ArticlePDF Available

Gross margin as an indicator of the significance of farmer education on the WCR risk assessment in repeated sowing

Authors:

Abstract and Figures

Western corn rootworm (WCR) appeared in Serbia in the late 80's and quickly spread, causing increasing losses. Monitoring showed that crop rotation gives good results. On the other hand, domestic animals require a lot of corn and considering the limited land-area, that often demands repeated sowing of corn (continuous cropping), consequently leading to higher pest damages. Through Farmer Field Schools, farmers were educated on WCR risk assessment of repeated corn sowing. The goal was to prolong corn production over years, presuming its higher profitability of production (gross margin). Calculations of production of wheat, corn and soybean on farms involved in education program in 2012, have shown that corn has the highest gross margin (92,047.50 RSD/ha), followed by soybean (72,410.00 RSD/ha) and wheat (59,510.00 RSD/ha). It could be concluded that farmer's best interest is to grow corn, when possible, in continuous cropping, with obligatory risk assessment.
Content may be subject to copyright.
137EP 2015 (62) 1 (137-153)
Economics of Agriculture 1/2015
UDC: 633.15:632.7:65.011.44
Review Article
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE
OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN
REPEATED SOWING1
Jasmina Filipović2, Slađan Stanković3, Slobodan Ceranić4
Summary
Western corn rootworm (WCR) appeared in Serbia in the late 80’s and quickly spread,
causing increasing losses. Monitoring showed that crop rotation gives good results. On
the other hand, domestic animals require a lot of corn and considering the limited land-
area, that often demands repeated sowing of corn (continuous cropping), consequently
leading to higher pest damages. Through Farmer Field Schools, farmers were educated on
WCR risk assessment of repeated corn sowing. The goal was to prolong corn production
over years, presuming its higher protability of production (gross margin). Calculations
of production of wheat, corn and soybean on farms involved in education program in
2012, have shown that corn has the highest gross margin (92,047.50 RSD/ha), followed
by soybean (72,410.00 RSD/ha) and wheat (59,510.00 RSD/ha). It could be concluded
that farmer’s best interest is to grow corn, when possible, in continuous cropping, with
obligatory risk assessment.
Key words: corn, western corn rootworm, production, gross margin, investment, cost,
education.
JEL: Q12, Q16
Introduction
The appearance of Western corn rootworm (WCR) in our country in the late 80`s and damage
it has caused, has led to important changes in the way of corn production. Corn rootworm is
biologically adapted to corn in repeated sowing. In the rst year, its larvae nish developing on
1 Paper is a part of a research within the project no. III 46008, nanced by Ministry of Education,
Science and Technological Development of Republic of Serbia.
2 Jasmina Filipović, M.Sc., Agricultural Extension Service Jagodina, Kapetana Koce Street no.
21, 35000 Jagodina, Serbia, Phone: +381 35 221 931, E-mail: mina66@open.telekom.rs
3 Slađan Stanković, Ph.D., Institute for Science Application in Agriculture, Bulevar Despota Stefana
Street no. 68b, 11000 Belgrade, Serbia, Phone: +381 63 700 38 62, Email: ssladjan@beotel.net
4 Slobodan Ceranić, Ph.D., full professor, Faculty of Agriculture, University in Belgrade, Nemanjina
Street no. 6, 11080 Zemun, Serbia, Phone: +381 11 261 53 15, E-mail: ceranic@agrif.bg.ac.rs
138 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
the corn root in June and in August adult females lay eggs in the eld with corn. In the second
year, the larvae are being sawed from the overwintering eggs. They feed on the corn roots
in repeated sawing, so those larvae nish their development and the adult insects can start a
new generation. WCR damage has brought up the question what is the most efcient way to
suppress this pest. Considering the above mentioned, it is clear that it is enough to break the
life and feeding cycle of the insects by changing a host plant, which is called crop rotation.
The massive use of crop rotation in regions where farmers have specialized in growing corn
as a monoculture has led to a decrease in area under corn in Serbia. Considering that farmers
are not familiar with the ways to determine whether they need to take protective measures or
not, it was done without knowing the real needs.
However, after 2000 in a large part of Serbia this damage has drastically decreased. The main
reason for it was the negative effect of the climate conditions in 2000, the year with the lowest
precipitation in the last 100 years and very high temperatures of air. Moreover, the massive
use of crop rotation also affected the decrease in numbers of corn rootworm (Stanković,
Sivčev, 2004).
Corn is an important crop in Serbia. It is well known that WCR has inhabited this region, but
there have been no information about the damage this insect causes. There were no reliable
data that would conrm pest status of corn rootworm in this part of Serbia. Over the past few
years soybean has been grown more and more massively in this region. It is a common crop
included in rotations with corn, but that is not an efcient way of suppressing Western corn
rootworm (Gray et al., 1998).
The diversity of the plant and animal world is one of the most important factors and indicators
of the WCR economic damage. It is the well-known fact that the rich plant diversity, WCR
is the smaller problem for corn. This insect is number one pest in parts of the USA where
soybean and corn are grown predominantly (for instance in Iowa, where on 13.2 million ha
of arable land, 5 million ha is under corn and 3.5 million ha under soy), which indicates a
poor biodiversity.
In Serbia, according to Agricultural Census 2012, corn is grown on 976,612 ha (grain corn
plus 27,187 ha of corn for fodder), while wheat, sunower, soy and alfalfa are grown on
602,844, 186,361, 181,684 and 103,316 ha, respectively (SORS, 2014). Considering this, we
can conclude that Serbia has high crop diversity and, consequently, we can expect problems
with corn rootworm to appear in smaller extent, mainly on a corn in continuous cropping. It
could be concluded, that the high crop diversity undoubtedly decreases the potential for corn
rootworm in this area to develop into a pest like the one in the USA.
In addition to plant diversity, especially the diversity of crops, the richness of animal life,
especially the domestic animals also have an impact. Domestic animals, particularly pigs and
poultry use a lot of corn which, considering the limited amount of land often means repeatedly
sowing of corn (growing it as a long-term monoculture). Therefore the sowing structure in
areas with intensive livestock production has increased portion of corn and consequently
higher WCR damages. Accordingly, a large concentration of farms with intensive livestock
production stimulates the production of corn in monoculture, even with the massive WCR
139EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
appearance and damage caused by it, especially having in mind farm structure in Serbia
(Munćan, Živković, 2006).
For all these reasons, there was a need to monitor the number of WCR populations on farms
in Serbia that are important producers of corn and soy. Considering the diversity of crops
in these regions we pay special attention to corn and soy, which are potentially the most
promising WCR hosts. We assume that WCR cannot full its harmful potential due to a high
biodiversity in this area and the regular use of crop rotation. Thus it is important to determine
the population number and risk of damage on selected corn elds, as well as the signicance
of this one of the most destructive pests. Therefore there is a need for making and introducing
a method for determination population density and having a reliable and economically viable
method that would be a basis for implementing the ecological management of this harmful
species. It is of great importance to test the models of knowledge transfer and training of both
trainers and farmers.
The appearance of corn rootworm in our country has worried farmers very much. On the
other hand, almost a geometric progression rate of damage caused by this pest has become a
matter of interest of seed and pesticide companies. A very different method of control of this
pest than the one in the US has showed as more efcient in our elds, because our agricultural
conditions are different than the ones in the US Corn Belt.
Corn rootworm feeding & damage: crops are damaged by the adult and larval stage, but
economically important are caused by larvae that live in the soil and feed on roots. Adult
insects are polyphagous species and damage they cause are of secondary importance. Besides
corn, they also feed on other crops from the family Poaceae, and plants from the families
Fabaceae and Cucurbitaceae (Purdue University, 1995). Adult insects feed rst on leaves,
then the pollen, corn silk and the top of the corn. The rst adult insects that appear in the
vegetative stage of corn feed appear on leaves. Once the blooming starts, adult insects start
feeding on the pollen and the corn silk. This is the time when a large number of them can be
found on the tassel and silk. The feeding of adult insects does not affect the income from corn.
That happens only when there are a lot of adult insects prior to pollination, which completely
eat the corn silk so that the cob is bare in the pollinating period. That kind of feeding results
in the appearance of rough or partially rough cobs.
This research was aimed to show that the ecological approach (systematic environmental
protection) to solving the problem of corn rootworm protection in the conditions of a higher
biodiversity is more important to farmers than other methods, because it is more efcient,
cheaper, viable and ecologically acceptable. We assumed that crop rotation was more
efcient, which has been tested on many corn elds with damage caused by WCR. To test
this hypothesis in production conditions, some new methods were applied that conrmed the
assumptions and contributed to the results justication. This way of corn rootworm control
is mostly for small scale farmers, with a diverse production (mixed animal and eld crop
production), who have an interest of growing corn in a repeated seeding, whenever possible.
