ArticlePDF Available

Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators

Authors:

Abstract

Citrus is one of the most important fruit tree species in the world, as the fruits are a valuable source of nutrients, vitamins and other antioxidant compounds. The citrus productivity depends on various factors, among these the plant growth regulators holds a prime position. The use of plant growth regulators has become an important component in the field of citriculture because of the wide range of potential roles they play in increasing the productivity of crop per unit area. The plant growth regulating compounds actively regulate the growth and development by regulation of the endogenous processes and there exogenous applications have been exploited for modifying the growth response. Plant growth regulators have been used in citrus fruit production for influencing flowering, fruit set and fruit drop and play a major role in fruit growth and abscission. These regulators have also been used to influence fruit quality factors like peel quality and colour, fruit size, juice quality and to improve total soluble solids in different citrus species. This review may serve as a complete treatise on the possible roles of growth promoting substances on the physiological processes of citrus plant.
Quality and Quantity Improvement of Citrus: Role of
Plant Growth Regulators
Harsimrat K. Bons1*, Nirmaljit Kaur2 and H.S. Rattanpal1
1Department of Fruit Science, Punjab Agricultural University, Ludhiana, Punjab, India.
2Department of Botany, Punjab Agricultural University, Ludhiana, India.
*Corresponding author: harsimratpau@pau.edu
Paper No. 335 Received: 18 April 2014 Accepted: 22 May 2015 Published: 29 June 2015
Abstract
Citrusis oneof themost importantfruit treespecies inthe world,as thefruits area valuablesource
ofnutrients, vitaminsandotherantioxidantcompounds.Thecitrusproductivitydepends onvarious
factors, among these the plant growth regulators holds a prime position. The use of plant growth
regulatorshas becomean importantcomponent intheeldofcitriculturebecauseofthewiderange
of potential roles they play in increasing the productivity of crop per unit area. The plant growth
regulatingcompoundsactivelyregulatethegrowthanddevelopmentbyregulationoftheendogenous
processesand thereexogenousapplicationshavebeenexploited formodifyingthegrowthresponse.
Plantgrowthregulatorshavebeenusedincitrusfruitproductionforinuencingowering,fruitsetand
fruitdropandplayamajorroleinfruitgrowthandabscission.Theseregulatorshavealsobeenusedto
inuencefruitqualityfactorslikepeelqualityandcolour,fruitsize,juicequalityandtoimprovetotal
solublesolidsindierentcitrusspecies.Thisreviewmayserveasacompletetreatiseonthepossible
rolesofgrowthpromotingsubstancesonthephysiologicalprocessesofcitrusplant.
Highlights
• Impactofplantgrowthregulatorsonfruitqualityandproductivityofcitrus
Keywords : citrus,plantgrowthregulators,owering,fruitgrowth,fruitquality
Thegrowthanddevelopmentincitruslikeallother
fruitcropsisgovernedbyboththeintrinsicas well
asextrinsicfactors.Theintrinsicfactorscompriseof
thegenotypeandtheendogenoushormonebalance,
whereas,theextrinsicfactorsaretheenvironmental
conditions encountered by the plant. There are
other factors, viz., planting density, irrigation and
fertilization, which may aect the growth and
development of the plant. Since the discovery of
the plant growth regulators, they have been used
to manipulate plant growth and development for
the improvement of quality and quantity of the
produceinordertoenablethefruitgrowerstomeet
to pressure of increasing demand for food of high
quality.
In citrus industry, a large number of plant growth
regulatorshavebeenevaluatedfortheircommercial
application. Plant growth regulating chemicals are
usedincitrusproductioninallthecitrusproducing
areas.Theyareusedforproductiontechnologyand
quality improvement. In production technology,
emphasis is primarily on nursery production,
crop regulation by manipulation of owering,
improvement of fruit set and fruit growth and
manipulationofthetimeofharvest.Theapplication
of plant growth regulators for improvement of
HORTICULTURE
International Journal of Agriculture, Environment and Biotechnology
Citation: IJAEB: 8(2): 433-447 June 2015
DOI Number: 10.5958/2230-732X.2015.00051.0
©2015 New Delhi Publishers. All rights reserved
434
Bons et al.
internalfruitqualityandpostharvestfruitstorageis
ofequalimportance.
Plant growth regulators have been used in citrus
fruitproductionforinuencingowering,fruitset
andfruitdrop(Berhow2000).Theseregulatorshave
alsobeen usedtoinuencefruitqualityfactorslike
peelqualityandcolour,fruit size,juicequalityand
to improve total soluble solids in dierent citrus
species.AmongPGRs,theauxinshavedirecteecton
abscissionbycausingadelayofabscissionresulting
inimprovementin fruitqualityandyield incitrus.
Napthylaceticacid,2-4Dichlorophenoxyaceticacid
and Gibberellic acid have been tried for reduction
of physiological drop (Ullah et al. 2014 Salicylic
acidisconsideredapotent plant hormone because
ofitsdiverseregulatoryrolesinplant metabolism.
It is well established that salicylic acid potentially
generates a wide array of responses in plants and
also aects the photosynthetic parameters which
enhanceyield(Mahdiet al.2012)
Thepoortree healthalsoplaysa signicantrolein
enhancingoffruitdropduetodepletionofnutrient
supplytothedemandingsinks.Citrusishowever,
a relatively high nutrient demanding crop (Wang
et al.2006)anddeciencyorexcessofnutrientscan
leadtoinferiorfruitquality.Thereisaneedtoboost
upyieldthrough propernutritionandmaintaining
internalhormonalbalance.Suitable combination of
micronutrients and growth regulators may control
excessive fruit drop for the improvement of fruit
yieldandquality. Althoughmanyeortshavebeen
made to study (Baldwin 1993) the physiological
and biochemical aspects of citrus, there is still an
enormous unexplored potential in the study of
regulation of metabolites associated with citrus
physiology.
Citrusfruitsuselargeamount ofKas comparedto
othermacronutrients(AlvaandTucker1999)because
Kisinvolvedinseveralbasicphysiologicalfunctions
i.e. formation of sugars and starch, synthesis of
proteins, cell division, growth and neutralization
of organic acids (Liu et al. 2000). It improves fruit
qualitythroughenhancingfruitcolour,sizeandjuice
avor(Tiwari2005).Reportsindicatethedeciencies
of micronutrients like Zn, Cu, Fe and Mn in citrus
orchards of India and among them Zn is more
acute.LiteratureindicatesthattheapplicationofZn
increasesthefruityieldandquality(Rodriguezet al.
2005).Thesuitablecombinationsofmacronutrients,
micronutrientsandgrowthregulatorscouldcontrol
theexcessivefruitdropandimprovethecitrusfruit
yieldanditsquality(DobermanandFairhurst2000).
The literature pertaining the role of plant growth
regulators during dierent periods of growth and
developmentisreviewedunderthefollowingheads:
Role of Plant Growth Regulators
Flowering
Citrus trees, once past the juvenile phase, bloom
everyyear.Annualoweringofadulttreesisaected
by several exogenous and endogenous factors. In
citrus,cooltemperaturecaninduceowering,asin
mosttropicalandsubtropicaltrees(Inoue1990,Lenz
1967,Moss1976,Nishikawaet al.2007,Wilkie et al.
2008).InSatsumamandarin,oralinductionoccurs
intreesexposedto15°Cformorethan1.5months
(Inoue1990b,Nishikawa et al. 2007).Treesgenerally
remaininthevegetativegrowthphaseuntilthetrees
areexposedtotemperaturesoflessthan25°C(Inoue
andHarada1988).Undereld conditions,thetrees
areexposed tocool temperatureduringfall,during
which oral induction proceeds. The plant growth
regulatorsstimulatetheabscissionintheowersthat
causes heavy ower drop. According to Martinez
et al. (2004)oweringofHernandinagetsreducedby
25%andofOrograndeby60%whenGA3(20-50mg/
l)whengivenasa foliar spray (6 L pertree)toall
thecitrustrees.During bud developmentincitrus,
theapplicationof GA3hasshownto inhibitower
production(Guardiola et al. 1982),leadingtogreater
ratio of terminal owers in the leafy shoots thus
higher development of fruits (Iglesias et al. 2007).
Theseresultswerealsoshownbyuseofethychlozate
and GA3 for ower induction in citrus fruits but
GA3causedinhibitoryeect(Takahara et al. 2001).
According to Ben-Cheikh et al. (1997) gibberellins
are the factors responsible for ovary transition. In
vegetativeorgans,gibberellinsactivatetheprocessof
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
435
celldivisionandcellenlargement(Talon et al. 1991)
thus are also associated with initiation of growth
(Talon and Zeevart 1992). Gibberellins reduce the
ower production resulting in higher productivity
of beer quality fruits. It acts like a thinner agent
but it also showed the ability to retain the owers
(Iglesias et al. 2007)whereas2,4-Ddelayorstimulate
the abscission. Talon and Zeevart (1992) reported
thatincitrusthereproductiveprocessesareaected
byplantgrowthregulatorsshowingthatregulatory
mechanism being controlled by critical hormonal
component.
The phenomenon of owering in plants is under
the control of many factors, viz., cultivar, genetic
makeup, the environment and cultural practices.
Mostof thecitrus cultivarsowerprofuselysubject
to optimum environmental conditions and there
aremorethan100,000owerspertree(Agusti et al.
1982).Dependingonthecultivar,mostoftheowers
absciseleadingtolessthan1%fruitset(El-Otmani et
al. 1992).Theapplicationofplantgrowthregulators
is to regulate tree productivity either by reducing
vegetativegrowthandenhancingowering(during
‘o-year‘ )orby enhancingvegetativegrowthand
reducing ower initiation and development ( ‘on-
year ‘). Monselise and Halevy (1964) reported that
gibberellicacidcouldinhibitoweringin‘Shamouti’
orange. Similar inhibitory eect having been
reportedbyDavenport(1990).However,thetriazole
compoundsthatinhibitgibberellicacidbiosynthesis
have been reported to promote inorescence
production (Delgado et al. 1986 1986b; Harty and
van Staden 1988). It is the time of application and
concentration which determines the action of a
particular growth promoter (Guardiola et al. 1982,
Lord and Eckard 1987). In subtropical climates of
the northern hemisphere oral induction occurs
duringtheperiodfromNovemberthroughJanuary.
For sweet oranges and some mandarins induction
occurs early during this period (Guardiola et al.
1982), whereas for ‘Satsuma’ mandarins it occurs
later (lwahori and Oohata 1981). The optimum
concentration for promotion of owering are GA3
( 25 µg/ml ) for ‘Navelate’ sweet orange with the
application in mid-December and for ‘Washington
Navel’ with the appropriate time of application
being mid-November in Spain (Guardiola et al.
1977).Optimumconcentrations(100mg/L)andtime
ofapplication(lateJanuary)for‘Satsuma’mandarin
inJapanisreported by lwahoriandOohata (1981).
Agusti et al. (1981) concluded that GA3 (10 mg/l)
applied in late November could reduce owering
to40%in‘Clementine’mandarinirrespectiveofthe
date of harvest (i.e., the presence of the crop was
not inhibiting owering). Low GA3 concentration
reduced owering by 37 and 70% when it was
applied to ‘Satsuma’ mandarin trees in mid-
December(Garcia-Luis et al. 1986)andlateDecember
(Guardiola et al. 1982), respectively. However, the
durationofsensitivityis veryshortandtreatments
must be applied before the developing shoots are
morethan1mm long(Guardiola et al. 1982),which
correspondstothestageoffullsepaldevelopmentof
theapicalower(LordandEckard1987).
