ArticlePDF Available

Popularity Does Not Always Mean Triviality: Introduction of Popularity Criteria to Improve the Accuracy of a Recommender System

Authors:

Abstract

The main goal of a recommender system is to provide suggestions, by predicting a set of items that might interest the users. In this paper, we will focus on the role that the popularity of the items can play in the recommendation process. The main idea behind this work is that if an item with a high predicted rating for a user is very popular, this information about its popularity can be effectively employed to select the items to recommend. Indeed, by merging a high predicted rating with a high popularity, the effectiveness of the produced recommendations would increase with respect to a case in which a less popular item is suggested. The proposed strategy aims to employ in the recommendation process new criteria based on the items' popularity, by measuring how much it is preferred by users. Through a post-processing approach, we use this metric to extend one of the most performing state-of-the-art recommendation techniques, i.e., SVD++. The effectiveness of this hybrid strategy of recommendation has been verified through a series of experiments, which show strong improvements in terms of accuracy w.r.t. SVD++.
PopularityDoesNotAlwaysMeanTriviality:Introduction
ofPopularityCriteriatoImprovetheAccuracyofa
RecommenderSystem
RobertoSaia*,LudovicoBoratto,SalvatoreCarta
UniversitàdiCagliari,DipartimentodiMatematicaeInformatica,Cagliari,Italy.
*Correspondingauthor.Tel.:+390706758755;email:roberto.saia@unica.it
ManuscriptsubmittedSeptember5,2015;acceptedDecember17,2015.
doi:10.17706/jcp.12.1.1‐9
Abstract:Themaingoalofarecommendersystemistoprovidesuggestions,bypredictingasetofitemsthat
mightinteresttheusers.Inthispaper,wewillfocusontherolethatthepopularityoftheitemscanplayin
therecommendationprocess.Themainideabehindthisworkisthatifanitemwithahighpredictedrating
forauserisverypopular,thisinformationaboutitspopularitycanbeeffectivelyemployedtoselecttheitems
to recommend. Indeed, by merging a high predicted rating with a high popularity, the effectiveness of the
producedrecommendationswouldincreasewithrespecttoacaseinwhichalesspopularitemissuggested.
The proposed strategy aims to employ in the recommendation process new criteria based on the items'
popularity,bymeasuring how much it is preferred by users. Throughapostprocessingapproach,weuse
thismetricto extendoneofthemostperformingstate‐of‐the‐artrecommendationtechniques, i.e., SVD++.
The effectiveness of this hybrid strategy of recommendation has been verified through a series of
experiments,whichshowstrongimprovementsintermsofaccuracyw.r.t.SVD++.
Keywords:Collaborativefiltering,algorithms,metrics.
1. Introduction
In order to provide effective suggestions in terms of the good or services offered by a company, a
recommendersystemplaysan essentialrole,sinceit is able tofiltertheuser preferences, suggesting them
onlytheitemsthatcouldbeinteresting.Theidentificationoftheseitemsisbasedonapredictiontask,than
infersthe interest of a user toward an item notyet evaluated, to deriveif it is worth recommending[1].
Most of the strategies used to generate the recommendations arebasedonthesocalledCollaborative
Filtering(CF)approach[2]whichisbasedontheassumptionthatusershave similar preferences on an
item if they have already rated otheritemsinasimilarway[3].In recent years, the latentfactormodels
havebeenadoptedinCFapproacheswiththeaimtouncoverlatentcharacteristicsthatexplainthe
observedratings[4].Someofthemostcommonapproachesofthistypearethosethatexploittheneural
networks[5], the LatentDirichletAllocation[6],butespecially,thosethatexploitamodelinducedbythe
factorizationoftheuser‐itemratingsmatrix[7](i.e.,thematrixthatreportstheratingsgiventoitemsby
the users). Among these last approaches, the state of the art is represented by SVD++ [8], the Koren's
versionoftheSingularValueDecomposition(SVD)[9],whichexploitstheso‐calledlatentfactormodeland
presents good performance in terms of accuracy and scalability [7],[10].AlthoughSVD++provides
excellent performance, it does nottakeintoaccountthefactor of popularity of the items that are
Journal of Computers
1
Volume 12, Number 1, January 2017
recommended.Thismightleadtoanunderperformanceofarecommender system,incasethesamescore
is predicted for multiple items. Indeed, the system is not abletodiscriminatethemonthebasisoftheir
popularity, so there is the risk to recommend those unpopular, which are less likely to be preferred by
users.Thepopularityof the items isanaspectthathasbeen widely studied intherecommendersystems
literature.Whiletheirabilitytoidentifyitemsofpotentialinterest to users has been recognized, some
limitations have been highlighted. The most important of these is that the recommendations made
accordingtopopularitycriteria are trivial, anddonotbring considerable benefits neither tousers,norto
thosethatofferthemgoodsorservices.Thishappenswhenusingtheso‐callednonpersonalizedmodel[11],
a naive approach of recommendation that does not take into account the user preferences, because it
always recommends a fixed list with the most popular items, regardless of the target user. On the other
hand,however,recommendinglesspopularitemsaddsnovelty(andalsoserendipity)[12]totheusers,but
itusuallyisamoredifficulttasktoperform.
