ArticlePDF Available

Agent Architecture for modelling and simulation of multidynamical complex systems : a multibehaviors approach based on the "Agent MVC" pattern

Authors:

Abstract and Figures

Co-building and reuse of models are at the center of several studies in the field of simulation. However, in the more specific field ofMulti-Agent Based Simulation (MABS), there is a lack of methodology to resolve these two issues, despite a strong need by experts.Model co-building is essential to optimize knowledge sharing amongst different experts, but we often face divergent viewpoints. Existing methodologies for the MABS co-building allow only a low level of collaboration among experts during the initial phase of modeling, and between domain experts with modelers or computer scientists... In order to help this co-building, we propose and follow a methodology to facilitate this collaboration. Model reuse can provide significant time savings, improve models’ quality and offer new knowledge. Some MABS methodologies in this area exist. However, in the spectrum of reuse, they are often limited to a full model’s reuse or agent’s reuse with the impossibility of reusing smaller parts such as behaviors. The EDMMAS experiment was a concrete case of three successive model reuses. It allowed us to observe new complexity arising from the increase of agents’ behaviors. This creates a gap between operational model and conceptual model.Our goal is to promote the reuse of models, agents and their behaviors.To answer these questions, we propose in this thesis a new way to codify and integrate knowledge from different disciplines in the model, while using "composable"modules that facilitate reuse.We propose (i) a new agent architecture (aMVC), applied to a multidynamical approach (DOM), with the support (ii) of a methodology (MMC) based on the decompositionand reuse of behaviors.Proposals (i) and (ii) allow us to lead a multidisciplinary MABS project with a large number of actors, helping the co-building of models through the introduction of synergies among the different actors involved in the modeling. They can work independently on their dynamics and the platformwill integrate those, ensuring cohesion and robustness of the system. Our contributions include the ability to create the building blocks of the system independently, associate and combine them to formagents. This allows us to compare possibilities for the same dynamic and open the prospect of studyingmany alternate models of the same complex system, and then analyze at a very fine scale.
Content may be subject to copyright.
A preview of the PDF is not available
... 1-Analysis and formulation of the problem, [1][2][3], [6,7], [13], [23], [26][27][28], consists in defining the limits of the study, as well as the objectives to be achieved. [13], [24], consists in defining the entities of the system, their attributes, as well as the activities of the system. ...
... [13], [24], consists in defining the entities of the system, their attributes, as well as the activities of the system. [2][3][4], [6,7], [23,24,26], [28], consists in collecting the data necessary for the simulation, and in specifying the hypotheses and parameters of the simulation for the different scenarios and policies to study. [1][2][3][4], [6,7], [13,14], [23,24,26], [28], consists in building a model or an abstraction of the real system studied. ...
... [2][3][4], [6,7], [23,24,26], [28], consists in collecting the data necessary for the simulation, and in specifying the hypotheses and parameters of the simulation for the different scenarios and policies to study. [1][2][3][4], [6,7], [13,14], [23,24,26], [28], consists in building a model or an abstraction of the real system studied. ...
Article
Full-text available
The supervision of a complex system involves the study and analysis of its operation as well as a continuous search for its improvement and optimization. Simulation in general, and discrete simulation in particular, is an appropriate tool to support different management policies and strategies. In order to carry out a simulation project, special importance must be given to the simulation process, which has led us in this paper to ask the question: is there a standard life cycle of a simulation project? or a repository of the steps to follow? In this paper, we have used the most frequently cited simulation steps in the literature to develop a simulation project life cycle called SPLC (Simulation Project Life Cycle) grouping together the main steps. Then, we were interested in the analysis of the level of use of each of the steps retained by the simulation processes described in the simulation studies considered in the literature review. Secondly, we tried to put the elaborated SPLC cycle into action through a simulation case study, this is the voluntary departure operation launched in Morocco in 2005. Thus, we carried out a simulation allowing to analyze the success rate of this operation, and also its impact on the state of the Moroccan pension fund, and this for the period going from 2005 to 2025. The study was carried out on a set of generated data randomly according to statistical distributions.
... • Define system elements or activities interactions. [1], [3], [4], [8], [9], [16], [18] • Collect simulation data, and determine their statistical distributions when they are stochastic; ...
... • Specify the simulation hypotheses and parameters for different scenarios and policies to be studied. 4) Modelling [1]- [4], [6], [8]- [10], [10], [16], [18] • Construct a reality abstraction; ...