Aempts to promote owering using growth
retardants that are reported to inhibit synthesis of
gibberellins viz., CCC and paclobutrazol have not
beenabletoprovideconclusiveresultsasreportedby
HartyandvanStaden(1988)andDavenport(1990).
Greenberg et al. (1993)reportedthattheapplication
of paclobutrazol (foliar spray or soil application)
shifts the balance of shoot types toward the pure
leaess inorescences, which is just the reverse of
GA3, which pushes the balance toward vegetative,
owerlessshoots.
There are reports of role of auxins in the process
of owering by Zeevart (1978). Application of
2,4-D during mid-November to mid-December
to ‘Navelate’ sweet orange reduced owering by
approximately 30% (Guardiola et al. 1977). Higher
concentrations of synthetic auxins did not provide
anyadditionaleect(Agusti1980)andlower rates
didnotshowinhibitoryeect(Garcia-Luis et al. 1986).
Abscisicacidmayalsobeinvolvedintheregulation
ofowering(YoungandCooper1969).Therole of
cytokinins in the regulation of owering in citrus
has received lile aention, although a correlation
betweenendogenouscytokininlevelsandbudbreak
andgrowthhas been reported(Davenport1990). It
436
Bons et al.
has been argued by Davenport (1990) that lack of
oweringduring(o-bloom)whentreesarebearing
theheavy‘on-yearcrop’forseverelyalternatebearing
cultivars,islikelyduetolackofcytokinins.Thelow
levelof cytokininsaredue tolackofcarbohydrates
andothernutrientsnecessaryforactiverootgrowth
andfortheproductionofcytokinins.
Gibberellins appear to be the only plant growth
regulators that consistently inhibit owering, but
theuseofgibberellicacidasacommercialregulators
forreducing owernumbertoincreasefruitsizeor
inan expectedon-year’toreducealternatebearing
is limited. Climatic conditions, i.e., temperature
extremes that might prevail during owering
invocationandinductionmayresultinpoorfruitset
orexcessivefruitdropresultinginlowyield.
Crop Regulation
Consumer preference worldwide is for large sized
andhealthyfruits(Gilllan1987,MillerandHofman
1988). Fruit juice acidity (percent citric acid) and
juice volume are very much aected by fruit size.
Smallfruithaveasubstantiallyhigherpercentacid
than larger fruit and total soluble solids per fruit
is considerably lower in small fruit. Reducing the
proportionofsmallfruitharvestedincreasesgrower
return both for fresh fruit (because there are more
fruit of commercially valuable export size) and for
juice(becauseofincreasedjuiceandTSS).Smallfruit
size results due to many factors, viz., competition
between fruit-lets (Hirose 1981). Usually, after an
extremelyheavycrop,alternatebearingcanresultin
treedeclineandevencollapseinsomeextremecases
as‘Kinnow’mandarin(Jones et al. 1975).Competition
forcarbohydratesreservesamongsubsequentcrops
is probably one of the major cause but results are
inconclusive (Monselise and Goldschmidt 1982).
There is an inverse relationship reported between
fruitsizeandower numberandfruitnumberper
tree (Guardiola 1992). Consequently, ower and
fruitthinning,bothmanually andchemically,have
been used to improve fruit size (Zaragoza et al.
1992). Hand thinning requires a lot of labour and
time.Whereas,chemicalthinninghasbeen desired
strategyforcultivarsthatbearprofuselyinorderto
avoid the eects of alternate bearing (Hirose 1981;
Monselise et al. 1981; Gallasch 1984). A signicant
increaseinfruit sizeoccursonlyif fruitthinningis
considerable and performed suciently early in
fruitdevelopment(Zaragoza et al. 1992).
Themostwidely tested growthregulatorsused for
thinningareethephon(Wheaton1981,Gallasch1988),
NAA (Hirose 1981, Monselise et al. 1981, Wheaton
1981,Gallasch1988, Guardiola et al. 1988).Inorder
toavoidoverthinning,treatmentsshouldbeapplied
earlyinthemorningorlateintheafternoonandonly
during a period in which excessive temperatures
(>30°C)arenotcommon(Hirose1981).Inadditionto
anincreaseinfruitsize,advantagesofthinningalso
include prevention of tree collapse, which ensures
treesurvival.Inthiscase,evenalossinimmediate
protcanbejustied(Monselise et al. 1981).
Fruit-Set
After successful fertilization the early changes in
owerarefollowedbyfruit-set(Petho1993).Theearly
changesoftheowerafterasuccessful fertilization
are the signs of fruit set. In some cases, the mere
fact of pollination may also initiate the growth of
the ovary. Without fertilization, the degeneration
of the ovary is expected, which is followed by the
deathandabscissionoftheowertoo.Flowerdrop
is caused by the appearance of ethylene-produced
autocatalytically.
The pollinated ower develop to a fruit, and the
fertilized ovules grow to seeds due to an intense
synthesis of growth substances. The intense cell
division and growth of the tissues absorbs a lot of
organic maer of the reserves competing with the
vegetative organs, consequently, an interaction
betweenthedierentpartsoftheorgansofthetree
is building up. Not only the fate of the growing
fruit,itssizeand quality butalsothephysiological
potentialofthewholetreeisinuencedbyrelations
ofsourcesandsinks,whichinturn mayimpairthe
maintenanceofthefruitsset.Thegrowthsubstances
induce the growth and thickening of the peduncle
too(Krezdon1973,Saleemetal,2008,Jain et al. 2014)
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
437
Fruit Growth
Fruitsizeisadesirablecharacterforthemarketability
ofcitrus.Smallfruitsizeisverycommoninmandarins.
Thevariationinfruitsizeresultsfromdierencesin
cellnumberorcellsizeoracombinationofboth.The
potentialforincreasingfruit size by enhancingcell
divisionearlyisarelativelyundevelopedapproach.
Treatment with plant growth regulators such as
gibberellins and cytokinins during or shortly after
ower opening enhances early fruit growth (EI-
Otmani et al. 1992; Guardiola et al. 1993)butdoes
not always result in an increase in fruit weight at
harvest.Thisearlyincreaseinfruitsizeisduemainly
to a transient increase in cell division in the ovary
wall.Earlyapplicationofauxinsincreasesnalfruit
sizemoreconsistently(Agusti et al. 1992;1996,1998;
EI-Otmani et al. 1993;Aznar et al. 1995).
Theratesofapplicationoftheplantgrowthregulator
varieswithcultivar,stageoffruitdevelopmentand
climatic region. It is important to ensure optimum
tree nutrition and irrigation as well as to provide
full tree coverage during application. The mode of
action of these plant growth regulators has been
summarizedbyAgustiet al.1996,butitisimportant
to note that they increase vesicle size, not number
(Agusti et al. 1992, 1996; EI-Otmani et al. 1993),
and that their eect on vesicle size is through an
enhancement of cell enlargement, not cell division
(EI-Otmaniet al.1993;Agustiet al.1996).Developing
fruit are important sinks for water and photo
assimilates;theirsinkstrengthisincreasedasaresult
of auxin treatment, with all fruit tissues increasing
in proportion. Auxin application increases fruit
pedunclesizethroughanincreaseinphloemcellsize
(Agusti et al. 1996) consistent with increased sink
strengthandcarbohydratemovementintothefruit.
Reduced fruit growth rate during the early stages
offruit developmentwaspositivelycorrelated with
fruitabscission,particularlywhenfruitweretreated
duringtheJunedropperiod(Agustiet al.1995).
Fruit Drop
AccordingtoSoostandBurne(1961)theexogenous
applicationofGA3improvestheparthenocarpicfruit
set and growth of self-incompatible genotypes like
Clementine that shows negligible parthenocarpic
fruit set in the absence of cross-pollination El-Sese
(2005)conrmedthatthenumber of fruits pertree
andthetotalyieldincreasedwithGA3ascomparedto
control.Thefruitsetwassignicantlyaectedbythe
GA3treatmentindividuallyandalsoincombination
withauxinand gavethemaximum fruitsetof 32.3
per cent (Saleem et al. 2005). The GA3 and 2,4-D
areusedinabscissiontocontroltheoverloadingof
fruitforbeer qualityoffruits(Iglesias et al.2007).
The application of 2,4-D after fruit set results in
accelerationofabscission(Lee2003).Theroleof2,4-D
dependsonexternalandinternalfactors.According
toIglesias et al.(2007), decreasein GAand increase
the ABA level shows that both these plant growth
substancescontroltheinitialfruitsetandJunedrop
along with other essential component. Randhawa
et al.(1961)reportedthat2,4-Dreducedpre-harvest
drop in Jaa oranges. Bajwa et al. (1971) reported
that in sweet orange cv. pineapple when sprayed
with 2,4-D (20ug/ml) or NAA, both plant growth
substancecontrolthepre-harvestdrop.Accordingto
Randhawaet al. (1961)application of2,4-D(15and
20µg/ml) and 2,4,5-T (5 and 10µg/ml) reduced the
fruitdropinLahorelocalandNagpurmandarin.
Theenvironmentalconditionslikehightemperature
andlowhumidityinsoilandinairgreatlyinuence
theJunedrop(Levi1964;Davieset al. 1981).Knapp
(1996)reportedthattheapplicationof2,4-Disopropyl
ester acid at 60 to 70g /ha for during 6 to 8 weeks
afterbloomreducedthesummerdrop.Summerfruit
drop usually occurs from month of mid-Augustto
Octobertillmaturity.
The abscission of fruits is generally coupled with
structural changes in the plant (Baird and Webster
1996), which means that several abscission zones
are formed within the same inorescence. It has
been postulated that there is appearance of two
or three abscission zones around the same fruit.
Fruitsareabscisedbecausethecellsgetlooseinthe
abscissionzone.Pectin,hemicellulosesandcellulose
are dissolved by the respective enzymes, and the
mechanicalstressdetachthefruits.Sometimes,the
438
Bons et al.
deadxylemelementskeepthefruithangingawhile.
Asexternalagents,thewindmayhelpthedrop,but
thedehydrationofsenescentcellscausestensionand
contributestotheprocess.Thescarof thedetached
fruitisgenerallysuberisedorlignied.
Theabscissionzoneisdistinctfromtherestoftissues
notonlyinitsanatomybutalsoinmetabolicterms.
Abscission zone excels by intense cell division,
synthesisofproteinsandRNA,highO2consumption
as well as peroxidase-activity. Important role is
aributed to the middle lamella and the aached
primary cell wall, as being dissolved. The middle
lamella is softened by the enzyme pectin-esterase,
which demethylate the pectin making it soluble
andthecellsareeasilyseparated.Anotherenzyme,
cellulaseisalsoactivatedtogetherwithgalacturonase.
Duringthephaseofabscission,thegenesresponsible
for inducing the synthesis of hydrolytic enzymes
dissolving polysaccharides of the cell wall mainly
as cellulases and pectinases are activated. Those
enzymes dissolve the middle lamella and also the
cellwallsandthecohesionofcellsisweakened.