ThisworkaimsatimprovingtherecommendationsproducedbytheSDV++approach,byconsideringthe
items'popularity.Ourstrategyinvolvesabalanceduseofanindexofitempopularity,whichisbasedonthe
positivefeedbacksoftheusers.Thisindexisthenappliedwithintheboundariesofarecommendationlist,
generated through a state‐of‐the‐art approach based on the latentfactormodel(the so‐called SVD++
approach[8]),insteadofusingtheentiredataset.Thiswayofproceedingallowsustoexploitthepopularity
metricstoperforma finetuning of the recommendations generated byarecommendationstrategyatthe
stateoftheart,whichdoesnottakeintoaccounttheitempopularity,thusreducingthetrivialityofthefinal
result.Thecontributionsofourworkarethefollowing:
DefinitionoftheDomainPopularityIndex(DPI),ametricabletoevaluate thepreferencesoftheusers
aboutanitem;
Creationof thePBSVD++algorithm,whichextendsthecapabilitiesofSVD++,addingtoitthecapability
toevaluatetheitempopularity;
Experimentation on three real‐world datasets, to evaluate the capability of popularity to increase the
numberofeffectiverecommendations,withrespecttoastate‐of‐the‐artapproachthatdoesnotemploy
it.
Intherestofthispaper,wefirstintroducetheliteraturerelatedwiththeproposedstrategy(Section2),
continuingtodefinetheadoptednotationandtheproblemdefinition (Section 3), the implementation
detailsofourproposal(Section4).Finally,wecompletethepaperwith the description of the performed
experiments(Section5),endingwithsomeconcludingremarksandfuturework(Section6).
2. RelatedWork
Thissectionpresentstwoconceptscloselyrelatedwithourwork.
NonpersonalizedModels.The recommender systems based on the so‐called nonpersonalizedmodel
[11],proposetoallusersthesamelistofrecommendations,withouttakingintoaccounttheirpreferences.
Thisstaticapproachisusuallybasedontwoalgorithms,thefirstofthem(TopPop),operatesbysuggesting
themostrateditems(i.e.,thosemostpopular),whilethesecond (MovieAvg), works by suggesting the
highestrateditems(i.e.,thosemostliked).Theexclusiveuseofthenon‐personalizedmodels leadstoward
the absence of two important characteristics that a recommender system should have, i.e., novelty and
serendipity [13]. Novelty occurs when a system is able to recommendunknownitemsthatausermight
have autonomously found, while the serendipity happens when it helps the user to find a surprisingly
interestingitemthatausermightnothaveotherwisefound,orifitisveryhardtofind.
LatentFactorModels.Thetypeofdatawithwhicharecommendationsystemoperatesis typically a
sparsematrixwheretherowsrepresenttheusers,andthecolumnsrepresenttheitems.Theentriesofthis
Journal of Computers
2
Volume 12, Number 1, January 2017
matrix are the interaction between users and items, in the form of ratings or purchases. The aim of a
recommendersystem istoinfer,foreachuser u,arankedlistofitems,and inliteraturemany ofthemare
focused on the rating prediction problem. The most effective strategiesinthisfieldexploittheso‐called
latentfactormodels, but especially, the matrixfactorization techniques [7]. Other CF ranking‐oriented
approachesthatextendthematrixfactorizationtechniques,havebeenrecentlyproposed,andmostofthem
usearankingorientedobjectivefunction,inordertolearnthelatentfactorsofusersanditems[14].SVD++
[8],theKoren'sversionoftheSingularValueDecomposition(SVD) [9],istoday consideredoneof thebest
strategies in terms of accuracy and scalability. In [16]‐[18], the problem of modeling semantically
correlateditemswastackled,buttheauthorsconsideratemporalcorrelationandnottheonebetweenthe
itemsandauserprofile.
3. NotationandProblemDefinition
Themathematicalnotationusedinthiswork,andtheproblemstatement,arerecalledinthefollowing.