On the economic side, it is important for farmers to be introduced to the economic effect of
a certain production. Gross margin is a quick and efcient indicator for comparing different
140 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
production lines (enterprises) and choosing the most economic one (Tomić et al., 2013).
Janković et al. (2007) showed that corn production gives the highest gross margin value per
hectare of all eld crops.
Materials and Methods
Gross margin calculation
Gross margin was used as an indicator of economic effects of maize grain production (Anđelić
et al., 2010). Data for gross margin calculations were collected through the questionnaire
from the representative farm in Pomoravlje region (village Končarevo) in 2012.
For calculating the basic elements of gross margin, following data were used: data on yield
and price; by-product price; seed cost; quantity and value of fertilizers, pesticides, and fuel;
and costs of contracted services. Indicators for the value of production, total variable costs and
gross margin were calculated according to methodology provided by Agriculture Extension
Service of Serbia website (www.psss.rs). Microsoft Excel was used for processing data and
calculating the average gross margin for corn, soybean and wheat, elements of revenue and
expenditures. The programme was adjusted to calculate the average value of each element of
the calculation5.
Risk assessment
There are only two methods to evaluate the suitability of a eld for growing corn in
continuation. The rst method is based on a detailed check of 40 plants, on a weekly basis.
One check consists of careful examination of two plants, which means that one should take
20 evenly dispersed samples from a single led. A samples order in a eld should be in an
inverted ’U’ shape. Every plant should be up to 3 m apart from another (Edwards et al., 1994).
To get rid of the edge effect, the rst sample should be taken from a distance of at least 25 rows
away from the edge of the corn eld. Beside the average number of adults, this method of
conrming the economic damage threshold also takes into consideration the plant structure,
frequency of growing corn, physical characteristics of the soil and the sex ratio in the pest on
the particular plot. Based on these elements, tables with critical numbers are formed. Another
method rationalizes the sampling process in terms of labour and time. It is primarily based on
distinct differences in the density of Western corn rootworm populations in elds, and in the
beginning of the assessment, it quickly discards plots with high abundance but, if abundance
is low, the process stops until the next inspection.
Determining the number of populations of western corn rootworm was conducted on
corn plots in Končarevo village, where the FFS – Farmer Field School was organized.
Work with the farmers was organized in line with the principle of non-formal adult
education (NFE) and they were trained how to determine the population size of western
corn rootworm using a variety of methods, primarily the Agro Ecological System
Analysis (AESA).
5 www.itecherpsolution.rs/bm/doc/bmuputstvopsenicauproscena.pdf , www.itecherpsolution.
rs/bm/doc/bmobrazacpsenicauproscena.xls
141EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
Method of Non-Formal Adult Education
When working with farmers, we used methods of non-formal adult education (NFE) (Callo
et al., 1999), and “Farmer Field School” (Gallagher, 1996; Pontius et al., 2002; Stanković,
Sivčev 2004; Berg, 2004; Sivčev, Rahović, 2008), as well as the Agro Ecological System
Analysis. As a developed and efcient method of counselling, non-formal education is
a training method based on assumptions about the learning process of adults, who differ
from children on their way of learning, because they have already had some experience,
knowledge and skills, as well as their own beliefs, values, prejudices, preferences etc. Adults
normally go through certain stages of the learning cycle. These stages are testing, analysing,
processing and generalizing. This makes farmers a signicant factor in the training process,
so their active participation is very important and their training is conducted in phases
(experiential learning, making analyses and generalization) that repeat cyclically (FAO,
2004). The “Farmer Field School” model links farmers, who are equal partners in nding
locally adapted cropping practices and pest management. The costs of farmer eld schools
are small and correspond to the economic strength of these small-scale farmers. This model
can be applied to all cases where knowledge and skills are required and human labour is
necessary, regardless plot size, such as in organic production of strawberries and raspberries,
or glasshouse vegetable production. It is also applicable in production of eld crops grown
on large areas and giving relatively low yields, like corn, which cannot be burden with new
costs because this production would not be cost-effective.
Agro Ecological System Analysis (AESA)
The Agro Ecological System Analysis involves careful consideration of all available
techniques (ways) of pest control (suppressing), and their later integration in the production,
reducing pest development in order to control the use of pesticides at an economically
justied level, which would lead to reducing risks to human health and the environment.
The integrated pest management (IPM) emphasizes and points out the cultivation of a
healthy crop with minimum disruption of the agro ecological system, encouraging and
spreading mechanisms of natural pest control (FAO, 2004). The most important cropping
measures in integrated pest management are: Crop rotation, Choice of varieties and hybrids,
Tillage, Spatial isolation, Irrigation, Sowing, planting, Weed control, Harvest, picking and
collecting products.
The main goal of sustainable agriculture is the advancement of agricultural production in
order to create higher prots while protecting the environment, people and animals.
Therefore IPM is based on four practical principles (FAO, 2004):
1. Grow healthy crops: grow varieties resistant to major pests and diseases, yet completely
adapted to the local environment; proper implementation of cropping practices
(pruning, fertilization, and irrigation), necessary for healthy plants. A healthy, robust
plant is a primary goal of the IPM method - it can resist diseases and compensate
damages caused by insects, so that damage does not always have to lead to excessive
yield losses.
142 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
2. Preserve natural enemies: in all agricultural ecosystems there are predators, parasites
and diseases that attack pests in egg, larva, pupa and adult stages. These natural
enemies are often found in the eld and they are “friends of farmers“ because they
can biologically control pests. IPM training mainly focuses on how to identify and
manage these natural enemies so that they would not be destroyed with excessive use
of pesticides.
3. Regular eld observation: it is necessary to assess the dynamics of crop pests and
natural enemies, diseases, weeds and weather conditions. An IPM trained farmer
typically does this during regular activities of crop care. Observations should determine
the condition of a crop and whether there are some pests or diseases that could cause
yield losses. It is important to remember that not all damages lead to yield losses.
4. Farmers become experts: the emphasis is on improving the ability of farmers to make
better decisions, increase their efciency and manage their farms better. The future
of production and food security depends on how farmers innovate and manage the
system. The success of IPM depends on farmers and therefore it put emphasis on their
skills and knowledge.
The content of the AESA training and programs for farmers include: eld analysis,
samples analysis, discussion and specic topics.
An example of the agenda and the content of activities of a “Farmer Field School“ used
in work with farmers from Končarevo, and the content of the Agro Ecological System
Analysis, would look like this (Sivčev, Rahović, 2008):
Observation of the experimental eld: farmers in small groups monitor and record
changes in their experiment throughout the season.
Analysing the differences between different settings of the experiment.
Discussing the effectiveness of different methods: making conclusions and giving
recommendations for the further work.
Introducing sustainable methods of monitoring the occurrence and abundance of
western corn rootworm
As has been mentioned, pheromone traps are the most accurate way to determine the
maximum number of adult insects because they show the state of the population in a wider
area, attracting insects from a distance greater than 100 m. Setting standards for our climate
conditions makes it possible to organize a broad-based education / training for agricultural
extension agents on the principles of non-formal education (NFE), and also directly or
indirectly, training for a large number of primarily ‘’medium and small-scale farmers” (FFS)
on visual assessment and determination of the abundance of harmful species. This ensures
a massive and broad territorial coverage of corn elds, for monitoring and predicting the
occurrence of Western corn rootworm in repeated sowing.
143EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
Effects of using Farmer Field Schools
Growing crops that increase the farm income is one of the ways to “add value (revenue)
to the production” of an individual farm, as well as to strengthen the competitiveness of
country’s agriculture and foster rural development. When it comes to farmers as users of
advisory services, they can be divided into two groups: 1) a small number of large-scale
farmers, who can pay for advisory services, and 2) small-scale farmers, who will not be
able to pay for these services in the foreseeable future.
The Agricultural Extension Service (PSSS) should be able to provide consulting services
to specialized farms, which are commercial producers, as well as a large number of small
farms, small households with a few acres of land. On these farms they are only members of
the family who work, they have very little training on the organization and their production is
generally mixed. In our country there is no effective method how to improve the production
and quality of agricultural products of small-scale farmers. They are very numerous, having
different products, production of which can hardly be characterized as commercial by the
standards of the developed countries.