... • Construct a mathematical, logical and/or verbal representation of the studied real system. 5) Model programming or implementation [2]- [4], [6], [16], [18] • Either use a standard programming language: Fortran, C, Pascal, Java, VB, Python, etc. ...
Article
Full-text available
This paper investigates the potential of discrete event simulation for the analysis and evaluation of public strategies and policies and discusses the opportunities offered by the use of a simulation project lifecycle. Following this cycle, we evaluate a public policy use case, the voluntary departure operation initiated in Morocco in 2005, and analyses the success rate of this operation, as well as its impact on the Moroccan pension fund, and this for the period from 2005 to 2025. The results of this simulation highlighted, as already indicated in the Court of Auditors' reports, the irrelevance of this operation, particularly from a financial point of view.
... 1-Analysis and formulation of the problem, [1][2][3], [6][7], [10], [20], [22][23][24], consists in defining the limits of the study, as well as the objectives to be achieved. ...
... 2-Definition of the system [10], [21], consists in defining the entities of the system, their attributes, as well as the activities of the system. [2][3][4], [6][7], [20][21][22], [24], consists in collecting the data necessary for the simulation, and in specifying the hypotheses and parameters of the simulation for the different scenarios and policies to study. ...
... 4-Modeling [1][2][3][4], [6][7], [10][11], [20][21][22], [24], consists in building a model or an abstraction of the real system studied. ...
Conference Paper
Supervision of a complex system involves studying and analyzing its functioning as well as a continuous search for its improvement and optimization. Simulation in general, and discrete event simulation in particular, is an appropriate tool to support the various management policies and strategies. In order to carry out a simulation project, particular importance must be given to the simulation process, which prompted us in this paper to ask the following question: is there a life cycle of a project of simulation or a referential of steps to follow? In this paper, we have used the simulation steps most cited in the literature to develop a life cycle for a simulation project called SPLC (Simulation Project Life Cycle) grouping the main steps. Then, we were interested in the analysis of the level of use of these different steps by the simulation processes, described in the literature review, to conduct a simulation project.
Article
Full-text available
Design patterns document a field's systematic knowledge derived from experiences. Despite the vast body of work in the field of multi-agent systems (MAS), design patterns for MAS are not popular among software practitioners. As MAS have features that are widely considered as key to engineering complex distributed applications, it is important to provide a clear overview of existing patterns to make this knowledge accessible. To that end, we performed a systematic literature review (SLR) covering the main publication venues of the field since 1998, resulting in 206 patterns. The study shows that (1) there is a lack of a standard template for documenting design patterns for MAS, which hampers the use of patterns by practitioners, (2) associations between patterns are poorly described, which results in a lack of overview of the pattern space, (3) patterns for MAS have been used for a variety of application domains, which underpins their high potential for practitioners, and (4) classifications of design patterns for MAS are bounded to specific pattern catalogs, a more holistic view on the pattern space is missing. From our study, we outline a number of guidelines that are important for future work on design patterns for MAS and their adoption in practice. © 2014 Springer-Verlag Berlin Heidelberg. All rights are reserved.
Article
Full-text available
Henri Ralambondrainy (Président) Jean-Pierre Müller (Rapporteur) Joël Quinqueton (Rapporteur) Christophe Le Page (Examinateur) Jean-Michel Stretta (Examinateur)
Thesis
Ce travail de thèse, mené sur deux thématiques : les réseaux ambiants et la simulation multi-agent, a pour contexte l'étude des interactions entre le fonctionnement des réseaux ambiants (réseaux pair-à-pair et réseaux mobiles ad hoc networks) et les comportements de leurs usagers (mobilité, partage d'un service, etc.). Pour étudier ces phénomènes, nous avons mis en lumière le besoin de réutiliser, de coupler et de faire interagir des outils de modélisation et de simulation provenant de domaines scientifiques différents (réseaux informatiques, simulations sociales) afin d'intégrer simultanément plusieurs niveaux d'abstraction dans l'étude menée. Cette problématique de réutilisation et de couplage de modèles (la multi-modélisation) et de simulation (interopérabilité de simulateurs) n'est pas propre aux seuls réseaux ambiants et celle-ci s'inscrit dans le domaine plus vaste de l'étude des systèmes complexes.Cette thèse se propose d'aborder les questions de réutilisation et de couplage des outils de modélisation et de simulation sous l'angle des systèmes multi-agents et d'inscrire les solutions à la fois d'ingénierie logicielle, de simulation distribuée, de multi-modélisation dans un cadre multi-agent générique et homogène : le méta-modèle AA4MM. L'idée fondatrice est de créer une société de modèles, de simulateurs et de logiciels de simulation (que l'on nommera blocs MSL) afin d'intégrer plusieurs niveaux d'abstraction dans une même modélisation et simulation. AA4MM propose une approche multi-agent homogène qui permet de facilement réutiliser des blocs MSL, de les rendre interopérable et de les coupler de manière modulaire. AA4MM permet également au modélisateur de clairement spécifier les changements d'échelles. AA4MM propose une méthode de simulation totalement décentralisée. Au niveau des aspects théoriques du méta-modèle AA4MM, nous avons proposé une preuve formelle de l'algorithme de simulation décentralisée. Nous avons également appliqué AA4MM à un cas d'étude pédagogique en couplant ensemble plusieurs instances de NetLogo (un outil de simulation répandu). Nous avons également appliqué AA4MM aux réseaux ambiants et à notre question initiale sur les influences mutuelles entre performances du réseau et comportements des usagers. Dans ce contexte, nous avons pu réutiliser des simulateurs existants qui n'étaient pas prévus pour interagir afin d'aborder les phénomènes d'influences mutuelles entre performances des réseaux et comportements de leurs usagers.