3.1. Notation
Wearegivenasetofusers },,{ 1N
uuU =,asetofitems },,{ 1M
iiI
=
,andasetVofvaluesusedto
expresstheuserpreferences(e.g.,V=[1,5]orV={like,dislike}).Thesetofallpossiblepreferencesexpressed
by the users is a ternary relation
P
U
×
I
×
. We denote as
P
+
P
the subset of preferences with a
positivevalue(i.e., {( , , ) }
P
uiv Pvvvlike
+=∈=
),where
v
indicatesthemean value(intheprevious
example,
v=3
). Moreover, we denote as {(,,)}IiIuivP
+
+
=∈ the set of items for which there is a
positive preference, and as ,(,,) , ,
iu
np u i v P i I u U
+
=∈
the number of positive preferences
expressedby allusersuforanitemi.Wealsodenoteas {(,,) }
u
I
iI uiv PuU=∈ ∈∧ thesetofitemsin
theprofileofauser u, and as
R
u
={uU
R
I}
,thesetofitemsirecommendedtoauser u. The set of
itemsiwithouttheitemsalreadyevaluatedbytheuseru(i.e.,thosein
I
u
)isdenotedas
ˆ
I
u
I
.
3.2. ProblemDefinition
Weconsiderthe function
f
:U×
I
V
,adopted to predict the ratings for the notevaluateditemswith
theSVD++recommendersystem.Ouraimistodefine,foreachitem,aDomainPopularityIndexDPI(i)that
represents the popularity of the item with respect to the othersinthedataset(intermsofpositive
evaluationsgivenbytheuserstoit).TheDomainPopularityIndexDPIofanitemnotevaluatedbyauser
willbeemployedtobuildascore
α
.Ourobjectiveistogeneratealistofrecommendeditem
i
*
suchthat:
*
ˆ
argmax ( , )
u
jI
ifuj
α
=
+(1)
4. IntegratingPopularityintheRecommendationProcess:Algorithm
In this section, we present the steps made to generate the recommendations based on the proposed
Popularity‐basedSVD++(PBSVD++)strategy, startingfromthedefinitionof thepopularityindexemployed
bytheapproach,andendingwiththeimplementationofournovelalgorithm.
4.1. ItemsPopularityDefinition
Inthissection,we introduceandformalizethepopularityindexemployedofourapproach.Thevalueof
the Domain Popularity Index (DPI) for an item iI
, with [0,1]DPI
,
npi,U
represents the number of
positivepreferencesexpressedbyallusersUfortheitemi.Itiscalculatedasshowninequation2.
Journal of Computers
3
Volume 12, Number 1, January 2017
,
,
(, ) iU
jU
jI
np
DPI i U np
=(2)
DPIisanimportantindicator,becauseitprovidesaglobalmeasure ofthepreferencesexpressedforan
itembyallusers.
4.2. PBSVD++Algorithm
WeexploittheDPIindexpreviouslypresented,inordertomodifytheresultoftheSVD++approach.The
indexisemployedinAlgorithm1,wherewebuildavalue
α
.Givenasetofrecommendations
R
u
,addressed
toauser
uU
,the final rating
ρ
i,u assignedtoeach item
i
R
u
byour algorithm, is composedbythe
rating
i,u
calculated through the SVD++ approach, normalized in a continuousrangefrom0to1,and
denotedasSTD(i,u),addedtothe
α
(alsonormalizedinacontinuousrangefrom0to1),builtbyemploying
theDPIindex,asshowninEquation3.Thefinalratingassignedtoanitemisthenintherangefrom0to2.
,
,
,
(, )
rating (, )
with ( , ) and
rating ( , )
iu
iu
ju
jU jU
STD i u
DPI I U
STD i U DPI j U
ρ
α
α
∈∈
=+
==
∑∑
(3)
Thenewrating
ρ
i,u,assignedtoanitemiforauserutakes into account,inabalancedway,itsdomain
popularity, and this produces a substantial change in the canonical SVD++ ranking during the
recommendationprocess,changingtheperformanceoftherecommendersystem.Algorithm1implements
theoperationsdescribedabove.Ittakesasinputthetraining sets(usedby theSVD++approach,in step3,
tobuildthelatentfactormodel),theuseruto whom address therecommendations,andthenumber nof
these.
Algorithm1.PBSVD++
Input:s=Trainingset,u=User,n=Recommendations
Output:L=Listofnrecommendations
1. procedureGETPBSVD
R
ECS(
s
,u,n)
2. x=GetNumOfNotEvaluatedItems(u)
3. I=GetSvdRecs(s,u,x)
4.