Followingtheowerdrop,fruitdropensuingbefore
maturityisaributedtothecollapseofthehormonal
balance in the growing fruits, where the growth
substancesbeingactiveinfavourofgrowthlosttheir
inuence against abscisic acid causing abscission.
TheroleofABAbecomesprevalentwhentheyoung
fruit-lets drop, and, when fruits are almost ripe.
Thedierencebetweenvarietiespronetofruitdrop
correspondedtotheirABAcontenttoo.
Theabscissionofyoung fruits seemstodependon
auxin as a correlative dominance signal (Bangerth
1990). The investigations of Luckwill (1953) made
early reports in searching the causal relations
between auxin production of the developing fruit
andfruitdrop. TheyexplainedthatIAAmayspeed
uporalternativelyinhibittheprocessofabscission.
Lackofnutrients,whichdoesnotdependsolelyonthe
meagresoil,butratheronthecompetitionbetween
thevegetativeorgansandthe growingfruitsof the
plant.Thefateofayoungfruitisoftenimpairedby
thedominanceofanotherfruitorvigorousshoots.
The abscission of fruits is generally coupled with
structural changes in the plant (Baird and Webster
1996),whichmeansthatseveralabscissionzonesare
formedwithinthesameinorescence.
Gibberellins are known for their ability to increase
cell enlargement, thus enhancing fruit growth in
certain species such as citrus (Eman et al. 2007, El-
Sese2005),guava(El-SharkawyandMehaisen2005)
and pear. In all species so far studied, gibberellins
had the potential for increasing fruit size. Salicylic
acid is considered to be a potent plant hormone
(Raskin1992)becauseofitsdiverseregulatoryroles
inplantgrowthregulatorand its role isevidentin
fruit yield (Klessig and Malamy 1994). Application
of plant growth regulators like gibberellins and
salicylic acid alone or coupled with micronutrients
mayimprovecroppingpotential.
Early reproductive processes in citrus are strongly
aected by plant growth regulators indicating that
theregulatorymechanismsthatcontrolfruitsetand
abscissionofovariesandfruitletspossessesapivotal
hormonalcomponent(Talonet al.1990).Gibberellins
and cytokinins are generally considered to be
positiveregulatorsoffruitgrowthwhileauxinshave
been reported to act as stimulators of growth and
also as abscission agents (El-Otmani and Oubahou
1996). Abscisic acid (ABA) and ethylene have been
implicatedinseveralwaysinabscission.Gibberellins
arethoughttobepivotaleectorsresponsibleforthe
ovary-fruittransition(Talonet al.1992, Ben-Cheikh
et al. 1997). They activate cell division and cell
enlargement processes in vegetative organs (Talon
et al. 1991) and therefore are generally associated
with the initiation of growth (Talon and Zeevaart
1992). The intensity of abscission during the initial
phasesofgrowthisalsorelatedtothephenologyof
owering.
Salicylicacidandothersalicylatesareknowntoaect
various physiological and biochemical activities of
plants and may play a key role in regulating their
growthandproductivity (Arberg1981).Exogenous
application of salicylic acid may also inuence
seed germination and fruit yield. Sivakumar et al.
(2002) determined that the application of salicylic
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
439
acid increased the content of protein in grains of
pearlmillet.Kalaraniet al.(2002)carriedouta pot
cultureexperimenttodeterminetheeect of foliar
application of dierent concentrations of salicylic
acid on physiological and biochemical constituents
as well as yield and quality of tomato and found
that Salicylic acid at all concentrations showed its
eciencyininducingearlyoweringandincreased
fruitsetpercentage.
Besides, hormonal induction of fruit growth,
nutrients may have regulatory functions on their
own and/or through the maintenance of adequate
hormonal levels (Gillaspy et al. 1993). The average
number of owers produced in a normal citrus
tree is by far extremely high in comparison to the
number of fruits that the same tree can support
until ripening. Hence, many fruits are abscised
during growth apparently due to competition for
nutrients especially photo-assimilates. During the
initial moments of phase I, citrus fruitlets function
as carbohydrate utilization sinks but over the nal
stagesofthisperiodandduringthetransitionfrom
cell division to cell enlargement, developing fruits
shifttheirmetabolismandstarttobehaveasstorage
sinks (Mehouachi et al. 1995). Defoliation during
phaseIreducescarbohydrateamounts,arrestsfruitlet
growthandpromotesmassiveabscission(Mehouachi
et al. 2000)whereas,defoliation after theJunedrop
also arrests growth but does not induce abscission
(Lenz 1967). The link between carbohydrates and
fruitgrowthiscurrentlysupportedbyawidebody
ofevidenceincludingseveralstudiesonsource-sink
imbalances, defoliation, girdling, shading, sucrose
supplementation, de-fruiting and fruit thinning
(Goldschmidt and Koch 1996, Iglesias et al. 2003,
Syvertsen et al. 2003). First, the enhancement of
carbohydrate availability was associated with an
improvement of fruit set and yield of citrus trees
(Goldschmidt 1999). Later, a strong relationship
was demonstrated between carbohydrate levels
availabletofruitletsandtheprobabilityofabscission
(Gomez-Cadenas et al. 2000, Iglesias et al. 2003).
This phenomenon that has also been described for
other tree species is also supported by studies on
translocationof14CmetabolitesandCO2-enrichment
experiments(Mosset al.1972,Downtonet al.1987).
Hence,photosynthesisactivityhasbeenprovedtobe
crucialsincehighcarbohydraterequirementsduring
fruitsetincreasesphotosyntheticrate (Iglesiaset al.
2002).Thissuggestionalsoimplies thatareduction
in net CO2 assimilation results in lower sugar
production and fruit set. The sugar concentration
inleavesmightbethesignalthatregulatesthefeed-
back mechanism stimulating photosynthesis in
responsetofruit sugar demand.Thus,oncecarbon
demands are fullled, carbohydrate accumulation
may elicit end-product feedback control of
photosynthesis.ThepositiveeectofexogenousGAs
on fruit set and growth may also partially operate
through the induction of a stronger mobilization
of14Cmetabolites toovaries(Powell andKrezdorn
1977). The exogenous GAs have also been shown
to stimulate growth and increase carbon supply in
vegetativetissues (Mehouachi et al.1996).Thus the
sugars are deeply implicated in the regulation of
fruitlet growth and that overall carbon deciency
inducesfruitabscission.
Although the specic mechanism involved in the
response of fruit growth to carbohydrates has not
been studied at the molecular level, observations
suggest that sugars may act not only as essential
nutrientfactorsbutalsoassignalstriggeringspecic
hormonalresponses(Roitsch1999).Theobservation
linkingcarbohydrateandabscissionwasconrmed
withthending thatcarbonshortageduringovary
and fruitlet drop increased ABA and ethylene and
bothareinvolvedintheinductionofearlyabscission
(Gomezet al.2000).
The alterations in the nutrient balance that are
accompanied with increased fruitlet abscission
during the June drop provoke an unambiguous
tendency to both increase nitrogen content and to
reduce carbon shortage. Abscission intensity may
becorrelatedpositivelywithcarbohydrateshortage.
The two main Conclusions that can be extracted
are that the fruit fall that takes place during June
isverylikelydue to thecarbohydrateinsuciency
caused by an increased carbon demand of a huge
population of expanding fruitlets; and second,
440
Bons et al.
carbondeciencyisagainassociatedwithABArise,
ethylene release and massive fruitlet abscission.
Thisideathatcitrusfruit abscissionisconnectedto
carbohydrateavailabilitywasinitiallyanticipatedby
Goldschmidt and Monselise (1977) who suggested
thatcitrusmightpossessaninternalself-regulatory
mechanism that adjusts fruit load to the ability of
the tree to supply metabolites. The above ndings
identify leaf sugar content, ABA and ethylene as
major components of the self-regulatory adjusting
mechanismofabscission. Recently,ithasalso been
proposedthatinadditiontoJunedrop,earliestovary
andfruitletfallsthatoccurthroughabscissionzone,
are also dependent upon nutritional factors such
sugars(Iglesiaset al.2006).
Literatureindicatesthattheapplicationofnutrients
and plant growth regulators increase the fruit
yield and quality, hence the suitable combination
of macronutrients, micronutrients and growth
regulatorscouldcontroltheexcessivefruitdropand
improvethecitrusfruityieldanditsquality.
Fruit Quality
Fruitqualityisaconceptthatvariesaccordingtothe
naluseofthefruitandatwhatpointfromorchard
toconsumerthefruitisevaluated. For thegrower,
anyfruitthatcanbesoldatareasonablygoodprice
is of good quality. For the fruit packing industry,
fruitsthatareofuniformsize,freeofblemishesoer
good market. The harvested fresh fruit requires to
beseedless(lowseednumber),highTSS:Acidratio
and excellent color, shape and rmness. Whereas,
the requirement of the juice industry is fruits with
highjuiceandsugarcontent. Parametersimportant
toboththefreshfruitandjuiceindustrieshavebeen
showntorespondtoplantgrowthregulators.
Thejuicecontentandorganoleptictasteareimportant
parametersanddesirableforfreshfruitconsumption
ofcitrus.Organolepticqualityis theresultofsugar
and acid content, and the presence of volatiles in
the juice. Nutritional quality includes sugar, acid,
vitamins,etc.Forfruitprocessing,internalqualityis
farmoreimportantthantheexternalappearanceof
the fruit. Plant growth regulators that can be used
tomanipulate theseparametersincitrusarealmost
non-existent.Althoughnotaplantgrowthregulator,
leadarsenatewasusedformanyyearsinFloridato
improve fruit internal quality (Knapp 1996). This
compound causes a reduction in total acidity and
consequently,anincreaseinthesugar-to-acidratio.
Granulation of fruit is a physiological condition
in which the juice sacs become gelled with lile
extractable juice It develops pre-harvest (Smoot
et al. 1971) as well as post-harvest (Gilllan and
Stevenson1977).AreductionofthedisorderbyGA3
sprayshasbeenreported,butthiseecthasnotbeen
reproducedconsistently
AccordingtoKauret al.(2000)fruitweightincreased
withincreaseinamountof2,4-DintreesofKinnow
mandarin. The fruit weight and peel thickness has
beenincreasedwiththeapplicationofZnalone or
in combination with GA3 in ‘Washington Navel’
orange(Emenet al.2007).TheapplicationofZnand
Kincreasedfruit weightascompared withcontrol.
According to Sourour (2000) both Zn and EDTA
increasedthenumberandweight offruitspertree.
According to Chundawat and Randhawa (1972)
GA increased the fruit size in Saharanpur special
grapefruittrees.Theapplicationof2,4-Dat20µg/ml
alongwithCuSO4at0.25or 0.50 percent increased
thefruitsize(SinghandMishra1986).
ChundawatandRandhawa(1972)reportedthatGA3
and 2,4-D increased peel thickness in Saharanpur
special variety of grapefruit. Also Dinar et al.
(1977) observed that both gibberellic acid and 2,4-
D increased peel thickness in Marsh grapefruit.
Applicationofnutrients increasedthejuicecontent
(Ram and Bose 2000). Maximum juice from fruits
wasobserved fromthetreessprayed with1%urea
and 0.8% Zinc sulphate (Malik et al. 2000). Trees
treated with gibberillic acid yield juice more than
10%thanthecontrolones (Davieset al.2001).Such
increasewaseconomicallybenecialtoFloridacitrus
growersbecauseprocessedfruitvalueincreasewith
juiceyield(Braddock1999).