Thesis
Cette thèse aborde des questions liées à la simulation informatique de systèmes complexes modéli-sés à l’aide du paradigme multi-agents. Cette approche repose sur l’idée qu’il est possible de représenterdirectement le comportement et les interactions d’un ensemble d’entités autonomes évoluant dans unenvironnement commun. Mal maı̂trisée, la complexité des modèles considérés pose encore aujourd’huide nombreux problèmes quant à leur élaboration et à leur implémentation. L’une des conséquences lesplus critiques réside dans la difficulté de reproduire fidèlement les modèles publiés dans la littérature.Ce qui pose le problème de la vérification et de la validation de ce type de simulations. Dans cettethèse, nous considérons que ce problème est en majeure partie lié à un manque de correspondanceentre les spécifications des modèles et les structures informatiques qui permettent de les exécuter. Lebut de nos travaux est de faire un pas vers une mise en correspondance effective de ces deux parties.Pour cela, nous considérons deux approches complémentaires. La première se focalise sur l’élaborationd’outils génériques de conception de simulateurs. Il s’agit de rendre plus explicites les structures in-formatiques utilisées pour l’implémentation. La deuxième repose sur l’étude des moyens aujourd’huiutilisés pour modéliser un système multi-agents. Dans ce cadre, nous proposons une réflexion globalesur ce paradigme et nous identifions un ensemble de contraintes liées à son utilisation. A partir de cetteréflexion, nous proposons un principe de modélisation basé sur l’approche Influence/Réaction et surl’utilisation d’un modèle formel d’environnement pour systèmes multi-agents appelé MIC ∗ . Nous mon-trons en quoi notre approche permet de respecter les différentes contraintes de modélisation identifiéeset nous illustrons sa faisabilité à l’aide d’un exemple concret.
Article
Customizing ecosystem simulation applications is a complex operation, and the design of multi-agent systems remains expensive and error-prone. Object-oriented frameworks are a promising technology for the reuse of proven designs and implementation (i.e., software components and design patterns). This paper focuses on the design of agent-oriented, visual-interactive ecosystem simulations. We propose a customizable application framework, the novel aspects being the use of new advanced software engineering techniques for the reuse of simulation models. The proposed framework is presented with the Unified Modeling Language applied to complex ecosystems, with behavioral models encapsulated into active autonomous objects with social interactions (i.e., agents). The framework is also designed to support 2D or 3D visual-interactive feedback to end users at run-time, in addition to its ability to interface with Geographical Information Systems and the Web.
Article
Agent software is a rapidly developing area of research. However, the overuse of the word “agent” has tended to mask the fact that, in reality, there is a truly heterogeneous body of research being carried out under this banner. This overview paper presents a typology of agents. Next, it places agents in context, defines them and then goes on, inter alia, to overview critically the rationales, hypotheses, goals, challenges and state-of-the-art demonstrators of the various agent types in our typology. Hence, it attempts to make explicit much of what is usually implicit in the agents literature. It also proceeds to overview some other general issues which pertain to all the types of agents in the typology. This paper largely reviews software agents, and it also contains some strong opinions that are not necessarily widely accepted by the agent community.