t
=0
5. foreachiinIdo
6. if(SvdRating(i)+1)>SvdRating(i0)then
7. Ri
8. t+=GetD P I(i )
9. endi
f
10. endfor
11. foreachrinRdo 
12. rating=(SvdRating(r)/SumAllSvdRatings(R))
13. α=GetDPI(r)/t
14. SetNewRating(r,rating+ α)
15. endfor
16. L=GetRecsDescOrdered(R,n)
17. ReturnL
18. endprocedure
After the number x of potential items to recommend to the user uhasbeenobtained(step2),we
calculatethrough thestandardSVD++approach,fortheuser u,aset Iofx recommendationsbasedon the
training set s (step 3). In the steps from 5 to 10, we select from I only the elements i that are possible
Journal of Computers
4
Volume 12, Number 1, January 2017
candidates for the recommendations based on the proposed approach. They are those items in which a
modificationof thescore,by addingtotheoriginalratingofSVD++thevalueof
α
(parametercalculated
inthestep 13,whosevalueisin the rangefrom0 to 1),couldaltertherank proposed bySVD++.Forthis
reason,thecandidatesareonlytheitemstowhich,addingatmost1,wegetavaluehigherthanthatofthe
itemwiththemaximumSVD++ score (i.e., the first element
i0
).Weuse this process also to calculate(in
step8)thesumoftheDPIweight,relatedtoalltheitems
i
I
.StartingwiththissetRofcandidateitems,
inthestepsfrom11to17,wealtertheSVD++scoreofeachitem
i
I
,following equation3,afterwhich
wereturnalistLofnrecommendations,composedbytheitemswiththehighestscores.
5. Experiments
Inthissection,afterthedefinition of the experimental environment and of the adopted datasets'
characteristics,wedescribethestrategyandmetricsused,concludingwiththepresentationanddiscussion
oftheexperimentalresults.
5.1. ExperimentalSetup
The environment for this work isbasedontheJavalanguage,withthesupportoftheApacheMahout
(https://mahout.apache.org)Java frameworktoimplementthestate‐of‐the‐artapproachthatwecompare
ournovelapproachwith.Inordertoevaluatetheproposedstrategy,weperformaseriesofexperimentson
three different real‐world datasets, which represent a quite standard benchmark in the context of the
recommender systems: the first one is the dataset Yahoo! Webscope R4
(http://webscope.sandbox.yahoo.com),whichcontainsalargeamountofdatarelatedtouserspreferences
expressedbytheYahoo!Moviescommunity;theotherstwoareextractedfromthedatasetMovielens10M
(http://grouplens.org/datasets/movielens/),composedbythedatacollected overvariousperiodsoftime,
ontheMovieLenswebsite.Thefirstsetofexperimentsprovidesageneraloverviewoftheresultsobtained
bycomparingtheperformance ofarecommendersystem,wherewehaveimplementedthenewPBSVD++
algorithm,with thoseofacanonicalsystembasedonthe SVD++algorithm.Thesecondsetofexperiments
showsinmoredetailthe resultspreviouslysummarized,analyzing them through theprecisionandrecall
metrics.
5.2. Datasets
In order to evaluate the proposed strategy, we perform a series of experiments on three different
real‐world datasets, extracted bytwoquitestandardbenchmarks in the context of the recommender
systems:Yahoo!WebscopeR4andMovielens10M.
Yahoo!Webscope(R4). This dataset contains a large amount of data related to users preferences
expressedontheYahoo!Moviescommunitythatareratedonthebaseoftwodifferentscales,from1to13
andfrom1to5 (weusethelatter).Thetrainingdataiscomposedby 7,642users,11,915movies/items,
and211,231ratings.Alltheusersinthetrainingsethaveratedatleast10itemsandallitemsareratedby
atleastone user.Thetestdata iscomposedby 2,309users,2,380items, and10,136ratings.Thereareno
testusers/itemsthatdonotalsoappearinthetrainingdata.Alltheusersinthetestsethaveratedatleast
oneitemandallitemshavebeenratedbyatleast oneuser.Theitemsare classifiedin20differentclasses
(genres),anditshouldbenotedthatanitemmaybeclassifiedwithmultipleclasses.
Movielens10M. The second dataset used in this work is composed by 71,567 users, 10,681
movies/items, and 10,000,054 ratings. It was extracted at random from MovieLens (a movie
recommendation website). All the users in the dataset had rated at least 20 movies, and each user is
representedby auniqueID.Theratingsoftheitemsare basedona5starscale,withhalfstarincrements.
Inthisdatasettheitemsareclassifiedin18differentclasses(moviegenres),andalsointhiscaseeachitem
Journal of Computers
5
Volume 12, Number 1, January 2017
maybeclassifiedwithmultipleclasses(genres).SincetheMovielens 10M dataset does not contain any
textualdescriptionofthe items, to obtainthisinformationweused a file provided by theWebscope(R4)
dataset,which containsamappingfromthe movieIDs usedinthe datasettothe correspondingmovieIDs
andtitlesusedintheMovieLensdataset.UsingthescriptprovidedwiththeMovielens10Mdataset,wesplit
upthewholedatasetintwodifferentdatasetswithexactly10ratingsperuserinthetestset.Bothtraining
setsare composedby69,878users, and9,301,274ratings,with10,667movies/itemsin thefirstone, and
10,676movies/itemsinthesecondone.Eachtestdatasetcontains69,878users,and698,780ratings,with
3,326 movies/items in the first one, and 5,724 movies/items in thesecondone.Fromeachofthese
datasets,wetakeinaccountasubsetof20,000users.