The application of Zn alone and with combination
withFeandMnincreasedtheTSSvalueascompared
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
441
tocontrol.AccordingtoMongaandJosan(2000)the
highest TSS was obtained from tree sprayed with
Zn (0.3%) alone. Treatment with 2,4-D at 20µg/ml
andgibberllicacidat20µg/mlincreasedtheTSSin
grapefruitjuice(Llaneset al.1991).
Foliar application of Zn alone and along with Fe
andMnonKinnowmandarinresultedin decrease
acidity as compared to control (Monga and Josan
2000). According to Singh and Mishra (1986) 2,4-D
increased the acidity level in Kinnow fruit. Age of
treeandtype ofcultivaralsoinuencedtheacidity
oforanges(FrometaandEchazabal,1988).
Foliar application of Zn was observed to increase
the ascorbic acid contents of juice in various citrus
varieties (Dawood et al. 2001). Increased content
of ascorbic acid was observed with application of
Znalone,Zn+Mn orZn+B(Tariq et al.2007).High
ascorbic acid was obtained by sprays of Zinc and
gibberellicacid(Emanet al.2007).Chundawat and
Randhawa (1973) reported that vitamin C content
increasedwith sprayof2,4-DinDuncancultivarof
grapefruit. Immature citrus fruits have the highest
amountofascorbicacidwhereas,ripenedfruithave
the least as reported by Nagy (1980). However,
ascorbic acid content increased with ripening of
fruitsinapricot,peachandpapayasbutdecreasedin
applesandmangoes(LeeandKader2000).
The TSS:Acid ratio of juice was increased with
theapplicationofSA,ZnandKalone and also by
combination of both. Abd-Allah (2006) reported
that the application of K in combination with
micronutrientsimprovedTSS:acidratiowhileZn+K
and other dierent combinations was observed by
Ashrafet al.(2012).
Among sugar derivatives; sugar nucleotides, sugar
phosphates, glycosides and polyles are important.
D-galacturonicacid, D-Glucuronic acid,L-ascorbic
acidaresugaracidswerefoundincitrusfruits.Sugar
alcoholssuchasmyo-inositolwasfoundinoranges
and grapefruits in the range of 88-170 mg/100g of
juice Lemons had 56-76 mg myo-inositol/100g of
juice. The reducing sugars, non- reducing sugars
and total sugars increase as the fruit start to ripe.
Fructose,alphaandbeta–glucoseandsmallamount
ofgalactosewerealsofoundinValenciaorangejuice
By using 14C labelled compounds, Sawamura and
Osajima(1973)observedthattranslocationofsugars
fromleafto fruitoccursin theformof glucoseand
fructose which are further changed into sucrose in
thefruit.Kuraokaet al.(1976)foundchangesinsugar
content of avedo tissue of Satsuma mandarins
growninJapan.TingandAltaway (1971) reported
thattheratioofFructose:Glucose:Sucroseas1:1:2
inValenciaoranges.
Production
Optimumyieldisayieldthatissustainableyearafter
yearandthatutilizesthefullpotentialoftheavailable
landalongwiththeenergyandnutritionalresources
ofthetree.This yield is afunctionoftree planting
density,canopydevelopment,intensityofowering,
fruitset,fruitgrowthandnumberoffruitsharvested
at maturity. In young trees, a high proportion of
photosynthateisallocatedtovegetativedevelopment
andgrowth.Usually,only afewowersand fruits
areproducedduring the2to 3yearsafter planting
a nursery tree. Canopy development and growth
continues and reaches an optimum between 5 and
12 years, depending on planting density, at which
timeyieldisatitshighestvalue(Boswellet al.1970
1975). At this point a natural equilibrium between
vegetative growth and reproductive development
isestablishedwithvariationsduetoenvironmental
conditions and genotype of the cultivar, provided
thatnutritionandlightinterceptionareoptimal.
Theproductionperunitareaisthekeyfactorforthe
citriculturists. However, the productivity depends
uponfactorsviz.,lightinterception, carbondioxide
xation, water availability, and mineral nutrient
uptake.Besides, theproductivityisalsoaectedby
competitionamongsimilarordierentplantorgans
for photo assimilates and nutrients. Plant growth
regulatorshavebeen used toimproveproductivity
wherever feasible. Unfavourable environmental
conditions may restrict many of the processes
related to production from ower initiation (Moss
1969; Southwick and Davenport1986; Lova et
442
Bons et al.
al. 1988) to the development of inorescences and
owersormaycauseexcessivedropofowerbuds,
openowers,entireinorescences,anddeveloping
fruitlets.Plantpathogens may causeexcessivefruit
drop and may deteriorate fruit quality (Lima et al.
1980).Imbalanceoffertilizersthatmaysupplyexcess
ofnitrogen leadto excessivevegetativegrowthand
low ower number. On the other hand, nitrogen
deciency leads to low ower initiation and thus
reducedyields(Davenport 1990).
Plant growth regulators are used to reduce the
seasonaluctuationsin yieldandalso tomaximize
energy allocation to harvestable fruit in order to
increase fruit number and fruit size rather than to
enhanceexcessivevegetativegrowth. Plantgrowth
regulators can be used to hasten or delay fruit
coloring and fruit maturation so as to shorten or
extendtheharvestseason to get the best economic
productivity.(Jainet al.2014)
Yield (Kg per tree) includes both fruit number
andfruitsize.Fruit number is afunctionofower
intensityandfruitset.Fruitsizeisafunctionofcell
divisionandcellenlargementprocesses.Thenumber
offruitthatsetandpersisttoharvestinuencesfruit
size.Citrusfruitgrowthisacontinuousprocess,fruit
weightandfruitdiameteris representedbyasingle
sigmoidal growth curve (Guardiola and Lazaro
1987).Thedevelopment oftheovary intoamature
fruitproceedsthroughthreestages:celldivision,cell
enlargement, and maturation. During Stage I, cell
divisionpredominates.Cell divisionisessentialfor
the formation of theovary during owerinitiation
and continues past petal fall to approximately
mid-JunetolateJuly(Lova 1999).Atthis timecell
division,whichoccursinallthetissues,iscompleted
except in the avedo. Thus, during the period
encompassingfruitset andJunedrop, fruitgrowth
isdominatedbycelldivision.StageIIistheperiodof
maximumfruitgrowthoccurringoverthefollowing
3 months for the early maturing cultivars (e.g.,
Satsuma’mandarin)andthenext7to10monthsfor
thelatematuringcultivars (e.g., ‘Valencia’ orange).
This stage of fruit development is dominated by
cell dierentiation and cell enlargement. The juice
vesiclesandloculesincreaseinsizewiththeuptake
of water, and the avedo continues cell division,
whereas the cells of the albedo must expand and
stretch to accommodate the growth of the locules.
Drymaerandwateraccumulateinthevacuolesat
ahighrate(Guardiola1992).Fruitthatpersistonthe
treethroughtheJune drop period arenotlikelyto
absciseintheabsenceofpestdamage,physiological
disorders such as spliing, or stress such as water
decit and excess temperatures. Stage III is the
periodoffruitmaturation.Fruitcontinuetoincrease
in size predominately by cell expansion, but at a
slower rate. Peel thickness may increase in some
cultivarsandpunessmayoccur,particularlyinthe
mandarintypes.
According to Bengal et al. (1982), the combined
application of NAA (25ug/ml) and urea (1%)
increasedtheseedyield.FoliarapplicationofNAA
onpaddy(Oryza sativaL.)under low level of N (0
and60kg/ha)gavethebenecialeectsasreported
by Grewal and Gill (1986). The benecial eect
wasobserved byincreasein numberofear-bearing
shoots/plant,grainweight, numberoflledgrains/
panicle.Thesucientnitrogensupplywasessential
forincreasingtheyieldof rye and barleybymono
ethanolamine(BergmannandEckert1990).
Conclusion
Plantgrowthregulatorsarecommerciallyexploited
intheeldofhorticulturebecauseofthewiderange
ofpotentialrolestheyplayinincreaseofproductivity
per unit area. Their application in citrus industry
duringdierentphasesofgrowthanddevelopment
iscurrentlyinpracticeasisevidentfromthepresent
literature.Theadvantageofplantgrowthregulators
is their use at very low concentration because of
whichtheydonotlayanyhealthhazards.However,
itisimportanttounderstandthebasic mechanisms
underlying the citrus growth and development in
ordertomanipulatethekeyphysiologicalprocesses
and make use of the plant growth regulators at
the appropriate stage of development and at the
optimum dose. Therefore it is desirable to persue
researchonthemechanismofactionofplantgrowth
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
443
regulators on the physiological, biochemical and
geneticregulationofgrowthanddevelopment.
References
Abd-Allah ASE 2006.  Eect of spraying some micro and
macronutrients in fruit set, yield and fruit quality of
Wahington Navel orange tree. Applied Science Research
11:1059-63.
AgustiM,AlmelaV,AznarM,PonsJ,El-OtimaniM1992.The
useof2,4-DPtoimprovefruitsizeincitrus.Proceedings of
International Society of Citriculture 1:423-27.
AgustiM,AlmelaV,ZaragozaS,JuanM,TrenorI,AlonsoE,
Primo-MilloE1998. Tecnicas paramejorar eltamanodel
fruto de naranjas y mandarinas. Cuadernos TEchologia
Agraria.SerieCitricultura.No.3, GeneralitatValenciana.
ConselleriadeAgricultura,PescayAlimentacion,15pp.
AgustiM,Almela V,Zaragoza S,Primo-MilloE,El-Otmani
M 1996. Recent ndings on the mechanism of action of
thesyntheticauxinsused to improvefruitsize of citrus.
Proceedings of International Society of Citriculture 2:922-28.
AgustiM,El-OtmaniM, AznarM,JuanM, AlmelaV1995.
Eect of 3, 5, 6 trichloro-2-pyridyloxyacetic acid on
Clementineearlyfruitletdevelopmentandonfruitsizeat
maturity.Journal of Horticulture Science 70:955-62.
Agusti M, Garcia-Mari F, Guardiola JL 1982. The inuence
of owering intensity on the shedding of reproductive
structuresinsweetorange.Scientia Horticulture 17:343-52.
Agusti M, Almela V, Guardiola JL 1981. The regulation of
fruit cropping in mandarins through the use of growth
regulators.Proceedings of International Society of Citriculture
1:216-20.
AlvaAK,TuckerDPH1999.Soilandcitrusnutrition.In(Eds)
LWTimmerandCWDuncanCitrusHealthManagement
GainsvilleUniversityofFlorida6:59-71.
Arberg B 1981. Plant growth regulators Monosubstituted
benzoicacid.Swedish Journal of Agricultural Research 11:93-
105.
AshrafMY,YaqubM,AkhtarJ,KhanMA,Ali–KhanA,Ebert
G2012.Controlofexcessivefruitdropandimprovement
in yield and juice quality of Kinnow through nutrient
managementPakistan Journal of Botany 44:259-65.
BairdLAM,WebsterBD1996.Theanatomyandhistochemistry
offruitabscission.Horticultural Reviews 172–203.
BajwaMS,DeolSS,SinghA1971.Eectofgrowthregulators
andtheirconcentrationsonfruitdrop,yield,fruitsizeand
qualityofpineapplevarietyofsweetorange(Citrussinesis
Osbeck).Punjab Horticulture Journal 11:152-56.