On the one hand, these farmers cannot pay for advisory services, and on the other hand,
PSSS cannot assist them by visiting each household. Worldwide, it is of great importance
for an extension service to work with farmer groups to achieve the efciency. Experience
in working with such farmers has shown that the results are positive when the signicance
and solution of a problem are determined from the standpoint of small-scale farmers, i.e.
when the problem is solved in a sustainable manner. With this approach, the interests of
small-scaled farmers are ensured who are then happy to engage in group work and achieve
massive and quality production without any major problems.
This model can be applied to all cases when knowledge and skills are needed and human
labour is necessary, regardless the size of the property. In a “Farmer Field School” (FFS), all
the parties involved are equal partners in nding a locally adapted practice of crop and pest
management. In a “Farmer Field School”, farmers are not just passive recipients of some
technical information, but they are given the opportunity to actively learn and therefore
achieve better control over conditions they face in their elds every day. In this way, farmers
can manage the ecological principles that should apply to their elds and become experts in
integrated production and protection. Finally, collaboration and circulation of information
among farmers gathered in FFS provide a far greater effect of environmental management
of WCR than the application on individual elds.
Results and Discussion
This study proves that crop rotation is an efcient strategy for control of this pest in our
conditions. In a crop rotation system, during the rst year of growing corn, there was a
small population of this pest when sampling, and only in a few cases (1.17%) the pest
was present in numbers close to the economic tolerance threshold. When the abundance
was determined, it was usually on adjacent elds that were under repeated corn sowing.
Although root damage was not the matter of investigation, some obvious symptoms of
144 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
damage, such as plant lodging, were not registered in the rst year. Since most of these
elds were characterized to be below the economic threshold of six adults (beetles) per
trap per day, Serbian corn producers could sow corn again with a relatively low risk for
roots to be signicantly damaged in the upcoming year. However, in the midst of Western
corn rootworm occurrence most corn producers resorted to crop rotation. A similar
situation happened in Central Europe. In experiments with crop rotation in Hungary, Kiss
et al. (2005) observed the numbers of insects were lower in rotation when compared to
the continuous corn sowing. Crop rotations of corn, soybean and sunower were effective
in minimizing the population of Western corn rootworm. It is possible that the diversity
of vegetation played a role in the effectiveness of crop rotation. Moeser and Vidal (2004)
showed that an expanded food selection present in South eastern Europe, had contributed
to the successful invasion of pests in Europe, but it is also possible that it had happened
due to reducing the selection pressure for pests to lay eggs out of corn. This suggests that
crop rotation and the diversity of agricultural crops can signicantly reduce the risk of
high population abundance of Western corn rootworm.
In elds where corn is grown continuously (repeated sowing) population density
of Western corn rootworm slowly increases with the number of years of repeated
sowing. Thus, the mean number of pest populations in years 1-5 in repeated sowing
increases from 1.17, 4.61, 6:41, and 10.30 to 13:53 adult per trap per day. In the case
of continuous sowing, the presence of food is not considered to be a limiting factor for
the increase in number of the population. In 2000, an unusually dry and warm summer
resulted in a high mortality of eggs. Not fullling its potential fertility is probably
the main reason why Western corn rootworm populations are not higher or they are
even reduced. Similar conclusions can be drawn from the results of this study. The
inuence of unfavourable environmental conditions in 2000 was seen in corn elds
in all areas, especially in Eastern Serbia, where it was very difcult to nd damaged
elds and elds with populations above the economic threshold in the next year (2001).
Moreover, in 2003 the weather conditions were again extreme, with low precipitation
and high temperatures, which also contributed to the reduction of pest populations.
Another example of the impact of adverse weather conditions was registered in the
spring of 2005, when the frequent and heavy precipitation was caused by excessive soil
moisture and ooding. Due to these specic conditions, sowing was delayed, resulting
in low population density in many corn elds.
The research by Wilson et al. (2005) showed that the majority (75.2 %) of farmers in ve
U.S. states in the Corn Belt use crop rotation to control Western corn rootworm. In our
study, farmers used crop rotation as a traditional practice, not only for the management
of Western corn rootworm, but also for weeds and diseases. However, based on corn
elds analysed in our study, it does not seem that all the elds rotated on annual basis.
The farmers in our study generally used corn rotating below the economic threshold.
Onstad et al. (2003) pointed out that in Eastern and Central Illinois in case of continuous
corn sowing (2 - 9% on average) it takes 16 years until the pest become resistant to crop
rotation. In Serbian agro ecological conditions, due to the occurrence of Western corn
145EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
rootworm and severe damages registered in the early stage, the share of corn that once was
more than 30% has been reduced to about 0 %. Under the given conditions, the ratio of
corn and non- corn elds was about 50:50, which means that farmers rotated crops annually
(Sivčev, Galo, 2001). Crop rotation is used by many farmers because it is very efcient, and
the total density of WCR population has been therefore signicantly reduced.
In our sample, 87.8 % of the elds had no economically harmful population of WCR. As it
can be expected, the share of elds with population density below the economic threshold
decreases with increase in number of years of repeated corn sowing. The share of elds
under corn production (1.2 million ha) in total arable land available (3.3 million ha - 36.4
%), indicating that the complete corn production can be protected by using crop rotation.
It is clear that the selection pressure for WCR populations resistant to rotation is not high.
Based on these data, it appears unlikely that WCR populations will develop resistance to
rotation. Our data encourage the idea of crop rotation sustainability, previously pointed out
by Miller et al. (2007). Moreover, what this data indicate is a generally low level of genetic
differentiation between the variants and wild-type WCR populations. Currently, WCR is not
an invasive pest species in Serbia, but it is considered as a well-established economically
important pest, which can efciently manage crop rotation (Sivčev et al., 2009; Stanković,
2012). Therefore, a need for effective and long-term control of WCR should primarily rely
on encouraging the diversity of crops.
Gross Margins of Different Enterprises - Wheat Production
The size of an estate and the acreage of the used agricultural land are certainly not
information on which we can evaluate the performance of a farm. Even when we have data
on what is produced, we must know when and how much is produced. Based on these data,
we can compare the performance of individual production lines and make decisions on the
future structure of production. One of the derived indicators that can be used as a criterion
for determining this structure is the gross margin. Of course, the gross margin is not the
most important and the only criterion, but it can be a starting point that does not require
numerous and complicated data and methods.
A gross margin of enterprises in one year can be represented by using the data for the same
production line obtained from different farms. Gross prot margin does not indicate prots
and it does not include the size, and value of xed costs. It represents the total value of
production subtracted by the direct costs of investments (purchased inputs).
In 2012, on one farm, wheat was sown on 5 ha. The average yield of mercantile wheat on
that farm was 4.00 t/ha. With an average price of 25,000.00 RSD/t the value of the main
commodity was 100.000,00 RSD/ha, which with the subsidy of 9,220.00 RSD/ha gave the
total production value of 109,220.00 RSD/ha. The cost of inputs per unit was 49,710.00
RSD/ha on average.
The most important items in the direct (variable) costs were mineral fertilizer (51.30%),
fuel (23.53%), seed (23.23%), and chemical products - pesticides (only 1.93%).
146 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
The realized gross margin was 59,510.00 RSD/ha, where:
Critical price was 12.43 RSD/kg and
Critical yield was 1,988.00 kg/ha.
After conducting the sensitivity analysis, and monitoring the variations in gross
margins when the offering and selling price or both parameters range +/- 20%, it was
noted that the gross margin could become negative only when yield and / or market
price reduced for 50%.
Table 1. Gross margin for wheat production in Končarevo village
Enterprise: Renesansa wheat variety
Unit of production: 1 ha Končarevo village
Income Quantity MU Price MU Amount
(RSD)
1. Wheat grain 4,000 kg/ha 25 RSD/kg 100,000.00
2. Field crops subsidy 1 RSD/ha 6,420 RSD/ha 6,420.00
3. Fuel subsidy 40 RSD/ha 70 RSD/ha 2,800.00
A. Total income 109,220.00
Variable costs
1. Seed 350 kg/ha 33 RSD/s.u. 11,550.00
2. Fertilizer
a) NPK 350 kg/ha 50 RSD/kg 17,500.00
c) KAN 250 kg/ha 32 RSD/kg 8,000.00
3. Pesticide
a) Monosan herbi 2 l (kg)/ha 480 RSD/kg 960.00
4. Diesel fuel
Basic and additional tillage 30 l/ha 130 RSD/l 3,900.00
Fertilizing 15 l/ha 130 RSD/l 1,950.00
Sowing 15 l/ha 130 RSD/l 1,950.00
Measures of care and protection 10 l/ha 130 RSD/l 1,300.00
Transportation 10 l/ha 130 RSD/l 1,300.00
Harvest 10 l/ha 130 RSD/l 1,300.00
5. Contracted services
Sowing ha RSD/ha -
Harvest ha RSD/ha -
Labour ha RSD/ha -
B. Total variable costs 49,710.00
C. Gross margin (A – B) 59,510.00
Source: Authors’ calculation based on data from PSSS Jagodina questionnaire (2012).
147EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
Soybean Production
In 2012, soybeans were planted on 2.0 ha of a selected farm. The average yield of soybeans
was 2.0 t/ha. With an average price of 65,000.00 RSD/t, the value of the main commodity
was 130,000.00 RSD/ha, which with the subsidy of 12,000.00 RSD/ha, gave the total
production value of 142,000.00 RSD/ha.
Total variable costs per unit, were 69,590.00 RSD/ha on average.
The most important items in the direct (variable) costs were fertilizer and pesticide
(30.17%), fuel (15.89%) and seed (15.02%).
The realized gross margin was 72,410.00 RSD/ha, where:
Critical price was 34.80 RSD/kg and critical yield was 1,070.62 kg/ha.
Table 2. Gross margin for soybean production in Končarevo village
Enterprise: BALKAN soybean variety
(Unit of production: 1 ha) Končarevo village
Income Quantity MU Price MU Amount (RSD)
1. Soy bean 2,000 kg/ha 65 RSD/kg 130,000.00
2. Field crops subsidy - RSD/ha - RSD/kg -
3. Fuel subsidy 1 RSD/ha 12,000 RSD/ha 12,000.00
A. Total income 142,000.00
Variable costs
1. Seed 110 kg/ha 95 din/s.u. 10,450.00
2. Fertilizer
a) NPK 300 kg/ha 50 RSD/kg 15,000.00
c) KAN 200 kg/ha 30 RSD/kg 6,000.00
3. Pesticide
a) Afalon 2 l (kg)/ha 2130 RSD/l (kg) 4,260.00
b) Dual 1,5 l (kg)/ha 2320 RSD/l (kg) 3,480.00
c) Pulsar 1 l (kg)/ha 5150 RSD/l (kg) 5,150.00
d) Ritam 1 l (kg)/ha 3200 RSD/l (kg) 3,200.00
4. Diesel fuel
Basic and additional tillage 35 l/ha 130 RSD/l 4,550.00
Fertilizing 10 l/ha 130 RSD/l 1,300.00
Sowing 10 l/ha 130 RSD/l 1,300.00
Measures of care and protection 15 l/ha 130 RSD/l 1,950.00
Transportation 15 l/ha 130 RSD/l 1,950.00
Harvest l/ha 130 RSD/l -
5. Contracted services
Sowing ha RSD/ha -
Harvest 1 ha 11,000 RSD/ha 11,000.00
Labour ha RSD/ha -
B. Total variable costs 69,590.00
C. Gross margin (A – B) 72,410.00
Source: Authors’ calculation based on data from PSSS Jagodina questionnaire (2012).
148 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
After completion of the sensitivity analysis, and monitoring variations in gross margins
when offering and selling price, or both parameters in the range +/- 20 % , it was noted that
gross margin could become negative only in the case of a reduction of yield and / or the
market price, for about 50 %.
Corn Production
In 2012, corn was planted on 10 ha of a selected farm. The average grain yield was 5 t/
ha. With an average price of 26,000.00 RSD/t, the value of the main product is 130,000.00
RSD/ha, achieved with 6,420.00 RSD/ha subsidy, which gives a total production value of
136,420.00 RSD/ha.
Total variable costs per unit are 44,372.50 RSD/ha on average.
The most important items in the direct (variable) costs consist of: mineral fertilizer
(52.06%), followed by fuel (26.95%), seed (11.72%) and, nally, protective equipment-
pesticides (9.27%).
Table 3. Gross margin for corn production in Končarevo village
Enterprise: ZP 704 corn variety
(Unit of production: 1 ha) Končarevo village
Income Quantity MU Price MU Amount (RSD)
1. Corn grain 5,000 kg/ha 26 RSD/kg 130,000.00
2. Field crops subsidy 1 RSD/ha 6,420 RSD/ha 6,420.00
3. Fuel subsidy RSD/ha RSD/ha -
A. Total income 136,420.00
Variable costs
1. Seed 2 s.u./ha 2,600 RSD/s.u. 5,200.00
2. Fertilizer
a) NPK 270 kg/ha 50 RSD/kg 13,500.00
b) UREA 200 kg/ha 48 RSD/kg 9,600.00
3. Pesticide
a) Acetogal 2 l (kg)/ha 650 RSD/kg 1,300.00
b) Tangenta 1.25 l (kg)/ha 1450 RSD/kg 1,812.50
c) Cambio 1 l (kg)/ha 1000 RSD/kg 1,000.00
4. Diesel fuel
Basic and additional tillage 35 l/ha 130 RSD/l 4,550.00
Fertilizing 10 l/ha 130 RSD/l 1,300.00
Sowing 10 l/ha 130 RSD/l 1,300.00
Measures of care and protection 12 l/ha 130 RSD/l 1,560.00
Transportation 10 l/ha 130 RSD/l 1,300.00
Harvest 15 l/ha 130 RSD/l 1,950.00
5. Contracted services
Sowing ha RSD/ha -
Harvest ha RSD/ha -
Labour ha RSD/ha -
B. Total variable costs 44,372.50
C. Gross margin (A – B) 92,047.50
Source: Authors’ calculation based on data from PSSS Jagodina questionnaire (2012).
149EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
The achieved gross margin is 92,047.50 RSD/ha, where:
Critical price was 8.87 RSD/kg and critical yield was 1,706 kg/ha.
After conducting the sensitivity analysis, and monitoring the variations in gross margins
when the offering and selling price or both parameters range +/- 20%, it was noted that
the gross margin could become negative only when yield and/or market price reduced
for 65.8%.
Since we assumed that all enterprises are burden by the same xed costs in one production
cycle, the gross margin for 2012 presented the data for the three enterprises taken from a
reputable, market-oriented farm. The highest average gross margin on the farm in 2012,
was achieved with corn (92,047.50 RSD/ha), and soybeans (72,410.00 RSD/ha) and the
lowest with wheat production (RSD 59,510.00/ha). In these three enterprises, there were no
big differences in the value of the gross margins, ranging from 1:1.22 between wheat and
soybeans; 1:1.55 between wheat and corn and 1:1.27 between soybeans and corn.
The largest direct investments for inputs were required by soybean production – 69,590.00
RSD/ha and the lowest by corn production 44,372.00 RSD/ha.
The value of production was highest in soybean (142,000.00 RSD), slightly higher than in
corn (136,420.00 RSD), and signicantly higher than in wheat production (109,220.00).
Comparing the yields and costs per ton of product does not make difference because
different types of production were observed. The data we used in the calculation of gross
margins, we can use for giving recommendations, planning and determining the structure
of crop production, based on investments that the obtained values require.
This clearly suggests that corn has the highest gross margin with the least investments.
Due to good and timely used cultivation technology, the chosen farm managed to achieve
the yields even in extremely hot/dry 2012, which certain farms cannot achieve in more
favourable conditions. The crucial role in this truly homely business had:
1. The needs of the farm, in terms of having sufcient and good quality animal feed,
2. Crop rotation, to what great attention was paid, considering the high yields achieved
on the farm every year, partially due to the three-eld system instead of the two-eld
system with a monoculture,
3. Monitoring of market trends and investments in the production of industrial crops.
Also, comparing to results described by Tomić et al., (2013), gross margin for corn,
calculated based on questionnaire carried out 2012 on a total of 69 chosen leader farms
from the territory of 11 stations of the Agricultural Extension Service of Serbia, was higher
at our leader farm (92,047.50 RSD compared to 64,257.00 RSD). Yield was higher at
observed leader farm (5000 kg/ha) compared to Central Serbia average (4,572 kg/ha). The
difference was primarily due to calculated subsidies, but the most important difference was
lower costs, especially for fertilizers 23,100.00 RSD compared to 30,036.00 RSD as an
average in Central Serbia.
150 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
Conclusion
The results of this research are supposed to demonstrate the efciency and sustainability of
environmental management in solving problems of corn protection. These conclusions can
be reached only if they learn and discover through their production practices. It is therefore
to be expected that the applied methodology with Farmers eld schools might be a results.
Crop rotation as a tool for management and control of corn rootworm and in terms of various
biodiversity is the only efcient and cost-effective measure, but only in circumstances where
it is absolutely necessary.