5.3. Strategy
We compare the proposed recommendation strategy with the state‐oftheartapproachSVD++.The
Mahout framework, used to implement it, in addition to the training set requires two additional
parameters: the number of target features and the number of training steps to run. The first parameter
wouldbeequivalenttothenumberofinvolvedgenres,thuswehave set this value to 20 for the Yahoo
dataset, and to 18 for the Movielens datasets. Regarding the second parameter, we use the value 15, as
indicatedintheSVD++referencepaper[8].
5.4. Metrics
Here,wepresentthemetricsusedduringtheexperiments.
PrecisionandRecall.Theperformance measuresadoptedtoevaluateour approach,comparingtheset
ofrecommendations generatedbyourstrategyandthesetof thosegeneratebythecanonicalapproachof
recommendationwith therealuserpreferencesstored inthetestset, aretheprecisionandtherecall,and
metrics[15].GiventwosetsXuandZu,whereXu denotesthesetofrecommendationsperformedforauser
u, and Zu the set of the real choices of the user u in the test set, these metrics are defined as shown in
Equation4.
precision( , )
recall( , )
uu
uu
u
uu
uu
u
Z
X
XZ X
ZX
XZ Z
=
=
(4)
MetricsEvaluation.Inordertocomparetheresultsofthetwoapproachesofrecommendation(i.e.,our
approachbasedonthePBSVD++algorithm,andthecanonicalnone, based on SVD++), we calculate the
previous metrics, presented in Equation 4, for each group of n performed recommendations (denoted as
@n,withn={2,4,…,20}),subtractingfromthevaluesobtainedbyourapproachthoseobtainedbySVD++.
Inthisway,apositivevaluedenotesthatourapproachimprovesthestandardone,whileanegativevalue
denotesthatourapproachworsensthestandardone.DenotingasXnthesetofn recommendations
generatedbyourstrategy,asYnthesetofnrecommendationsgeneratedbythecanonicalSVD++strategy,
andasZnthesetofnrealuserpreferencesstoredinthetestset,wedefinethemeasuresshowninEquation
5.
variation@ precision@ ( , ) precision@ ( , )
variation@ recall@ ( , ) recall@ ( , )
nn nn
nn nn
p
nnXZ nYZ
rnnXZnYZ
−=
−= (5)
5.5. ExperimentalResults
Journal of Computers
6
Volume 12, Number 1, January 2017
Here,wereporttheresultsoftheexperimentspresentedinSection5.1.
PerformanceOverviewandDetails.TheresultpresentedinFig.1showsthegeneralperformanceof
the proposed strategy, in the context of the three considered real‐world datasets. It indicates the
percentageoftimesinwhichwehavedonebetter,orhavedoneworsethanSVD++(respectively,BandW).
Theoverallresultsshowthegoodperformanceofourapproachwithallthreedatasets.
Fig.1.Resultsoverview.
Inthesecondsetofexperimentswecomparetheperformanceofarecommendersystemwherewehave
implementedthePBSVD++algorithm,withthoseofthecanonicrecommendersystem basedontheSVD++
algorithm.Weevaluatetheresultsintermsofpvariation@nandrvariation@n,asdescribedinSection5.4.
AswecanobserveinthegraphsinFig.2,theresultsarequitesimilarforallthethreeconsidereddatasets,
apartintherecall@n measure,whichreportsadifference between the YahooandMovielensresults.This
happensbecausethescriptprovidedbyMovielensplacesafixednumberofratingsperuserinthetestset
(10).ThisdoesnothappenintheYahoodataset,whichbuildsatestsetwithavariablenumberofitemsfor
eachuser.Sincetherecall@nmetrichasasdenominatorthenumberofitemsinthetestset,thisnumberis
fixedfortheMovielensdataset(hence,theresultsaremore“flat”),andvariablefortheYahoodataset(this
leadstothevariableresultsinFig.2(b)).
Theoverallresults, presented in Fig. 2,showthatourstrategyoutperforms the canonical one, usingall
metrics, except when we test the maximum number of recommendations (i.e., 20). This is an obvious
aspect,sincethealgorithmPBSVD++operatesinthedomainoftheSVD++recommendations,recalculating
their ratings: therefore, when we consider the entire domain, the results of SVD++, and PBSVD++, will
alwaysbeidentical.
(a) (b)
Fig.2.Experimentalresults.