BaldwinEA1993.Citrusfruit.In:SeymourGB,TaylorJEand
TuckerGA (eds).Biochemistryof FruitRipening pp.107-
149.ChapmanandHall,London.
BangerthF1990.Polarauxintransportinfruittreesinrelation
tofruitdrop.Acta Horticulture 275:461-68.
Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talon M, Primo-
Millo E 1997. Pollination increases gibberellins levels
in developing ovaries of seeded varietiesof citrus. Plant
Physiology 114:557-64.
BengalDB, DeshmukhSN,PatilVA1982. Noteontheeect
ofgrowthregulatorsandureaonyieldaributesofgram
(Cicerarientinum).Legume Research 5:54-56.
BergmannH,EckertH1990.Eectofmonoethanolamineon
growth and biomass formation of rye and barley. Plant
Growth Regulation 9(1):1-8.
Berhow MA 2000. Eect of early plant growth regulator
treatmentsonavonoidlevelsingrapefruit.Plant Growth
Regulation 30:225-32.
BoswellSB,Mc Carty,CD,HenchKW andLewisLN 1975.
Eectof treedensity onthersttenyearsofgrowth and
production of Washington navel orange trees. Journal of
American Society for Horticultural Science 100:370-73.
BoswellSB,Lewis LN, Mc CartyCD,Hench KW 1970.Tree
spacing of Washingtonnavel orange. Journal of American
Society for Horticultural Science 95:523-28.
Braddock RJ 1999. Handbook of citrus by – product and
processingtechnologyWileyN
ChundawatBS,Randhawa GS,1972.Eect of plantgrowth
regulatorsonfruitset,fruitdropandqualityofSaharanpur
varietyofgrapefruit.Indian Journal of Horticulture 29:277-
82.
ChundawatBS, RandhawaGS 1973.Eectsof plantgrowth
regulators on fruit set, fruit drop and quality of Foster
and Duncan cultivars of grapefruit. Haryana Journal of
Horticulture Science 2:6-13.
Davenport TL 1990. Citrus owering. Horticulture Review
12:349-408
Davies FS, Buchaman DW, AndersonJA 1981. Water stress
andcoldhardinessineldgrowncitrus.Journal of American
Society for Horticultural Science 106:197-200.
DaviesFS,CampbellCA,FidelibusMW2001.Gibberellicacid
tank mix and adjuvant eects on peel quality and juice
yieldofHamlinoranges.Horticulture Technology 11:171-74.
Dawood SA, Heligy MS, El. Hamady MM 2001. Inuence
ofZinc sulphateontreeleafandfruitcharactersofthree
young citrus varieties grown on slightly alkaline soils.
Annals of Agricltural Science, Moshtohor Journal 39:433-47
Delgdado R, Casamayor R, Rodriguez JL, Cruz P, Fajardo
R 1986. Paclobutrazol eects on oranges under tropical
conditions.Acta Horticulture 179:545-48.
Dinar HMA, Krezdorn AH, Rose AJ 1977. Extending the
grapefruit harvest season with growth regulators.
Proceedings of Florida State Horticulture Society 89:4-6
444
Bons et al.
DobermanA, FairhurstT2000. RiceNutrientsdisorderand
nutrients management. Potash and Phosphorus Institute
of Canada and International Research Institute, Los
Baos,Phillipines.
DowntonWJS, GrantWJR,LoveysBR1987.Carbondioxide
enrichmentincreasesyield ofValenciaorange.Australian
Journal of Plant Physiology 14:493-501.
ElOtmaniM,AgustiM,AznarM,AlmelaV1993.Improving
the size of Fortune mandarin fruits by 2,4 DP Science
Horticulture 55:283-90.
El-Otmani M, Ait-Oubahou A 1996. Prolonging citrus fruit
shelf life: recent developments and future prospects.
Proceedings of International Society of Citriculture 1:59-69.
El-OtmaniM,AitMBarekA,CogginsCWJr.1990.GA3and
2,4-DprolongontreestorageofcitrusinMorocco.Scientia
Horticulture 44:241-49.
EI-OtmaniM,BenIsmail MC,Ait-OubahouA andAchouri
M 1992. Growth regulators use on clementine mandarin
to improve fruit set. Proceedings of International Society of
Citriculture 1:500-502.
EL-SeseAMA2005.Eectofgibberellicacid(GA3)on yield
andfruitcharacteristicsofBaladymandarin.The Journal of
Agricultural Science 36:23-35.
El-SharkawySHM,MehaisenSMA2005.Eectofgibberellins
and potassium foliage sprays on productivity and fruit
qualityofguavatrees.Egypt Journal of Applied Science 20(3):
151-62.
Eman AA,Abd EM, Abid EMO and Ismail MM 2007. GA3
and zinc sprays for improving yield and fruit quality of
Washington navel orange trees grown under sandy soil
conditions. Research Journal of Agriculture and Biological
Sciences 3(5):498-503.
FrometaEandEchazabal1988.Inuence ofageandcultivar
onthe juicecharacteristicsofearlyoranges.Agrotecnia de
Cuba 20:71-5.
GallashPT1984. Practicalaspectsof theuse ofethephonto
controlalternatecroppingofValencia orange.Proceedings
of International Society of Citriculture 1:285-88.
Gallash PT 1988. Chemical thinning of heavy crops of
mandarinstoincreasefruitsize. Proc6thIntCitrusCong
1:395-405.
Garcia-LuisA,AlmelaVA,Monerri C,Agusti M,Guardiola
JL1986.Inhibition ofoweringinvivoby existingfruits
andappliedgrowthregulatorsincitrusunshiu.Physiology
Plant 66:515-20.
GilllanIM,StevensonJA1977.Postharvestdevelopmentof
granulationinSouthAfricanexportoranges.Proceedings of
International Society of Citriculture 1:299-303.
Gilllan IM 1987. Factors aecting fruit size in Tomango
and Valencia oranges and practical measures for its
improvement.Citrus Subtrop Fruit Journal 638:7-13.
Gillaspy G, Ben-David H, Gruissem W 1993. Fruits, a
developmentalperspective.Plant Cell 5:1439-51.
GoldschmidtEE1999.Carbohydratesupplyasacriticalfactor
forcitrusfruitdevelopmentandproductivity.Horticulture
Science 34:1020-24.
Goldschmidt EE, Koch KE 1996. Citrus In Zaminski E,
SchaerAA (eds), PhotoassimilateDistributionin Plants
and Crops, Source-Sink Relation, pp. 797-823. Marcel
Dekker,NewYork.
Goldschmidt EE, Monselise SP 1977. Physiological
assumptionstoward thedevelopment ofacitrus fruiting
model.Proceedings of International Society of Citrus 2:668-72.
GomezCA,MehouachiJ,TadeoFR,PrimoME,TalonM2000.
Hormonal regulation of fruit let abscission induced by
carbohydrateshortageincitrus.Planta 210:636-43.
Greenberg J, Goldschmidt EE, Goren R 1993. Potential and
limitationsintheuseofPaclobutrazolincitrusorchardsin
Israel.Acta Horticulture 329:58-61.
Grewal HS, Gill HS 1986. Inuence of NAA and N on the
growth and yield of late planted paddy (Oryza sativa).
Journal of Agronomy and Crop Science 106(1):37-40
GuardiolaJL1992.Fruitsetandgrowth.Proc2ndIntSeminar
onCitrus Physiology.Bebedouro, SaoPauloBrazil,10-13
Aug1992:1-30.
GuardiolaJL,AgustiM,Garcia-MariF1977.Gibberellicacid
andowerbuddevelopmentinsweetorange.Proceedings
of International Society of Citiculture 2:696-99.
Guardiola JL, Barres MT, Albert CA, Garcia-Luis A
1993. Eects of exogenous growth regulators on fruit
developmentinCitrusunshiu. Annals of Botany 71:169-76.
Guardiola JL, Lazaro E 1987. The eect of synthetic auxins
onfruitgrowthandanatomicaldevelopmentinSatsuma
mandarin.Scientia Horticulture 31:119-30.
GuardiolaJL,MonerriC,AgustiM1982.Theinhibitoryeect
ofgibberellicacidonoweringinCitrus.Plant Physiology
55:101
HartyAR,VanStadenJ1988.Paclobutrazolandtemperature
eectsonlemon.Proc6thIntCitrusCong.1:343-53.
Hirose K 1981. Development of chemical thinners for
commercialuseforSatsumamandarininJapan.Proceedings
of the International Society of Citriculture 1:256-60.
IglesiasDJ,CercosM,Colmenero-FloresJM,NaranjoG,Rios
E,Carrera,Ruiz-Rivero OLeisoI, MorillonR,TadeoFR,
TalonM2007.PhysiologyofCitrusfruiting.Brazil Journal
of Plant Physiology 19:333-62.
Iglesias DJ, Lliso I, TadeoFR, Talon M 2002. Regulation of
photosynthesis through source: sink imbalance in citrus
is mediated by carbohydrate content in leaves. Plant
Physiology 116:563-69.
IglesiasDJ,TadeoFR,Primo-MilloE,TalonM2003.Fruitset
dependence on carbohydrate availability in citrus trees.
Tree Physiology 23:199-204.
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
445
Iglesias DJ, Tadeo FR, Primo-Millo E, Talon M 2006.
Carbohydrate and ethylene levels regulate citrus
fruitletdropthrough the abscissionzoneA duringearly
development.Trees 20:348-55.
InoueH 1990.Eectsoftemperatureonbuddormancyand
owerbuddierentiationinsatsumamandarin.Journal of
Japan Society of Horticulture Science 58:919-26.
Inoue H and Harada Y 1988. Tree growth and nutrient
absorption of young satsuma mandarins under dierent
temperature conditions. Journal of Japan Society of
Horticulture Science 57:1-7.
IwahoriS, OohataJT1981. Controlofowering ofSatsuma
mandarins (Citrus unshiu Marc.) with gibberellins. Proc
Int Soc Citiculture 1:247-49.
JainMC,ChoudharyHD,SharmaMK,BhimSingh2014.Yield
andqualityaributesofNagpurmandarinasaectedby
useof dierentplant growthregulators. Environment and
Ecology 32:1141-45.
JonesWW,EmbletonTW,CogginsCWJr1975.Starchcontent
ofrootsofkinnowmandarintreesbearingfruitinalternate
years.Hort Sci 10:514.
Kalarani MK, Thangaraj M, Sivakumar R, Mallika V 2002.
Eectsofsalicylicacidintomato(Lycopersiconesculentum
Mill)productivity.Crop Research 23(3):486-92.
KaurN, PKMonga,SKThind,SKThatai,VKVij.2000.The
eect of growth regulators on periodical fruit drop in
Kinnowmandarin.Haryana Journal of Horticulture Science
29:39-41.
KlessigDF,MalamyJ1994.Thesalicylicacidsignalinplants.
Plant Molecular Biology 26:1439-58.
Knapp JL 1996. Florida Citrus Pest Management Guide
FlaCoopExtServ Inst FoodAgricSciences Uni. Florida
GainveilleFlaCoopExtservCircsp-43.
Krezdorn AN 1973. Eect of growth regulators on set and
development of citrus fruit. Acta Horticulture (ISHS) 34:
283-85.