The main objective of the activity is the training of advisors to develop and implement
programs in solving problems that small scale farmers have in production. Training is
provided through a theoretical overview of the methodology and demonstration program
of activities on existing projects, and later using specic tools. This will begin the process
of creating an environment for the promotion of agricultural production and the quality
of agricultural products of small scale farmers using the methodology of working with
groups and the intention to rst highlight the interest of small scale farmers to get their
problems solved.
Signicant increase in the dissemination of knowledge in the eld (in the villages). The basis
for the implementation of these activities, group work with farmers (Farmer Field Schools
- FFS) and the dissemination of knowledge on the principle of ‘’farmer to farmer’’. If we
calculate the average of 10 farmers trained by the group on an annual basis, the total number
of trained farmers who are able to improve efciency in agricultural production, as well as
providing information to its neighbours, would be signicant.
The effect will result in great savings in unnecessary application of chemicals and
environmental pollution, but also unnecessary application of crop rotation, which is important
in specialized corn producers.
Gross margin of three production lines at the participant’s farms in training programs, have
shown that corn has the highest gross margin (with the least investment).
Due to good and timely used cultivation technology, the chosen farm managed to achieve
the yields even in extremely hot/dry 2012, which certain farms cannot achieve in more
favourable conditions.
Calculations of production of wheat, corn and soybean on farms involved in education
program in 2012, have shown that corn has the highest gross margin (92,047.50 RSD/ha),
followed by soybean (72,410.00 RSD/ha) and wheat (59,510.00 RSD/ha). Lower costs,
especially for fertilizers and other unnecessary inputs lead to higher gross margins.
Traditional corn production in the village Koncarevo, at the farm of participants in the
education program justies the continuation of corn growing at the same eld, with a
mandatory risk assessment of repeated sowing. Gross margin calculated on leader and other
farms within the regular activities of Agriculture Advisory Services is a powerful toll for
assessing the efciency of advisory work.
151EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
References
1. Anđelić, B., Janković, S., Tomić, V. (2010): Uticaj strukture ratarske proizvodnje
na bruto marzu porodicnih gazdinstava, Poljoprivredne aktuelnosti, Institut za
primenu nauke u poljoprivredi, Beograd, br. 1-2, pp. 92-104.
2. Berg, H. van den (2004): IPM Farmer Field Schools: A synthesis of 25 impact
evaluations, Wageningen University, Prepared for the FAO Global IPM Facility.
3. Callo, D. P., Cuaterno, W. R., Tauli, H. A. (1999): Handbook of Non - Formal
Education and Team Building Exercises for Integrated Pest Management, The
Philippine National IPM Programme (Kasakali late) ASEAN IPM Knowledge
Network, SEAMEO research, the Philippines.
4. Edwards, C. R., Larry, W. B., Turpin, F. T. (1994): Field crop insects managing corn
rootworms 1994, Purdue University, Cooperative Extension Service, E-49, pp. 1-6,
West Lafayette.
5. FAO (2004): A Facilitator’s Field Guide to Integrated Pest Management for Western
Corn Rootworm in Central and Eastern Europe, A Training Resource Manual on
Planning, Organizing, and Implementing Farmer Field Schools for Integrated Pest
Management in Corn in Central and Eastern Europe.
6. Gallagher, K. (1996): Community-based rice IPM Programme Development:
A Facilitator’s guide, FAO Inter - Country Rice Integrated Pest Management
Programme for Asia, Manila, Philippines.
7. Gray, M. E., Levine E., Oloumi-Sadeghi, H. (1998): Adaptation to crop rotation:
Western and northern rootworms respond uniquely to a cultural practice, Recent
Res. Devel. in Entomology, vol. 2, pp. 19-31.
8. Janković, S., Goss, S., Pusic, M., Jovanovic, R., Todorovic, G., Tolimir, N., Ivkov, I.,
Andjelic, B., Dalton, G. (2007): Poslovanje poljoprivrednih gazdinstava u Srbiji 2006,
Priručnik, Institut za primenu nauke u poljoprivredi, Beograd, pp. 26-27.
9. Kiss, J., Edwards, R., Berger, H. K., Cate, P., Cean, M., Cheek, S., Derron, J., Festic,
H., Furlan, L., Igrc-Barcic, J., Ivanova, I., Lammers, W., Omelyuta, V., Prinzinger,
G., Reynaud, F., Sivcev, I., Sivicek, P., Urek, G., Vahala, O. (2005): Monitoring of
Western Corn Rootworm (Diabrotica virgifera virgifera LeConte) in Europe 1992-
2003, In: Western Maize Rootworm: Ecology and Management (Ed. Vidal, S.,
Kuhlman, U. and Edwards C.R.), CABI International, pp. 29-39.
10. Miller, N. J., Ciosi, M., Sappington, T. W., Ratcliffe, S. T., Spencer, J. L., Guillemaud, T.
(2007): Genome scan of Diabrotica virgifera virgifera for genetic variation associated
with crop rotation tolerance, J. Appl. Entomol., no. 131, pp. 378-385.
11. Moeser, J., Vidal, S. (2004): Nutritional resources used by the invasive maize pest
Diabrotica virgifera virgifera in its new South-east-European distribution range,
Entomol. Exp. Appl., no. 114, pp. 55–63.
12. Munćan, P., Živković, D. (2006): Menadzment ratarske proizvodnje, Poljoprivredni
fakultet, Beograd.
152 EP 2015 (62) 1 (137-153)
Jasmina Filipović, Slađan Stanković, Slobodan Ceranić
13. Onstad, D. W., Crowder, D. W., Mitchell, P. D., Guse, C. A., Spencer, J. L., Levine,
E. (2003): Economics versus Alleles: Balancing Integrated Pest Management and
Insect Resistance Management for Rotation-Resistant Western Maize Rootworm
(Coleoptera: Chrysomelidae), J. Econ. Entomol., no. 96, pp. 1872-1885.
14. Pontius, J., Dilts, R., Bartlett, A. (eds.) (2002): From farmer eld school to community
IPM. Ten years of IPM training in Asia, FAO Community IPM Programme, FAO
Regional Ofce for Asia and the Pacic.
15. Agricultural Extension Service in Jagodina (PSSS Jagodina), (2012): Questionnaires
carried out in 2012 on leader farms from the territory of Agricultural Extension Service
in Jagodina (Pomoravlje region, Serbia), PSSS Jagodina, internal documentation.
16. Purdue University (1995): Corn and soybean eld guide. Integrated pest
management, Purdue University, Field crops IPM, available at: http://extension.
entm.purdue.edu/eldcropsipm/insects/corn-rootworms.php
17. Sivčev, I., Galo, A. (2001): Education as a factor in suppression of WCR in Serbia,
XXI IWGO Conference, VIII Diabrotica Subgroup Meeting, Proceedings book,
Padova, pp. 151-157.
18. Sivčev, I., Rahović, D. (2008): A Methodology for Working with Farmers on the Model
of Adult and Non-formal Education “schools for farmers in the eld”, Handbook Project:
Education Advisors for Improving Crop Production and Qualtures of Agricultural
Products by Methods of Integrated Production and Non-formal Adult Education, the
Institute for Science Application in Agriculture, Belgrade, pp. 1-10.
19. Sivčev, I., Stankovic, S., Kostic, M., Lakic, N., Popovic, Z. (2009): Population
density of Diabrotica virgifera virgifera LeConte beetles in Serbian rst year and
continuous maize elds, J. Appl. Entomol., no. 133, pp. 430–437.
20. Statistical Ofce of the Republic of Serbia (SORS), (2014): Agriculture Census -
2012, SORS, Belgrade, available at: http://popispoljoprivrede.stat.rs/
21. Stanković, S. (2012): Possible use of environmental management in control of
invasive corn pest Diabrotica virgifera virgifera LeConte, Ph.D. thesis, Faculty of
environmental protection, Educons University, Sremska Kamenica.
22. Stankovic, S., Sivčev, I. (2004): IPM for western corn rootworm participatory
training through farmer eld school in Serbia, IWGO, 10th Diabrotica subgroup
meeting, Engelberg Switzerland, 14-16 January, Abstracts, p. 69.
23. Tomić, V., Janković, S., Kuzevski, J., Ljiljanić, N., Radišić, R. (2013): Maize gross
margins in different environmental conditions in 2011 and 2012, Proceedings:
Agriculture and rural development challenges of transition and integration processes,
50th Anniversary Department of Agricultural Economics, Belgrade – Zemun.