Discussion.Theperformed experiments, presented in Section 5,provethat ourstrategy,basedonthe
novelPBSVD++algorithm,isabletoimprovetheresultsofacanonicalrecommendersystem basedonthe
SVD++algorithm.Aswecanobserve,thishappenswithanynumberof recommendations,exceptthecase
inwhichthemaximumnumberoftheseisgenerated,fortheobvious reason explained in the previous
section.Whenevaluatingtheseresults,wecanobservethatthemaximumvalueofpositivevariationfora
metricis1(whichrepresentsa100%improvementw.r.t.SVD++).Therefore,ourresultssuggestimportant
improvements,thinkingthattheNetflixprizewasbasedona10%improvementintermsofaccuracy.This
Journal of Computers
7
Volume 12, Number 1, January 2017
provesthatispossibletoimproveastate‐of‐the‐artapproachsuchasSVD++,byusingitsoutputasaninput
domain,inordertoperformafinetuningbasedonthepopularityoftheinvolveditems.
6. ConclusionsandFutureWork
Inthispaperweproposedanovelformofrecommendation,whichintegratedtheinformationaboutitem
popularityintoastate‐of‐the‐artapproach.Theperformedexperimentshaveshownboththevalidityofthe
adoptedindex,and itsabilitytoimprovethe performanceoftheSVD++approach. Infuturework, wewill
extendourapproach,byaddingnewmetricsabletoevaluatetheitempopularity,inthecontextofsystems
thatoperate within more than one domain ofgoods/services,trying to parameterize both the popularity
aspectofeachitem,andtheirinterconnectionsbetweendifferentoperativedomains.Wewillalsostudythe
introductionofothersmetricsofpopularity,e.g.,basedonthegeographicordemographicinformation.
Acknowledgment
ThisworkispartiallyfundedbyRegioneSardegnaunderprojectSocialGlue,throughPIA‐Pacchetti
Integrati di Agevolazione “Industria Artigianato e Servizi” (annualità 2010), and by MIUR PRIN 2010‐11
underproject“SecurityHorizons”.
References
[1] Ricci,F.F.,Rokach,L.,&Shapira,B.(2011).Introductiontorecommendersystemshandbook.InF.Ricci,
L.Rokach,B.Shapira,&P.B.Kantor.(Eds.),RecommenderSystemsHandbook(pp.1–35).Springer.
[2] Karypis, G. (November 5‐10, 2001). Evaluation of item‐based top‐n recommendation algorithms.
Proceedingsofthe2001ACMCIKMInternationalConferenceonInformationandKnowledge
Management(pp.247–254).Atlanta,Georgia.
[3] Su,X.&Khoshgoftaar,T.M.Asurveyofcollaborativefiltering techniques. Adv.ArtificialIntelligence,
2009.
[4] Koren,Y.,&Bell,R.M.(2011).Advancesincollaborativefiltering.InF.Ricci,L.Rokach,B.Shapira,&P.
B.Kantor.(Eds.),RecommenderSystemsHandbook(pp.145–186).Springer.
[5] Georgiev, K., & Nakov, P. (2013). A non‐iid framework for collaborative filtering with restricted
boltzmann machines. Proceedingsofthe30thInternationalConferenceonMachineLearning: Vol.28
(pp.1148–1156).
[6] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latentdirichlet allocation. JournalofMachineLearning
Research,3,993–1022.
[7] Koren,Y.,Bell,R.M.,&Volinsky,C.(2009).Matrixfactorizationtechniquesforrecommendersystems.
IEEEComputer,42(8),30–37.
[8] Koren,Y.(2008). Factorization meetstheneighborhood:Amultifacetedcollaborative filtering model.
Proceedingsofthe14thACMSIGKDDInternationalConferenceonKnowledgeDiscoveryandDataMining,
LasVegas,Nevada,USA.
[9] Billsus, D., & Pazzani, M. J. (1998). Learning collaborative information filters. Proceedingsofthe
FifteenthInternationalConferenceonMachineLearning(pp.46–54).
[10] Bennett,J.,Elkan,C.,Liu,B.,Smyth,P.,&Tikk,D.(2007).Kddcupandworkshop2007.SIGKDDExplor.
Newsl.,9(2),51–52.
[11] Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms on top‐n
recommendationtasks.Proceedingsofthe2010ACMConferenceonRecommenderSystems(pp.39–46).
[12] Ge, M., Delgado‐Battenfeld, C., & Jannach, D. (2010). Beyond accuracy: Evaluating recommender
systems by coverage and serendipity. Proceedingsofthe2010ACMConferenceonRecommender
Journal of Computers
8
Volume 12, Number 1, January 2017
Systems(pp.257–260).