Kuraoka T, Iwasaki K, Hino A, Kaneko Y, Tsuji H 1976.
Studies on the peel pung of Satsumas IV Changes
in sugar content during development of the fruit rind.
Journal of Japanese Society of Horticulture Science 44:375-80.
LeeIJ2003. Practicalapplicationof plantgrowthregulators
onhorticulturecropsJournal of Horticulture Science 10:179-
87.
LeeSK,Kader AA2000.Preharvest andpostharvestfactors
inuencing Vitamin C content of horticultural crops.
Postharvest Biol and Tech 20:207-20.
Lenz F 1967. Relationships between the vegetative and
reproductivegrowthofWashingtonnavelorangescuings
(CitrussinensisL. Osbeck). Journal of Horticulture Science
42:31-39.
Levi EC 1964. Heavy drop of Citrus fruit. Agri Gaz NSW
75:1225-27
Liu K, Huihua F, Qixin B, Luan S 2000. Inward potassium
channelinguardcellsasatargetforpolyamineregulation
ofstomatalmovements.Plant Physiology 124:1315-26.
LlanesJL,BetancourtMandDiazJ1991.Inhibitionofmature
grape fruit drop. Use of growth regulators. Cultivos-
Agroindustriales 2-3:17-26.
Lord EM, Eckard KJ 1987. Shoot development in citrus
sinensis L. (Washington navel orange). II Alteration
of developmental fate of owering shoots after GA3
treatment.Bot Gaz 148:17-22.
Lova CJ 1999. Timing citrus and avocado foliar nutrient
applicationstoincreasefruitsetandsize.Hort Technology
9:607-12.
LovaCJ,ZhengY,HakeKD1988.Demonstrationofachange
in nitrogen metabolism inuencing ower initiation in
citrus.Isr J Bot 37:181-88.
LuckwillLC1953.Studiesoffruitdevelopmentinrelationto
planthormones.I.Hormoneproductionbythedeveloping
appleseed inrelationtofruitdrop.Journal of Horticulture
Science 28:14–24.
MahdiJ,Kambiz M,DadkhanA, TavallaeeFZ2012. Eects
ofSalicylicacidonyield andquality characteroftomato
fruit(Lycopersicon esculentumMill.) International Journal
of Agriculutre and Crop Science(14-16):1184-87.
MalikRP,AhlawatVP,NainAS2000.Eectoffoliarsprayof
ureaandzincsulphateonyield,fruitqualityof Kinnow.
Haryana Journal of Horticulture Science29:1-2.
Martinez FA,Mesejo C, Juan M, Almela V, Agusti M 2004.
Restrictions on the exogenous control of owering in
Citrus.Acta Horticulture 632:91-98
Mehouachi J, Iglesias DJ, Tadeo FR,Agusti M Primo-Millo
E, Talon M 2000. The role of leaves in citrus in fruitlet
abscission, eects on endogenous gibberellins levels
and carbohydrate content. Journal of Horticulture Science
Biotechnology 75:79-85.
Mehouachi J, Serna D, Zaragoza S, Agusti M, Talon M,
Primo-MilloE 1995.Defoliationincreasesfruitabscission
andreduces carbohydratelevelsindevelopingfruitsand
woodytissuesofCitrusunshiu.Plant Science 107:189-97.
MehouachiJ,TadeoFR,TalonM,Primo-MilloE1996.Eects
of gibberellic acid and paclobutrazol on growth and
carbohydratesaccumulation inshootsandrootsofcitrus
rootstockseedling.Journal of Horticulture Science 71:747-54.
MillerJE,HofmanPJ1988.Physiologyandnutritionofcitrus
fruit growth with special reference to Valencia-A mini
review.Proceedings of the International Society of Citriculture
1:503-10.
Monga PK, Josan JS 2000. Eect of micronutrients and leaf
composition,fruityieldandqualityofKinnowmandarin.
Journal of Applied Horticulture 2(2):132-33.
446
Bons et al.
Monselise DS, Goldschmidt EE, Golomb A 1981. Alternate
bearing in citrus and ways of control. Proceedings of the
International Society of Citriculture 1:239-42.
Monselise SP, Goldschmidt EE 1982. Alternate bearings in
fruittrees.Horticulture Review 4:128-73.
Monselise SP, Halevy AH 1964. Chemical inhibition and
promotion of citrus ower bud induction. Proceedings of
American Society of Horticulture Science 84:141-46.
MossGI1969.Inuenceoftemperatureand photoperiodon
owerinductionandinorescencedevelopmentinsweet
orange (Citrus sinensis L.Osbeck). Journal of Horticulture
Science 44:311-20.
MossGI,SteerBT,KriedmannPE1972.Theregulatoryroleof
inorescenceleavesinfruitseingbysweetorange(Citrus
sinensis).Physiol Plant 27:432-38.
Nagy, S 1980. Vitamin C contents of citrus fruits and their
products : a Review. Journal of Agriculture and Food
Chemistry 26(1):8-18
Nishikawa, F 2013. Regulation of oral induction in citrus.
Journal of Japan Society of Horticulture Science 82:283-292.
PethoM 1993.Mezogazdasagi novenyekeleana akademiai
Kiado,Budapest
Powell AA, Krezdom AH 1977. Inuence of fruit-seing
treatment on translocation of 14C- metabolism in citrus
duringoweringandfruiting.Journal of American Society of
Horticulture Science 102:709-14.
Ram RA, Bose TK 2000. Eect of foliar application of
magnesium and micronutrients on growth, yield and
fruitqualityofmandarin(CitrusreticulateBlanco).Indian
Journal of Horticulture Science 57(3):215-20.
Randhawa GS, Jain NL and Sharma BB 1961. Pre harvest
drop,size and quality of Jaa oranges as eected by
dipping in aqueous solutions of plant regulators Indian
Journal of Horticulture Science 18:277-84.
RaskinI1992.Roleofsalicylicacidinplants.Annual Review of
Plant Physiology and Plant Molecular Biology 43:439-63.
RodriguezVA,MazzaSM,MartinezGC,FerreroAR2005.Zn
andKinuenceonfruit sizesofValenciaorange.Revista
Brasileira de Fruitcultura 27:132-35.
Roitsch T 1999. Source-sink regulation by sugar and stress.
Current Opinion in Plant Biology 2:198-206.
SaleemBA, ZiafK,FarooqM,Ahmed W2005.Fruitsetand
drop paerns as aected by type and dose of fertilizer
application in mandarin cultivars (Citrus reticulate
Blanco). International Journal of Agriculture and Biology 7:
962-65.
Sawamura M, Osajima Y 1973. Studies on the quality of
CitrusfruitsIIStudiesonthetranslocationof14C-labelled
compoundsfromleavestofruitinSatsumas.Nippon Nogei
Kagaku Kaishi 47:733-35.
SinghSB,MishraRS1986. Eectof plantgrowthregulators
and micronutrients on fruit drop, size and quality of
Kinnoworange.Prog Hort 18:260-64.
SivakumarR,PathmanabanG,Kalarani MK,Vanangamudi
M,SrinivasanPS2002.Eectoffoliarapplicationofgrowth
regulators on biochemical aributes and grain yield in
pearlmillet.Indian Journal of Plant Physiology 7(1):79-82.
Smoot JJ, Houck L.G, Johnson HB 1971. Market diseases of
citrusand othersubtropicalfruits,USDAAgichandbook
398.
Soost RK, Burne 1961. Eect of gibberellins on yield and
fruit characteristics of Clementine mandarin. Proceedings
of the Journal of American Society for Horticultural Science 77:
194-201.
Sourour MM 2000. Eect of some micronutrients forms on
growth,yield,fruit qualityand leafmineralcomposition
of valencia orange tree grown in North sinai. Alexandria
Journal of Agricultural Research 45:1269-85.
SouthwickSM,DavenportTL1986.Characterizationofwater
stressandlowtemperatureeectsonowerinductionin
citrus.Plant Physiology 81:26-29.
Syversten JP, Goni C, OteroA 2003. Fruit load and canopy
shading aect leaf characteristics and net exchange of
Springnavelorangetrees.Tree Physiology 23:899906.
TakaharaT, Ogata T, Koshita Y, FujisawaH 2001. Eect of
ethychlozate, paclobutrazole and other plant growth
regulators on the promotion of owering in Citrus Bull
NatlFirstTreeFruitSci35.
Talon M, Tadeo FR, Zeevaart JAD 1991. Cellular changes
inducedbyexogenousandendogenousgibberellinsinthe
shoottipsofthelong-dayplantSilenearmeria.Planta 185:
487-93.
TalonM,ZacariasL,Primo-MilloE1990.Hormonalchanges
associated with fruit set and development in mandarins
diering in their parthenocarpic ability. Physiology Plant
79:400-06.
Talon M, Zacarias L, Primo-Millo E 1992. Gibberellin and
parthenocarpic ability in developing ovaries of seedless
mandarins.Plant Physiology 99:1575-81.
TalonM, Zeevaart JAD 1992. Stem elongation and changes
in the levels of gibberellins in shoots tips induced by
photoperiodic treatments in the long day plant Silene
armeria.Planta 188:457-61.
Tariq M, Sharif M, Shah Z, Khan R 2007. Eect of foliar
applicationofmicronutrientsonyieldandqualityofsweet
orangePakistan Journal of Biological Sciences 10:1823-28.
TingSV, JA1971.Citrus fruits IntheBiochemistry of fruits
and their products A C Hulme ed. 2: 107-79 Academic
PressNewYork.
Tiwari KN 2005. Diagnosing potassium deciency and
maximizing fruit crop beer production. Beer Crop 89:
29-31.
Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators
447
UllahR,Sajid M,Ahmed H,LuqmanM, RazaqM,Nabi G,
FahadS,RabA2014.AssociationofGibberellicacid(GA3)
withfruitsetandfruitdropofSweetOrangeandfarming
system in the middle. Reseaches of the Journal of Biology,
Agric and Healthcare 4.
WangR,Xue-genS,ZhangWY,Xiao-eY,JuhaniU2006.Yield
andquality responsesof citrus(Citrus reticulate)andtea
(Podocarpus euryi Hickel.) to compound fertilizers.
Journal of Zhejiange Uni(China)7:696-701.
WheatonTA1981.FruitthinningofFloridamandarinsusing
plant growth regulators. Proceedings of the International
Society of Citriculture 1:263-68.
YoungR,CooperWC1969.Eectofcycocelandabscisicacid
onbudgrowthofRedblushgrapefruit.Journal of American
Society for Horticultural Science 94:8-10.
Zaragoza S, Trenor L, Alonso E, Primo-Millo E, Agusti M
1992. Treatments to increase nal fruit set on Satsuma
Clausellina. Proceedings of the International Society of
Citriculture 2:725-28.
Zeevart JA 1978. Phytohormones and ower formation.
In:Phytohormones and Related Compounds: A
Comprehensive Treatise Vol.2 DS Letham, PB Goodwin
andTJVHiggins(eds),Elsevier/North-HollandBiomedical
Press,Amstredam:291-327.
