelor si
Monumentelor 9-10: 104–108.
Udrescu MS. 1985a. Unele observatii privind cresterea
animalelor si vanatoarea in castrul roman de la Micia-
Hunedoara. Data zooarheologice. Revista Muzeelor si
monumentelor 8:66–71.
Udrescu MS. 1985b. Quelques problèmes de zooarchéolo-
gie concernant la période Géto-Dace dans la Plaine
Roumaine. Dacia 29: 129–132.
Udrescu MS. 1990. Materialul osteologic din asezarea geto-
daca de la Vladiceasca (Valea Argovei); date arheozoolo-
gice. Cultura si Civilizatie la Dunarea de Jos 5–7:83–88.
Udrescu MS. 1992. Asezarea geto-daca de la Gradistea
(judetul Braila); date zooarheologice. Istros 6:47–50.
Ursachi V. 1995. Cetatea dacicăde la Brad –Zargidava. Editura
Enciclopedică: Bucureşti.
Ursulescu N. 2002. Inceputurile istoriei pe teritoriul Romaniei. Casa
editorial Demiurg: Iasi.
VanDerwarker AM. 2010. Correspondence Analysis and
Principal Components Analysis as Methods for Integrat-
ing Archaeological Plant and Animal Remains. Integrating
Zooarchaeology and Paleoethnobotany, VanDerwarker AM,
Peres TM (eds.). Springer: New York; 75–98.
Van Nostrand RC, Stephenson AB. 1964. Age determination
for beavers by tooth development. The Journal of Wildlife
Management 28(3): 430–434.
Vulpe A. 1997. Consideratii privind inceputul si definirea peri-
oadei timpurii a epocii bronzului in Romania. Timpul istoriei.
Memorie si patrimoniu I, in honorem emeritae Ligiae Barzu,NistorV,
Zaharia D (eds.). Editura Universitatii Bucuresti: Bucuresti;
37–49.
Zelditch ML, Swiderski DL, Sheets AD, Fink WL. 2004.
Geometric Morphometrics for Biologists. A Primer. Elsevier: Berlin.
391Beavers (Castor fiber) in Romania’s Past
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 25: 375–391 (2015)