[13] Iaquinta, L., de Gemmis, M., Lops, P., Semeraro, G., Filannino, M., & Molino, P. (2008). Introducing
serendipity in a content‐based recommender system.ProceedingsofInternationalConferenceon
HybridIntelligentSystems(pp.168–173).
[14] Koren, Y., & Sill, J. (2011). Ordrec: An ordinal model for predicting personalized item rating
distributions.Proceedingsofthe2011ACMConferenceonRecommenderSystems(pp.117–124).
[15] Baeza‐Yates, R. A., & Ribeiro‐Neto, B. (1999). ModernInformationRetrieval. Boston, MA, USA:
Addison‐WesleyLongmanPublishingCo.,Inc.
[16] Stilo,G., &Velardi,P.(2009).Time makessense:Eventdiscoveryintwitterusingtemporalsimilarity.
Proceedingsofthe2014IEEE/WIC/ACMInternationalJointConferencesonWebIntelligence(WI)and
IntelligentAgentTechnologies:Vol.2(pp.186–193).
[17] Stilo, G., & Velardi, P. (2014). Temporal semantics:Time‐varyinghashtagsenseclustering.Knowledge
EngineeringandKnowledgeManagement,8876,563–578.
[18] Stilo,G.,&Velardi, P.(2015).Efficient temporalminingofmicroblogtextsanditsapplicationtoevent
discovery.DataMiningandKnowledgeDiscovery.
RobertoSaiaisaPh.D.attheDepartmentofMathematicsandComputerScience of the
UniversityofCagliari.Hegotamasterdegreeincomputerscienceatthesameuniversity.His
currentresearchactivityisfocusedonthedevelopmentoftechniquesandalgorithmsableto
improvetheeffectivenessoftheuserprofilinganditemrecommendation.
LudovicoBorattoisaresearchassistantattheUniversityofCagliari,Italy.Hegraduatedwith
fullmarksandhonorandreceivedhisPhDin2012atthesameuniversity. His research
focusesmainlyonrecommendersystemsanddatamininginsocialnetworks.
SalvatoreCartareceivedaPhDinelectronicsandcomputersciencefromtheUniversity of
Cagliariin2003.Heisassistantprofessorincomputerscienceat the Universityof Cagliari
since 2005. Recently, he has focused on topics related to the social Web, ubiquitous
computingandcomputationalsocieties.
Journal of Computers
9
Volume 12, Number 1, January 2017
Presentation
Full-text available
Similarity and Diversity: Two Sides of the Same Coin in the Evaluation of Data Streams
Thesis
Full-text available
The Information Systems represent the primary instrument of growth for the companies that operate in the so-called e-commerce environment. The data streams generated by the users that interact with their websites are the primary source to define the user behavioral models. Some main examples of services integrated in these websites are the Recommender Systems, where these models are exploited in order to generate recommendations of items of potential interest to users, the User Segmentation Systems, where the models are used in order to group the users on the basis of their preferences, and the Fraud Detection Systems, where these models are exploited to determine the legitimacy of a financial transaction. Even though in literature diversity and similarity are considered as two sides of the same coin, almost all the approaches take into account them in a mutually exclusive manner, rather than jointly. The aim of this thesis is to demonstrate how the consideration of both sides of this coin is instead essential to overcome some well-known problems that affict the state-of-the-art approaches used to implement these services, improving their performance. Its contributions are the following: with regard to the recommender systems, the detection of the diversity in a user profile is used to discard incoherent items, improving the accuracy, while the exploitation of the similarity of the predicted items is used to re-rank the recommendations, improving their effectiveness; with regard to the user segmentation systems, the detection of the diversity overcomes the problem of the non-reliability of data source, while the exploitation of the similarity reduces the problems of understandability and triviality of the obtained segments; lastly, concerning the fraud detection systems, the joint use of both diversity and similarity in the evaluation of a new transaction overcomes the problems of the data scarcity, and those of the non-stationary and unbalanced class distribution.
Article
Full-text available
We propose a framework for collaborative filtering based on Restricted Boltzmann Machines (RBM), which extends previous RBM-based approaches in several important directions. First, while previous RBM research has focused on modeling the correlation between item ratings, we model both user-user and item-item correlations in a unified hybrid non-IID framework. We further use real values in the visible layer as opposed to multinomial variables, thus taking advantage of the natural order between user-item ratings. Finally, we explore the potential of combining the original training data with data generated by the RBM-based model itself in a bootstrapping fashion. The evaluation on two MovieLens datasets (with 100K and 1M user-item ratings, respectively), shows that our RBM model rivals the best previously-proposed approaches.