... Penurunan jumlah cabang lateral pada periode 48 HST hingga 51 HST kemungkinan disebabkan oleh distribusi fotosintat yang dialokasikan untuk pertumbuhan cabang atas di batang utama, sesuai dengan penelitian Bons et al. (2015), yang menyatakan bahwa distribusi fotosintat terjadi dari organ yang memproduksi (source) menuju organ yang membutuhkan (sink). Barbier et al. (2017) juga mendukung hasil ini dengan menyebutkan bahwa kadar hormon yang tinggi pada organ yang sedang tumbuh memberikan sinyal arah distribusi air, hara, dan fotosintat, yang mungkin telah menyebabkan kekurangan pasokan fotosintat pada tunas lateral di bagian bawah batang utama. ...
Article
Full-text available
Pertumbuhan dan produksi cabai dapat ditingkatkan melalui metode pemangkasan pucuk. Aplikasi BAP dan GA3 setelah pemangkasan pucuk dapat mempengaruhi pertumbuhan vegetatif tanaman yang selanjutnya berdampak terhadap pembungaan dan produksi cabai. Penelitian ini bertujuan untuk mengkaji pengaruh aplikasi hormon BAP dan GA3 dengan berbagai rasio konsentrasi setelah pemangkasan pucuk terhadap pertumbuhan vegetatif dan pembungaan tanaman cabai merah keriting (Capsicum annuum L.). Pemangkasan pucuk dilakukan pada fase vegetatif akhir, diikuti dengan aplikasi BAP dan GA3. Parameter yang diamati meliputi durasi muncul tunas cabang lateral, jumlah dan panjang cabang lateral, luas daun, kandungan klorofil total, alokasi biomassa, dan periode muncul bunga. Hasil penelitian menunjukkan bahwa aplikasi rasio konsentrasi BAP dan GA3 secara signifikan meningkatkan jumlah dan panjang cabang lateral, luas daun, dan mempercepat waktu muncul bunga dibandingkan kontrol. Perlakuan dengan rasio konsentrasi BAP 0 ppm : GA3 100 ppm dan BAP 200 ppm : GA3 100 ppm memberikan hasil terbaik dalam pertumbuhan vegetatif dan mempercepat pembungaan. Penelitian ini memberikan kontribusi dalam pengelolaan hormon tanaman pasca pemangkasan untuk meningkatkan produktivitas cabai. The growth and yield of chili peppers can be enhanced through the method of shoot pruning. The application of BAP and GA3 after shoot pruning can affect the vegetative growth of plants, which subsequently impacts the flowering and production of chili peppers. This study aims to examine the effects of applying BAP and GA3 hormones at various concentration ratios after shoot pruning on the vegetative growth and flowering of curly red chili peppers (Capsicum annuum L.). Shoot pruning was carried out at the late vegetative phase, followed by the application of BAP and GA3. The observed parameters included the duration of lateral bud emergence, the number and length of lateral branches, leaf area, total chlorophyll content, biomass allocation, and the flowering period. The results showed that the application of BAP and GA3 concentration ratios significantly increased the number and length of lateral branches, leaf area, and accelerated the flowering time compared to the control. Treatments with the ratios of BAP 0 ppm : GA3 100 ppm and BAP 200 ppm : GA3 100 ppm yielded the best results in vegetative growth and accelerated flowering. This study contributes to the management of plant hormones post-pruning to enhance chili productivity.
... In the production of citrus fruits, the use of plant growth regulators (GR) has been implemented to manage flowering, fruit set, and fruit drop (Khan et al. 2014;Bermejo et al. 2018;Arunadevi et al. 2019). Additionally, these growth regulators have been utilized to enhance various quality attributes of the fruit, such as peel condition and colour, fruit size, and juice quality to increase total soluble solids across different Citrus species (Bons et al. 2015;Rokaya et al. 2016;Bons and Kaur 2020). In the Kandi region of the Himalayas, 'Kinnow' farming is popular due to its cost-effectiveness, quality, and high yield, yet the tendency for alternating bearing threatens ongoing productivity, resulting in symptoms like growth decline, yellowing leaves, and die-back. ...
Article
Full-text available
The cultivation of ‘Kinnow’ fruit in Lower Shivalik is affected by pre-arvest fruit drop due to imbalanced cultural practices, diseases, insect pest damage as well as excessive use of pesticides, fungicides, and growth regulators that harm the environment. We address preharvest fruit drop in ‘Kinnow’ orchards by exploring sustainable methods such as manual thinning, growth regulators, and fungicide-treated polyethene bagging. One of the effective treatments tested involved using a combination of the growth regulator 2,4-dichlorophenoxy acetic acid (2,4-D) at a concentration of 20 gL⁻¹, along with perforated polyethylene bagging treated with active streptomycin sulphate and a fungicide containing azoxystrobin 18.2% + difenoconazole 11.4%. This treatment significantly reduced preharvest fruit drop and improved fruit characteristics such as size, weight, return of bloom, total soluble solids (TSS), acidity, reducing sugars, and total sugars. Moreover, the treatment showed encouraging results in reducing insect and disease-related fruit drop, indicating its effectiveness in controlling insect pests and diseases. Based on the study’s findings, this combined method of using growth regulators and fungicide-treated bagging can be promoted as a more environmentally friendly approach to controlling fruit drop and producing high-quality ‘Kinnow’ fruits with minimal fungicide or pesticide residue in the Lower Shivaliks of Punjab.
... Ethylene, a naturally occurring gas in fruits, accelerates maturation and ripening. Conversely, lower ethylene levels extend the maturation timeline and prolong shelf life [20]. Ethylene acts as a key hormone in fruit ripening, promoting cell wall degradation and pigment changes. ...
Article
Full-text available
Kinnow also known as mandarin are popular fruits worldwide for their refreshing flavor and nutritional benefits. Their quality standards vary globally due to differences in climatic conditions, agronomical practices, mandarin physiology, etc. The fruit maturity indices are region and consumer specific which make traditional methods of maturity predictions a very difficult task which become challenge for producers and researchers. This review provides state-of-art approach on maturity indices of mandarin fruit by understanding its physiological changes including their biotic, abiotic factors, physicochemical parameters and artificial intelligence integration with non-destructive technologies to predict the fruit maturity. It focuses on rapid onfield sensor and camera based systems with different algorithmic models for fruit maturity prediction. The use of AI driven advanced spectrometry, imaging techniques, real time monitoring are crucial for predicting harvest time. It also highlights significant technical challenges and identifies promising areas for future research, offering a valuable insights for growers.
... The regulation of bahar and improvement in productivity could be achieved by the use of growth regulators at appropriate time and proper concentration. Since the discovery of the plant growth regulators, they have been used to manipulate plant growth and development for the improvement of quality and quantity of the produce in order to enable the fruit growers to meet to pressure of increasing demand for food of high quality Bons et al. (2015). The suitable combinations of macronutrients, micronutrients and growth regulators could control the excessive fruit drop and improve the citrus fruit yield and its quality (Doberman and Fairhurst 2000) Besides growth regulators, the nutrient elements, especially micronutrients when applied as foliar spray exerted pronounced infl uence on plant growth and yield (Ibrahim et al. 2009). ...
Research
Full-text available
Vidarbha region of Maharashtra, famous for quality citrus production and acid lime is one of the important member of citrus group. Regulation of fl owering in Hasta bahar is important for obtaining off season acid lime fruits. Keeping in view all these considerations, an experiment was carried out to study the eff ect of plant growth regulators (GA 3 , cycocel and paclobutrazol), KNO 3 and micronutrients like zinc and boron on growth and yield of acid lime in Hasta bahar. The study revealed that application of GA 3 50 ppm in June + Cycocel 1000-2000 ppm, Paclobutrazol 2.5 and 3.5 g a.i. / tree and 1000-2000 ppm in September + KNO 3 (0.2%), Zinc (0.3%) and Boron (0.1%) in October showed be er performance in plant height, mean plant spread and canopy volume. Maximum yield was obtained with the application of GAз 50 ppm + Cycocel 2000 ppm + KNOз 0.2% + Zn 0.3% + Boron 0.1%. Highlights  • GA 3 50 ppm in June + cycocel 1000-2000 ppm, paclobutrazol 2.5 and 3.5 g a.i. / tree and 1000-2000 ppm in September + KNO 3 (0.2%), zinc (0.3%) and boron (0.1%) in October found to be eff ective in relation to plant height, mean plant spread, canopy volume.  • GAз 50 ppm + Cycocel 2000 ppm + KNOз 0.2% + Zn 0.3% + Boron 0.1% was found eff ective for maximum yield in acid lime.
... In fact, GA is commonly applied during citrus flowering to enhance fruitlet survival. Depending on its time of application, synthetic auxin, such as trichlorophenoxyacetic acid (2,4,5-TP), results in opposite outcomes; when it is applied during flowering peak or fruit set, it reduces fruitlet size due to depressed cell expansion (Guardiola et al. 1988(Guardiola et al. , 1993Bons et al. 2015). However, a later application, i.e., on fruits of about 30 mm in diameter, results in induced fruit growth (Guardiola et al. 1988). ...
Article
Full-text available
The edible part of citrus fruit is composed of juice vesicles/sacs which develop from the endocarp, the two to three inner cell layers of the white spongy peel termed albedo. Juice sac primordia usually appear 1 week after anthesis. Hormones, especially auxin and gibberellin, play a role in pericarp development during the ovary-to-fruit transition, but their effect on juice vesicle induction has not been studied. Here, hormone profiling in the pericarp and changes in the expression of their corresponding genes in the endocarp and pericarp were compared between two citrus cultivars: Calabria citron, in which juice sacs develop normally, and Yemenite citron, in which juice sac formation does not initiate. Most of the identified hormones, abscisic acid, gibberellin A4, indole-3-acetic acid, isopentenyladenine, jasmonic acid and zeatin riboside, were at higher levels in Yemenite than in Calabria. Overall, changes in abscisic acid levels in the pericarp were very well correlated with changes in the expression of abscisic acid-related genes in the endocarp. However, the application of various hormones, including abscisic acid, to Calabria flowers failed to arrest juice sac initiation. The possible involvement of abscisic acid and other hormones in the process of juice vesicle initiation and pericarp growth is discussed.
... Seeds play a crucial role as a source of phytohormones needed for fruit development, including fruit size regulation [34]. Additionally, fruit size significantly impacts the marketability of citrus fruits [35]. Typically, seedless fruits, resulting from mutations that prevent seed initiation, tend to be smaller than their seeded counterparts. ...
Article
Full-text available
Seedless is a highly valued commercial characteristic in the citrus industry, both for fresh consumption and for processed markets. In this study, the ‘Succari Sweet Orange’ (WT) and its seedless mutant ‘Juxiangyuan’ (MT), which originated from a bud mutation, were selected to study the formation of a citrus seedless phenotype. Microscopic analysis of MT’s floral organs, including anther and ovary cross-sections, provides insights into its seedless phenotype compared to the original seeded cultivar. Additionally, pollen features, viability, and in vitro germination were examined to determine the cause of seedlessness. MT exhibited significant developmental deformities in both male and female gametes, with pollen grain analysis indicating a high rate of deformity (41.48%), low viability (9.59%), and minimal in vitro germination (9.56%). Hybridization experiments were conducted to assess male and female sterility and pollen incompatibility. Both WT and MT exhibited parthenocarpic development. Notably, MT fruit produced with an average of 3.51 seeds pollinated to WT, despite severe pollen abortion of MT. MT, however, produced seedless fruit through self-breeding or cross-breeding with other varieties, demonstrating stable female sterility. Despite reduced pollen quantity and viability in the seedless mutant ‘Juxiangyuan’, its seedlessness primarily stems from female sterility. This study contributed to a deeper understanding of seedless formation in ‘Juxiangyuan’ and provided valuable information relevant to its commercial cultivation.