24. Wilson, T. A., Rice, M. E., Tollefson, J. J., Pilcher, C. D. (2005): Transgenic corn for
Control of the European Corn Borer and Corn Rootworms: a Survey of Midwestern
Farmer`s Practices and perceptions, J. Econ. Entomol., no. 98, pp. 237-247.
153EP 2015 (62) 1 (137-153)
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE OF FARMER EDUCATION ON THE WCR RISK ASSESSMENT IN REPEATED SOWING
Website:
25. www.itecherpsolution.rs/bm/doc/bmuputstvopsenicauproscena.pdf
26. www.itecherpsolution.rs/bm/doc/bmobrazacpsenicauproscena.xls
27. www.psss.rs
BRUTO MARŽA KAO POKAZATELJ ZNAČAJA EDUKACIJE
POLJOPRIVREDNIKA O PROCENI RIZIKA OD KUKURUZOVE
ZLATICE U PONOVLJENOJ SETVI
Jasmina Filipović6, Slađan Stanković7, Slobodan Ceranić8
Sažetak
Kukuruzova zlatica (Diabrotica virgifera virgifera) je krajem 80-tih godina uneta na
teritoriju Srbije i kao novo introdukovana štetna insekatska vrsta se brzo proširila po
celoj teritoriji Srbije prouzrokujući štete. Tokom nekoliko godina praćenja pojave šteta
primećeno je da plodored u našim uslovima pokazuje odlične rezultate. S druge strane,
domaće životinje troše tokom uzgoja velike količine semena kukuruza, što sa obzirom na
ograničen zemljišni fond obično znači učestalo gajenje kukuruza u ponovljenoj setvi ili u
dugogodišnjoj monokulturi, a što povlači za sobom pojavu šteta od kukuruzove zlatice. Kroz
škole u polju za poljoprivrednika (FFS), poljoprivrednici su edukovani o proceni rizika od
kukuruzove zlatice pri ponovljenoj setvi kukuruza . Cilj je bio da se produži proizvodnju
kukuruza u monokulturi, pod pretpostavkom veće protabilnost proizvodnje kukuruza (bruto
marža). Bruto marže tri linije proizvodnje na gazdinstvu ucesnika programa edukacije
pokazale su da kukuruz ima najveću bruto maržu uz najmanja ulaganja (92,047.50 din/
ha), zatim soja (72,410.00 din/ha), a najmanju pšenica (59,510.00 din/ha ). Moglo bi se
zaključiti da je najbolji interes farmera da gaje kukuru u monokulturi, kada je to moguće ,
uz obaveznu procenu rizika od ponovljene setve.
Ključne reči: kukuruz, kukuruzova zlatica, proizvodnja, bruto marža, ulaganje,
cena, edukacija.
6 Jasmina Filipović, M.Sc., Poljoprivredna savetodavna i stručna služba Jagodina, Kapetana Koce
21, 35000 Jagodina, Srbija, Telefon: +381 35 221 931, E-mail: mina66@open.telekom.rs
7 Dr Sladjan Stanković, Institut za primenu nauke u poljorivredi, Bulevar Despota Stefana 68b,
11000 Beograd, Srbija, Telefon: +381 63 700 38 62, E-mail: ssladjan@beotel.net
8 Prof. dr Slobodan Ceranić, Poljoprivredni fakultet, Univerzitet u Beogradu, Nemanjina 6, 11080
Zemun, Srbija, Telefon: +381 11 261 53 15, E-mail: ceranic@agrif.bg.ac.rs
Economics of Agriculture, Year 62, No. 1 (1-284) 2015, Belgrade
UDC 338.43:63 ISSN 0352-3462
ECONOMICS OF
AGRICULTURE
CONTENT
1. Ivkov Milan, Blešić Ivana, Popov Raljić Jovanka,
Ivkov Džigurski Anđelija, Pivac Tatjana, Jovanović Tamara
VISITORS’ MOTIVES FOR ATTENDING A HYBRID EVENT:
A CASE STUDY OF AGRICULTURAL FAIR . . . . . . . . . . . . . . . . . . . 9
2. Mikić Neven, Ljubanović Ralević Ivana, Rajić Zoran
THE SELECTION OF ACQUISITION STRATEGY
AND SOLVING TRADE SURPLUSES OF FOOD
PRODUCTS BY USING THE SIMULATION . . . . . . . . . . . . . . . . . . . 29
3. Šoškić Dejan
INFLATION IMPACT OF FOOD PRICES: CASE OF SERBIA. . . . . . . .41
4. Veljković Saša, Stojanović Žaklina, Filipović Jelena
ATTITUDES TOWARD FARM ANIMALS WELFARE AND
CONSUMER’S BUYING INTENTIONS - CASE OF SERBIA. . . . . . . . .53
5. Zheliazkov Georgi, Zaimova Darina, Genchev Evgeni, Toneva Krasimira
CLUSTER DEVELOPMENT IN RURAL AREAS. . . . . . . . . . . . . . . .73
6. Berjan Siniša, El Bilali Hamid, Janković Snežana, Radosavac Adriana
AGRICULTURAL AND RURAL DEVELOPMENT GOVERNANCE
AND COORDINATION IN BOSNIA AND HERZEGOVINA . . . . . . . . . 95
7. Božić Dragica, Munćan Petar
REGIONAL ASPECTS OF FAMILY HOLDINGS STRUCTURE
IN THE REPUBLIC OF SERBIA . . . . . . . . . . . . . . . . . . . . . . . 107
8. Čikić Jovana, Petrović Marica, Đurđev Branislav
DIFFUSION OF KNOWLEDGE AND RURAL TOURISM
DEVELOPMENT – EXAMPLE OF VOJVODINA . . . . . . . . . . . . . . . 123
9. Filipović Jasmina, Stanković Slađan, Ceranić Slobodan
GROSS MARGIN AS AN INDICATOR OF THE SIGNIFICANCE
OF FARMER EDUCATION ON THE WCR RISK
ASSESSMENT IN REPEATED SOWING. . . . . . . . . . . . . . . . . . . . . 137
Economics of Agriculture, Year 62, No. 1 (1-284) 2015, Belgrade
10. Jovanović Miomir, Kašćelan Ljiljana, Joksimović Miljan, Despotović Aleksandra
COMPARATIVE ANALISYS OF AGRO-FOOD TRADE
IN MONTENEGRO AND EU CANDIDATE COUNTRIES . . . . . . . . . . 155
11. Osmani Ataul Gani, Hossain Elias
MARKET PARTICIPATION DECISION OF SMALLHOLDER
FARMERS AND ITS DETERMINANTS IN BANGLADESH . . . . . . . . . 163
12. Radović Vesela, Pejanović Radovan, Marinčić Dušan
EXTREME WEATHER AND CLIMATIC EVENTS ON
AGRICULTURE AS A RISK OF SUSTAINABLE DEVELOPMENT. . . . 181
13. Radukić Snežana, Marković Milan
LIMITATION OF TRADE MARGINS AS A MEASURE OF FOOD
PRICE CONTROLS: EXPERIENCE OF SERBIA. . . . . . . . . . . . . . . . 193
14. Stancu Adrian
AN ANALYSIS OF THE RELATION BETWEEN WINE
CONSUMPTION AND CULTURAL MODELS . . . . . . . . . . . . . . . . . 207
15. Škrbić Iva, Jegdić Vaso, Milošević Srđan, Tomka Dragica
DEVELOPMENT OF SREMSKI KARLOVCI WINE TOURISM
AND INTEGRATION IN THE REGIONAL TOURISM OFFER . . . . . . 229
16. Vehapi Semir, Šabotić Zenaida
THE STATE AND PROBLEMS OF SERBIAN AGRICULTURE . . . . . 245
17. Vuković Predrag, Čavlin Gordana, Čavlin Miroslav
COMPLEMENTARITY IN THE DEVELOPMENT OF RURAL
TOURISM WITH THE DEVELOPMENT OF THERMAL BATHS,
SPA AND WELNESS TOURISM . . . . . . . . . . . . . . . . . . . . . . . . . . 259
... No official data on yield losses caused by WCR are available but, based on the discussion with experts [246], farmers are paying much attention to crop rotation, thus economic damages are limited to continuous maize fields in the third or fourth year of continuous sowing. As it was reported by Filipović et al., farmers' education through farmer field schools contributed to a better understanding of why crop rotation plays such an important role in reducing pest damage even though maize has the highest gross margin when compared to soybean and wheat [227]. ...