Article
Full-text available
In this paper we present a novel method for clustering words in micro-blogs, based on the similarity of the related temporal series. Our technique, named SAX*, uses the Symbolic Aggregate ApproXimation algorithm to discretize the temporal series of terms into a small set of levels, leading to a string for each. We then define a subset of “interesting” strings, i.e. those representing patterns of collective attention. Sliding temporal windows are used to detect co-occurring clusters of tokens with the same or similar string. To assess the performance of the method we first tune the model parameters on a 2-month 1 % Twitter stream, during which a number of world-wide events of differing type and duration (sports, politics, disasters, health, and celebrities) occurred. Then, we evaluate the quality of all discovered events in a 1-year stream, “googling” with the most frequent cluster n-grams and manually assessing how many clusters correspond to published news in the same temporal slot. Finally, we perform a complexity evaluation and we compare SAX* with three alternative methods for event discovery. Our evaluation shows that SAX* is at least one order of magnitude less complex than other temporal and non-temporal approaches to micro-blog clustering.
Conference Paper
Full-text available
Hashtags are creative labels used in micro-blogs to characterize the topic of a message/discussion. However, since hashtags are created in a spontaneous and highly dynamic way by users using multiple languages, the same topic can be associated to different hashtags and conversely, the same hashtag may imply different topics in different time spans. Contrary to common words, sense clustering for hashtags is complicated by the fact that no sense catalogues are available, like, e.g. Wikipedia or WordNet and furthermore, hashtag labels are often obscure. In this paper we propose a sense clustering algorithm based on temporal mining. First, hashtag time series are converted into strings of symbols using Symbolic Aggregate ApproXimation (SAX), then, hashtags are clustered based on string similarity and temporal co-occurrence. Evaluation is performed on two reference datasets of semantically tagged hashtags. We also perform a complexity evaluation of our algorithm, since efficiency is a crucial performance factor when processing large-scale data streams, such as Twitter.
Conference Paper
Full-text available
Temporal text mining (TTM) has recently attracted the attention of scientists as a mean to discover and track in realtime discussions in micro-blogs. However current approaches to temporal mining suffer from efficiency problems when applied to large micro-blog streams, like Twitter, now reaching an average of 500 million tweets per day. We propose a technique, named SAX* (based on an algorithm named Symbolic Aggregate ApproXimation) to discretize the temporal series of terms into a small set of levels, leading to a string for each terms. We then define a subset of “interesting” strings, i.e. those representing patterns of collective attention. Sliding temporal windows are used to detect clusters of terms with the same string. We show that SAX* is more efficient (by orders of magnitude) than other approaches to temporal mining in literature. In this paper, we experiment SAX* on the task of event discovery over one year 1% worldwhile Twitter stream.
Chapter
Full-text available
Recommender Systems (RSs) are software tools and techniques providing suggestions for items to be of use to a user. In this introductory chapter we briefly discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent and structured way, the chapters included in this handbook and to help the reader navigate the extremely rich and detailed content that the handbook offers.
Chapter
The collaborative filtering (CF) approach to recommenders has recently enjoyed much interest and progress. The fact that it played a central role within the recently completed Netflix competition has contributed to its popularity. This chapter surveys the recent progress in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with recent innovations. We also describe several extensions that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.
Book
The explosive growth of e-commerce and online environments has made the issue of information search and selection increasingly serious; users are overloaded by options to consider and they may not have the time or knowledge to personally evaluate these options. Recommender systems have proven to be a valuable way for online users to cope with the information overload and have become one of the most powerful and popular tools in electronic commerce. Correspondingly, various techniques for recommendation generation have been proposed. During the last decade, many of them have also been successfully deployed in commercial environments. Recommender Systems Handbook, an edited volume, is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. Theoreticians and practitioners from these fields continually seek techniques for more efficient, cost-effective and accurate recommender systems. This handbook aims to impose a degree of order on this diversity, by presenting a coherent and unified repository of recommender systems major concepts, theories, methodologies, trends, challenges and applications. Extensive artificial applications, a variety of real-world applications, and detailed case studies are included. Recommender Systems Handbook illustrates how this technology can support the user in decision-making, planning and purchasing processes. It works for well known corporations such as Amazon, Google, Microsoft and AT&T. This handbook is suitable for researchers and advanced-level students in computer science as a reference.
Conference Paper
Recommender systems provide users with personalized suggestions for products or services. These systems often rely on Collaborating Filtering (CF), where past transactions are analyzed in order to establish connections between users and products. The two more successful approaches to CF are latent factor models, which directly profile both users and products, and neighborhood models, which analyze similarities between products or users. In this work we introduce some innovations to both approaches. The factor and neighborhood models can now be smoothly merged, thereby building a more accurate combined model. Further accuracy improvements are achieved by extending the models to exploit both explicit and implicit feedback by the users. The methods are tested on the Netflix data. Results are better than those previously published on that dataset. In addition, we suggest a new evaluation metric, which highlights the differences among methods, based on their performance at a top-K recommendation task.