... This expansion, however, comes with challenges related to sustainable resource management, particularly in the context of mineral nutrition and fertilization (Li et al., 2021). Mineral nutrition plays a crucial role in the growth and development of citrus trees and the quality of their fruits (Bons et al., 2015). Citrus trees require a balanced supply of essential nutrients to produce high-quality fruit and maintain long-term tree health. ...
Article
Full-text available
The growth and development of citrus trees and the quality of their fruits are significantly influenced by the essential role of mineral plant nutrition. This study aimed to improve the productivity of the citrus (Citrus clementina Hort. Ex Tanaka) orchards by optimizing mineral nutrition through well-monitored fertilization and fertigation aspects using lysimetry. The first phase consisted of studying the behavior of the nutrients in the soil solution at the high root concentration level, analysis of the nutritional status of five varieties of clementines (Sidi Aissa, Cadoux, Orogrande, Nules, and Nour), and the variation of leaf composition in major elements (Nitrogen, phosphorus, potassium, magnesium, and calcium) for the five varieties along phenological stages, through the exploitation of the results of analyses carried out for the management of mineral nutrition in 47 plots of citrus fruit in the Souss-Massa region with the use of lysimetry. The results obtained in this first part revealed an important variation of the nutrients in the soil solution (55.24%) in terms of water inputs, fertilizers, and edaphic conditions, as well as a large variation of foliar compositions (62.98%). The second phase, consisting of regular monitoring of the mineral nutrition dynamics targeting the “Nules” variety grafted on “Citrus macrophylla” affirmed the importance of the citrus fertilization approach for determining the availability, distribution, nutrient interactions in soil solution and plant response by regular leaf diagnostics. Thus, mobile lysimetry offered a powerful tool for achieving both productivity and sustainability in citrus fertilization programs.
Article
Full-text available
This work aims to investigate the impact of chitosan and hydrogen peroxide on the growth and seasonal yield of lime trees cultivated in commercial orchards in Qalyubiyya Governorate, Egypt, during the 2021 & 2022 seasons. The treatments include foliar spraying of two concentrations of CHI (100 & 200 ppm) and H2O2 (2 & 4 cm/L), either individually or in combination, at two distinct times, one month after fruit set (1st week of September) and after two months. The hypothesis was that applying chitosan and hydrogen peroxide would improve tree growth, fruit quality, and total production. The obtained results indicated that the combinations of CHI with H2O2 improved tree growth, leaf mineral composition, seasonal yield, and fruit quality parameters. CHI at 200 ppm + H2O2 at 4 cm/L was the most efficient treatment and achieved the largest tree canopy. Treatment of 100 ppm CHI with 2 cm/L H2O2 showed superior yield in terms of tree yield (23.56 & 29.64 kg/tree), total production (8.15 & 9.16 t/ha) compared to other treatments. Likewise, combinations of CHI and H2O2 improved fruit characteristics. Findings of this study demonstrated that the foliar application of CHI with H2O2 could be a promising application to improve seasonal lemon yield and fruit quality in commercial orchards.
Article
Full-text available
The propagation of citrus seedlings is accomplished through grafting, utilizing seeds for the production of rootstocks. The germination of certain seeds may be low and uneven, complicating the production of high-quality seedlings. The use of plant growth regulators (PGRs) is a viable alternative to improve the quality of seedling production, as these compounds can break dormancy, control the hydrolysis of reserves, induce cell division, and regulate permeability and protein functions. This study aimed to evaluate the germination of seeds and the growth of Rangpur lime (Citrus limonia L. Osbeck) seedlings under the influence of imbibition in solutions of gibberellic acid (GA3) and a combination of GA4+7 + 6Benzyladenine. The experiment was conducted under controlled laboratory and greenhouse conditions, using a completely randomized design in a 2 × 5 factorial scheme, with two types of plant regulators (GA3 and GA4+7 + 6BA) at five concentrations (0, 250, 500, 750, and 1000 mg L−1 a.i.). Quantitative and qualitative variables were evaluated, ranging from seed germination to seedling development and formation, including germination percentage and speed index, fresh and dry biomass of roots and shoots, enzymatic activity, and gas exchange. The results indicate that GA3 significantly accelerates the germination process of Rangpur lime cv. Santa Cruz seeds and promotes better seedling growth and development, resulting in vigorous seedlings. These findings demonstrate that the application of PGRs, particularly GA3, can substantially enhance the propagation efficiency of citrus rootstocks, offering a practical solution for improving the uniformity and quality of seedling production in commercial settings.
Article
Full-text available
The citrus industry loses a significant amount of mandarin fruits either before or shortly after harvesting due to rind disorder. Different citrus cultivars are impacted by a physiological rind disorder that lowers fruit quality and marketability. Although the primary etiology of this condition is unknown, changes in relative humidity (RH) and rind water status can make it worse. The damage is initiated in the fall, especially following rain. It begins with irregular water-soaked areas that develop into dark-brown, necrotic lesions covering large portions of the fruit’s surface. The damage is evident in some citrus types such as Satsuma Owari mandarins and other cultivars. In this study, we attempted to understand and control the occurrence of this kind of rind disorder in Satsuma Owari mandarins growing under California conditions. Our data showed that fruit located in the outer part of the canopy suffer more than fruit in the interior canopy. We were able to reduce this damage in Satsuma Owari mandarins by applying 2,4-dichlorophenoxyacetic acid (2,4-D) at 16 milligrams/Liter (mg/L), gibberellic acid (GA3) at 20 mg/L, or Vapor Gard® at 0.5 percent (v/v) at the color break stage. However, GA3 caused a delay in color development by approximately four weeks. GA3-treated fruit changed their color completely four weeks after the control, and the rind damage was at a very low percentage. Delaying rind senescence could be a good strategy to reduce the damage in mandarin orchards. Data showed that in addition to the benefits of the different treatments on preventing rind disorder at harvest, they have some beneficial effects during storage for four weeks either at 0.5 or 7.5 °C.
Article
Full-text available
Starch in the roots of mandarin trees ( Citrus reticulata Blanco cv. Kinnow) was drastically reduced by an “on” crop. This was related to prolonged bud dormancy, delayed spring growth and an “off’ crop the following year.
Article
Full-text available
‘Redblush’ grapefruit seedlings, with and without leaves, were sprayed 1 to 5 times with 100 to 1000 ppm abscisic acid or 500 to 3000 ppm cycocel. Plants were subsequently exposed to several day/night temperature regimes which included 70°/50°, 90°/70°, and 95°/95°F. Both abscisic acid and cycocel delayed bud growth of leafy and defoliated seedlings. Abscisic acid was more effective than cycocel, and both compounds were most effective in delaying bud growth at lower temperatures, higher concentrations, and with more than one application. Abscisic acid was more toxic than cycocel, and both compounds were more toxic to defoliated plants than to leafy plants. Gibberellic acid overcame a correlative bud inhibition by the leaves, and abscisic acid decreased the effect of gibberellic acid.
Article
Full-text available
In 1961, trees of Frost Nucellar ‘Washington’ navel orange on Troyer Citrange rootstock were planted at eleven different spacings to determine the effect of tree spacing on growth, production, and fruit quality. Growth rate as measured by trunk circumference was proportional to decreasing tree density or increased spacing. The wider the spacing, the greater was the trunk circumference and the fruit-bearing capacity of the tree. Shading of skirt foliage, as closely planted trees began to crowd, caused the skirts to die and decreased production. Pruning to keep these trees from crowding reduced yield in proportion to the amount of foliage removed. Removal of alternate trees in the two most densely planted spacings, 9 ft. × 11 ft. and 11 ft. × 11 ft., reduced competition and allowed more light to reach the remaining trees. Skirt foliage regrew and yield per-tree and per-acre increased. Fruit colored faster and was larger on the widely spaced trees, where less shading had occurred, than on closely spaced trees. Fruit quality analysis showed no difference in percent of juice, soluble solids, acid, or rag, or in peel and rind thickness. The closest spacings, 9 ft. × 11 ft., 9 ft. × 15 ft. and 11 ft. × 11 ft., operated at a net loss for the first five years of production. Although per tree production was highest on the widest spacing, 22 ft. × 22 ft., net returns per acre on this spacing are still low because of the number of trees per acre. The 11 ft. × 22 ft. spacing with 180 trees per acre had the largest net income per acre.
Article
Full-text available
High density planting of tree crops has the potential of increasing yield and income during the early years of an orchard’s life. Eleven different planting densities of citrus were studied over a 10-year period to determine the effect of tree spacing on yield, tree growth, root distribution, nutrition, and economic factors involved. Extremely close plantings soon crowded to the point where they were unmanageable and tree removal became necessary. Pruning was needed to maintain a workable orchard in more moderatley spaced plots.
Article
Full-text available
‘Orlando’ tangelo ( Citrus reticulata Blanco × Citrus paradisi Macf.) trees not irrigated in the fall, but protected by under-tree sprinkling during a frost, sustained the lowest percentage of leaf and fruit damage as determined 6 weeks after the frost. Trees irrigated both in the fall and during a frost, or those receiving no fall irrigation or under-tree sprinkling, were intermediate in fruit damage. Fall irrigation without sprinkling the night of a frost contributed to the most severe damage to leaves and fruit. Soil moisture content of irrigated blocks was significantly greater than for non-irrigated blocks during the fall, yet afternoon leaf xylem water potential and stem water content were comparable. Leaf freezing point of detached leaves of ‘Orlando’ and navel orange ( Citrus sinensis (L.) Osbeck) was poorly correlated with leaf xylem water potential, abaxial diffusion resistance, and relative water content. Leaf freezing and killing temperature was unaffected by fall irrigation and ranged from -5.8 to -6.8°C from October until December in 1978 and 1979.
Article
Full-text available
Self-pollination, emasculation and gibberellic acid (GA) were used to study translocation patterns of l4 C-metabolites during flowering and fruiting in calamondin ( Citrus madurensis Lour.). Radioautographs showed similar translocation patterns with self-pollination and GA. GA and self-pollination resulted in a considerably stronger mobilization of ¹⁴ C-metabolites to young ovaries and developing fruits than when flowers were emasculated and no further stimulus provided. The movement of l4 C-metabolites to fruits, especially in the 3-week period after anthesis, appeared essential for fruit set and development.
Article
Translocation patterns in the stem (fruiting terminal shoot) were studied by supplying ¹⁴CO2 to the leaves of Satsuma mandarin (Citrus unshiu, Marcov.) during the period from Stage I, the cell division period, through Stage II, the cell enlargement period, up to Stage III, the maturation period. Sucrose was usually the major constituent of translocation in Satsuma mandarin, accompanied by a small quantity of glucose and fructose. This was regarded as a normal pattern of translocation. However, the normal pattern of translocation was found to change when a physiologic and metabolic conversion occurred in citrus fruit. That is to say, early in July, at the time between Stage I and Stage II, and late in September, at the time between Stage II and Stage III, glucose and fructose became to predominate as compared with sucrose. © 1975, Japan Society for Bioscience, Biotechnology, and Agrochemistry. All rights reserved.