... Taking into account that the level of maize dependency of different farms varies, some countries are advocating breaking continuous maize growing in one out of three years (Germany) up to one in six years (France). In Croatia and Serbia, the education of farmers took place to carry out a risk assessment on maize fields destined for repeated sowing [66,139,227]. The need for farmer education is also highlighted by Kropf et al. [228]. ...
Article
Full-text available
Simple Summary Diabrotica virgifera virgifera, also known as western corn rootworm (WCR), is a maize-specific pest that has been a serious threat in Europe since the mid-1990s. Between 1995 and 2010, European countries were involved in international projects to plan pest control strategies. However, since 2011, collaborative efforts have declined and the overview of knowledge on WCR is in great need of updating. Therefore, a review of scientific papers published between 2008 and 2020, in addition to direct interviews with experts responsible for WCR management in several European countries, was conducted to (1) summarize the research conducted over the last 12 years and (2) describe the current WCR distribution and population in the EU, and the management strategies implemented. A considerable amount of new knowledge has been gained over the last 12 years, which has contributed to the development of pest management strategies applicable in EU agricultural systems. There is no EU country reporting economic damage on a large scale. In many countries, solutions based on crop rotation are regularly implemented, avoiding insecticide use. Therefore, WCR has not become as serious a pest as was expected when it was discovered in much of Europe. Abstract Western corn rootworm (WCR), or Diabrotica virgifera virgifera LeConte, became a very serious quarantine maize pest in Europe in the mid-1990s. Between 1995 and 2010, European countries were involved in international projects to share information and plan common research for integrated pest management (IPM) implementation. Since 2011, however, common efforts have declined, and an overview of WCR population spread, density, and research is in serious need of update. Therefore, we retained that it was necessary to (1) summarize the research activities carried out in the last 12 years in various countries and the research topics addressed, and analyze how these activities have contributed to IPM for WCR and (2) present the current distribution of WCR in the EU and analyze the current population levels in different European countries, focusing on different management strategies. A review of scientific papers published from 2008 to 2020, in addition to direct interviews with experts in charge of WCR management in a range of European countries, was conducted. Over the past 12 years, scientists in Europe have continued their research activities to investigate various aspects of WCR management by implementing several approaches to WCR control. A considerable amount of new knowledge has been produced, contributing to the development of pest management strategies applicable in EU farming systems. Among the 10 EU countries analyzed, there is no country reporting economic damage on a large scale. Thanks to intensive research leading to specific agricultural practices and the EU Common Agricultural Policy, there are crop-rotation-based solutions that can adequately control this pest avoiding insecticide use.
... GM was used in this paper as an indicator narrower than an analytic calculation and it shows the difference between the cost of production and direct costs, which makes it an important tool from the economic viewpoint (Janković et al., 2009;Anđelić et al., 2010;Filipović et al., 2015). We used the methodology for calculation of a standard GM as a scientific tool to support technical and economic orientation of farms (Iurchevici and Chetroiu, 2011), in order to analyze economic results in grape production. ...
Conference Paper
Full-text available
Serbia has a good climate and soil conditions for growing grapes. In Serbia three growing regions are determined, with a 22 rayon and 77 vineyard areas, for the production of grape and production of a wine with the geographic origin. Based on the Census of Agriculture in 2012, it was found that 13% of the total number of farms are engaged in viticulture, but 92% of the production is performed at less than 50 acres area. In the production of grapes, family farms are in the first place then a small number of large wineries. Data for gross margin (GM) calculations were collected through a questionnaire from grape wine production farms in Pomoravlje region in the period 2011-2014. For calculating the basic elements of gross margin, we have used data on yield and price, by-product price, quantity and value of fertilizers, pesticides, and fuel, and costs for contracted services. GM was calculated as the total value of a production line subtracted by the direct costs for the production line in question (cf. purchased inputs). The yield of grapes in the period 2011-2014, was approximately one tonne higher than the average yield of grapes in Serbia according to official statistics. Average yield was determined at 8.2 t / ha, and varied in the range from 5.5 t / ha up to a maximum of 12 t / ha. This presents relatively normal fluctuations in the yield, which indicates the value of the coefficient of variation (Cv) of 16%. Also grape yield had a tendency of slight decrease with an average annual rate of 0.3%. The average price of grapes in the reporting period was at about 390 EUR/t. A positive value indicates that rate of change of prices in the reporting period tends to increase by 0.77% per annum. The variable costs (VC) of the grape production in this period were on the average 1408 EUR/ha. VC show a tendency to decrease by 0.56% per year and was the most stable production parameter (Cv = 10.53%). Reduction in variable costs and the relative stability of the characteristics are favourable for the producers of grapes. Gross margin of the grape production in households was observed at an average level of about 1760 EUR/ha. Characteristic gross margin has significantly higher variability in relation to other parameters indicating the value of Cv of almost 31%. Although there are fluctuations in the values of gross margins, this parameter tends to increase at a rate of 1.06% per annum.
... The total yields vary from year to year, and the average yield in the observed period is 7.84 t/ha and is slightly higher than the average yield in Serbia (7.76 t/ha). Gross margin (GM) was used in this paper as an indicator narrower than an analytic calculation and it shows the difference between the cost of production and direct costs, which makes it an important tool from the economic aspect (Barnard and Nix, 1979;Anđelić et al., 2010;Stanković et al., 2015;Filipović et al., 2015). We used the methodology for calculation of a standard GM as a scientific tool to support technical and economic orientation of farms, in order to analyze economic results in fruit production. ...
Conference Paper
Full-text available
Sour cherry, after plums and apples, holds third place in Serbia in terms of volume and area of production. Serbia, within the CEFTA countries, is the largest exporter of sour cherries (approx. 4.4% of total exports of fruit in Serbia). Farmers need to be introduced to the economic effect of a sour cherry production and gross margin (GM). GM is a quick and efficient indicator for comparing production lines in different conditions and it was used as an indicator of economic effects of production. Data for GM calculations were collected through a questionnaire from sour cherry production farm in Pomoravlje region in the period 2011-2014. For calculating the basic elements of gross margin, the following data were used: data on yield and price, by-product price, quantity and value of fertilizers, pesticides, and fuel, and costs for contracted services. GM represents the total value of a production line subtracted by the direct costs for the production line in question (purchased inputs). Price of sour cherry shows considerable variability during the observation period (Cv= 54.95 %). The average price of sour cherries in the reporting period was approx. EUR 530/t, while the maximum price recorded was almost twice higher (1,016 EUR/t). In contrast to the yield, price showed significantly more pronounced tendency to increase – an average annual rate of 9.72%. The average value of total variable costs was approx. 1406 EUR/ha. A positive feature of variable costs of the sour cherry production is that they show a tendency to decrease, with an average annual rate of 2.64%. The average value of gross margin in the observed period amounted to approximately 4013 EUR/ha. The value of rate of change shows that the gross margin year on year growth records an average of 11.71% annually.
Conference Paper
Full-text available
Environmental conditions significantly influence agricultural production, i.e. they are one of the main factors that affect its efficiency. Continuous monitoring of economic results makes it possible to identify the basic elements of revenues and expenditures in production of major agricultural crops, and use these data to plan future production – in other words, to choose the right enterprise for respective environmental conditions. The gross margin is a quick and efficient indicator used to analyse an enterprise when considering economic indicators of different enterprises and choosing the most efficient one in economic terms. In this paper we used the gross margin to compare the two production years with different production conditions, but on the same farms. Therefore, gross margin was used as an adequate indicator that aims to show the difference which is in function of various agro-ecological conditions, price and yield within the period of two years. The paper used the questionnaire carried out in 2011 and 2012 on a total of 69 chosen leader farms from the territory of 11 stations of the Agricultural Extension Service of Serbia. The questionnaire collected data on revenues and expenditures based on which gross margins for maize were calculated. The main indicator of this calculation is the gross margin, which is the difference between the value of production (value of the primary and the secondary product) and total variable costs that covers seed costs, fertilizer costs, costs of plant protection products, diesel fuels and contracted services (for sowing, harvest and labour). In these periods climatic conditions differed significantly. In 2012 there was considerably less precipitation with higher air temperatures, which was one of the main reason for reduced yields per area unit. In 2012, yields decreased by 28%, while price per kilogram of maize increased by about 37%, reducing total value of production by about 1%. It was estimated that total variable costs increased by 6%, while the gross margin was reduced by about 8%.
Article
Full-text available
Modern agriculture includes the process of building a new economic activity based on efficiency, competitiveness, intensity and marketability. The process of transition of Serbian agriculture to market conditions is long and difficult. In this study the authors identify the most important problems of this process: unfavourable ownership structure and low productivity, the ineffectiveness of the agrarian and economic policy, the slow development of support institutions and legislative framework, and unsuccessful privatization in agriculture. We are dealing with a number of chronic problems that seriously threaten the development of agriculture and hinder the implementation of transition reforms. The authors propose measures and activities for achieving a transition shift in this strategically important economic branch for Serbia.
Article
Full-text available
Serbia has a long tradition in thermal baths tourism development. In the second half of the twentieth century, this branch of tourism attracted a significant segment of tourist demand, both domestic and foreign. However, due to difficult business conditions in the nineties, its infrastructure became outdated. This resulted in negative trends in tourism development and a negative image appeared in the tourism market. On the other hand, rural tourism is a relatively new form of tourism. In Serbia, it started developing from the 1970ies. A significant interim in this form of tourism was also noticed during the nineties. Today, these two forms of tourism are emphasized as the development chance of Serbian tourism and economy in diverse development-strategic documents by the Government and the departmental ministry. The conceptual approach to these forms of tourism is used in this work, in order to scope the possibilities of their complementary development. What is primarily borne in mind is the resource basis that Serbia possesses for their development, but also the newer tendencies and trends on the tourism market. Expectations are that a synergic cooperation of these forms of tourism would ensure better results, and Serbia would position itself higher on the international tourism market.
Chapter
Full-text available
This book provides a comprehensive review of the current knowledge of Western corn rootworm, Diabrotica virgifera virgifera , and how it might be managed both in North America and in Europe. Comparisons are drawn between plant protection techniques currently applied in North America and their potential application in Europe. Cultural, biotechnical and biological control measures are also addressed, as are ecological baseline data, i.e. population dynamics of the pest in North America and Europe, economic thresholds and aspects of its behaviour.
Article
Full-text available
A 5-year field survey examined western corn rootworm (WCR) (Diabrotica virgifera virgifera LeConte) beetle density in Serbia from 2002 to 2006. First-, second-, third-, fourth- and fifth-year maize fields were sampled; they represented 64.61%, 21.66%, 9.45%, 3.53% and 0.75% of all sampled fields respectively. Results showed that the mean WCR beetle population density from 794 maize fields differed depending on cropping history. Minimum mean WCR/trap/day was 0.0 in the first-year maize fields in 2002 and 2006. Maximum mean WCR/trap/day was registered in the fourth-year and the fifth-year maize fields (27.8 and 21.2 respectively). Mean population density of WCR adults increased with the number of years of continuous maize from 1.17, 4.61, 6.41, 10.30 up to 13.53 WCR/trap/day for first-fifth-year maize fields respectively. Mean WCR/trap/day ± SE exceeded the economic population threshold of >6 WCR/trap/day in third-year continuous maize fields. Out of 794 maize fields, 697 (87.78%) registered a mean population density below the <6 beetles/trap/day threshold. In only 97 fields was WCR population density >6 beetles/trap/day, a finding that predicts a risk of economic damage to a subsequent maize planting. These data are representative of the Serbian situation from 2002 to 2006; they indicate that WCR are well dispersed across commercial maize fields in Serbia. These results provide new insight into the current low WCR population densities in maize fields managed by crop rotation, a finding that can help in creating long-term management strategy.
Article
Full-text available
Western corn rootworm, Diabrotica virgifera virgifera LeConte, has overcome crop rotation in several areas of the central United States. We expanded a simple model of adult behavior and population genetics to explain how rotation resistance may have developed and to study ways to manage the western corn rootworm in a landscape of corn, soybean, and winter wheat where evolution of resistance may occur. We modeled six alternative management strategies over a 15-yr time horizon, as well as a strategy involving a 2-yr rotation of corn and soybean in 85% of the landscape, to investigate their effectiveness from both a biological and economic perspective. Generally, resistance to crop rotation evolves in fewer than 15 yr, and the rate of evolution increases as the level of rotated landscape (selection pressure) increases. When resistance is recessive, all six alternative strategies were effective at preventing evolution of rotation resistance. The two most successful strategies were the use of transgenic rotated corn in a 2-yr rotation and a 3-yr rotation of corn, soybean, and wheat with unattractive wheat (for oviposition) preceding corn. Results were most sensitive to increases in the initial allele frequency and modifications of the density-dependent survival function. Economically, three alternative strategies were robust solutions to the problem, if technology fees were not too high. Repellant soybean, attractive rotated corn, and transgenic rotated corn, all in 2-yr rotations, were economically valuable approaches. However, even the currently common 2-yr rotation was economical when resistance was recessive and the actual costs of resistance would not be paid until far in the future.
Article
Full-text available
In 2001, a self-administered questionnaire was sent to 1000 corn, Zea mays L., farmers in each of five states (Illinois, Indiana, Iowa, Minnesota, and Nebraska) to evaluate their perceptions of transgenic corn designed to control the European corn borer, Ostrinia nubilalis (Hübner), and corn rootworms, Diabrotica spp. Respondents returned 1,313 surveys (26.2%). Farmers with small acreages planted a greater portion of their corn (54.5%) with transgenic corn for control of European corn borer than farmers with large farms (39.2%). The majority (75.2%) of farmers use crop rotation to control the corn rootworm. Nine insecticides comprised 92.2% of the commercial soil insecticides used for control of corn rootworm larvae. More than one-third of the farmers in Illinois (33.5%) and Indiana (39.4%) treated first-year corn for corn rootworm, primarily due to western corn rootworm egg laying in soybean, Glycine max (L.). When asked whether they would plant transgenic corn protected against the corn rootworm, 35.0% of farmers responded they would, whereas 40.5% said they were unsure. The two greatest farmer concerns about transgenic corn were the ability to sell harvested grain (59.3%) and additional technology fees (54.8%). Respondents indicated that less farmer exposure to insecticide (69.9%) and less insecticide in the environment (68.5%) were the primary benefits of transgenic corn. Farmers who had no concerns about transgenic corn for rootworm control were more likely to purchase the product (46.8%). The most common refuge-planting options farmers favored were adjacent fields (30.9%) and split fields (29.9%). Farmers (21.1%) observed a yield increase (23.7 bu/ha [9.6 bu/acre]) when using transgenic corn for European corn borer control compared with non-transgenic corn. These data can help in understanding farmers' knowledge and concerns regarding transgenic corn. This information may be of value to guide researchers, extension specialists, and policy makers in designing insect resistance management and integrated pest management programs.
Article
Food utilization by adults of the invasive maize (Zea mays L.) (Poaceae) pest western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) (Coleoptera: Chrysomelidae) was investigated in the south-eastern part of its new European distribution range. At weekly intervals over a 10-week period, 10 beetles per field were collected from six fields that had a high abundance of flowering weeds and six fields with a low abundance of flowering weeds, with the aim of understanding adult feeding behaviour in Europe and comparing this behaviour with North American WCR. Gut content analysis was performed to determine the use of maize tissue and weed pollen with regard to maize phenology. Furthermore, all pollen found within the gut was quantified and identified to plant species level. The use of maize tissue by adult WCR changed over time according to maize phenology. Pollen originating from plants other than maize was used more frequently as the maize matured. Adults fed on pollen from 19 of 25 different plant species found in maize fields and showed a preference for the pollen of specific weeds. Pollen from weed species was found more often in beetles from fields with a high abundance of weeds compared to beetles from fields with a low abundance of weeds. Females consumed greater amounts of pollen than males, the latter feeding on a wider diversity of host plants. The pollen resources used by adult WCR in Hungary were more diverse compared to WCR in the USA, which may contribute to the invasion success of WCR in Europe.
Article
Crop rotation has been a valuable technique for control of Diabrotica virgifera virgifera for almost a century. However, during the last two decades, crop rotation has ceased to be effective in an expanding area of the US corn belt. This failure appears to be due to a change in the insect's oviposition behaviour, which, in all probability, has an underlying genetic basis. A preliminary genome scan using 253 amplified fragment-length polymorphism (AFLP) markers sought to identify genetic variation associated with the circumvention of crop rotation. Samples of D. v. virgifera from east-central Illinois, where crop rotation is ineffective, were compared with samples from Iowa at locations that the behavioural variant has yet to reach. A single AFLP marker showed signs of having been influenced by selection for the circumvention of crop rotation. However, this marker was not diagnostic. The lack of markers strongly associated with the trait may be due to an insufficient density of marker coverage throughout the genome. A weak but significant general heterogeneity was observed between the Illinois and Iowa samples at microsatellite loci and AFLP markers. This has not been detected in previous population genetic studies of D. v. virgifera and may indicate a reduction in gene flow between variant and wild-type beetles.