Content uploaded by Wei Zhang
Author content
All content in this area was uploaded by Wei Zhang on May 08, 2018
Content may be subject to copyright.
地理研究
GEOGRAPHICAL RESEARCH
第34卷 第 4期
2015年4月
Vol.34, No.4
April, 2015
北部湾防城港沿岸土壤 137Cs背景值及
表层分布特征
徐 伟 1,潘少明 1,贾培宏 1,杨 旭 1,曹立国 1,
张 威 1,阮向东 2,管永精 2
(1. 南京大学地理与海洋科学学院,南京 210023;2. 广西大学物理科学与工程技术学院,南宁 530004)
摘要:在北部湾防城港沿岸采集土壤样品,通过测量样品137Cs比活度及有机质含量,确定了
137Cs背景值,分析表层土壤中 137Cs分布特征,并探讨样品中 137Cs活度与有机质含量的关系。结
果表明:研究区土壤中 137Cs背景值为 626±15 Bq/m2,自然因素和人为活动对 137Cs在海岸带表层
土壤中的再分配起到重要作用,不同表层样中 137Cs比活度高低表现为:自然林地>水稻田>旱
田>草地>河口海湾。把研究区土壤表层样及P01剖面样中 137Cs含量与有机质含量进行相关
性分析,结果表明:两者相关性显著,相关系数分别为 0.414和0.732。通过探讨研究区 137Cs 背
景值及沿岸表层土壤 137Cs分布特征,可为进一步定量研究北部湾沿岸土壤侵蚀和堆积状况以
及评价防城港红沙核电站运行后对环境的影响提供科学依据。
关键词:137Cs背景值;表层土壤 137Cs分布;有机质含量;大气沉降;北部湾;防城港
DOI: 10.11821/dlyj201504005
1引言
物质向海洋输送途径主要有大气沉降和陆地径流,在河口海湾及近岸环境中,陆地
径流物质的输入有着举足轻重的作用,而土壤侵蚀则是陆地径流为海洋输送物质的主要
形式,也是急待解决的世界性环境问题。了解土壤的迁移过程及侵蚀速率是治理土壤侵
蚀的基础[1,2]。137Cs示踪法因能快速、相对简便地估算土壤侵蚀量而在土壤侵蚀定量研究
中得到广泛应用。背景值获取是 137Cs示踪法的关键和基础[3]。
国内已知 137Cs背景值的地区主要包括黄土高原、青藏高原、新疆、四川盆地 (包括
三峡地区)、云贵高原、华东华南低山丘陵区 (包括香港) 和台湾省[4]。目前,中国南海
地区 137Cs 的迁移数据相对较少,研究主要集中在珠江口、大亚湾及南海东北部部分海
域,国内暂无北部湾沿岸区域 137Cs背景值的报道。
以北部湾防城港沿岸土壤为研究对象,确定研究区的 137Cs背景值,并分析沿岸表层
土壤中的 137Cs分布特征,且探讨土壤样品中 137Cs活度与有机质含量的关系,为北部湾防
城港沿岸区域土壤侵蚀和堆积状况的定量研究以及防城港红沙核电站运行后的环境影响
评价提供科学依据。
收稿日期:2014-11-21; 修订日期:2015-01-05
基金项目:国家自然科学基金项目 (41166002, 41271289);国家自然科学基金重点项目 (41230751)
作者简介:徐伟 (1989-),男,安徽六安人,硕士,主要从事放射性核素的应用研究。
E-mail: xuwei_ne@163.com
通讯作者:潘少明 (1957-),男,江苏南京人,教授,主要从事海洋沉积与地球化学研究。E-mail: span@nju.edu.cn
655-665页
地理研究 34卷
2研究区概况
北部湾是中国南海的一大海湾,北、东、西三面靠陆,为半封闭式的海湾,面积为
12.7万km2。北部湾北部为广西海岸,东临广东雷州半岛及海南西部,西临越南东北部地
区,南面与南海相连[5,6]。北部湾地处热带高纬度地区,从与广东接壤的英罗港至中越边界
的北仑河口,海岸线全长 1595 km[7]。湾内最大水深 106 m,平均水深 38 m,水域面积约
13万km2。北部湾的河流主要有北仑河、防城河、茅岭江、钦江、大风江和南流江等六
条较大河流,海湾类型以侵蚀型海岸为主。气候属南亚热带季风型海洋性气候,主要受
季风环流的影响。降水量的地理分布特点是西部多于东部。
海岸带是陆地和海洋之间的过渡地带,目前已成为多学科研究的焦点和热点区域[8]。
本文研究区域位于广西北部湾防城港沿岸,海岸线长约 341.5 km。研究区地貌主要以低
山、丘陵及滨海平原、台地为主,海拔多在 50~500 m之间,沿海地带地形破碎,岸线曲
折,有港湾、沙坝及沙滩发育[9]。区内土壤类型主要为砖红壤、赤红壤,沿海区域有滨海
沙土及沼泽土,耕作土壤主要为水稻土及旱地耕作土。植被主要是以常绿阔叶类为主的
乔木林[10]。研究区土地主要有林地、耕地、建设用地及滩涂四种利用类型,其中林地、
耕地分布最为广泛,建设用地集中于防城港沿岸码头区域。
3研究材料与研究方法
3.1 样品采集
2012年7月,于北部湾地区的防城港、钦州及北海等地采集多个土壤样品,其中防
城港沿岸,特别是红沙核电站周边及钦州湾西岸为主要采样区域 (图 1)。总共采得 55个
表层样和 1个剖面样。表层样主要采集土壤表层 0~5 cm,采集的土壤环境包括水稻田、
旱田、自然林地、草地、红树林、沙滩、河口海湾等。
标准剖面的采样点位于防城港市光坡镇火筒径村(21°42′58″N、108°31′59″E)。采集的
土壤环境为非耕作旱地,土壤类型为砖红壤。采样深度为40 cm,0~30 cm段以 2 cm间距
分样,30~40 cm以5 cm间距分样,并用环刀法同步测定不同土层的土壤容重。该处位于
低矮丘陵顶部的开阔平坦地带,地表植被覆盖率高,主要为高大密实的乔木林,且无水
流经过。与当地年长居民沟通得知,自 1950年代以来,该处植物生长基本不受人类活动
的干扰。因此,该点土壤中的 137Cs受物理过程影响的概率极低,可作为背景值的参考点。
3.2 样品测试
样品采集完后,带回实验室分别进行粒度分析、137Cs比活度分析及有机质分析。
使用英国 Malvern公司 Mastersize 2000型激光粒度仪进行粒度测量 (仪器的测量范围
为0.02~2000 μm,重复测量误差<3%)。对 P01 柱状样的全部样品及47个表层样做了粒
度测量,取自沙滩的 8个样品由于颗粒较粗,未做粒度测量。
对采集的样品进行烘干,并研磨均匀后制成粉末状干样,各取样品约60 g左右,用美
国ORTEC公司生产的GMX30P-A高纯Ge同轴探测器测量137Cs的放射性活度。137Cs标准源
由加拿大Bedford海洋研究所提供,放射性比活度为 700.2 Bq/kg(标准源参考时间为2012
年11月3日),重 65.4 g,测量时间为 20小时,并且使用 IAEA-327标样进行比对校正。
有机质的测定采用重铬酸钾容量法。在加热的条件下,用过量已知浓度的过氧化剂
(K2Cr2O7
) 氧化土壤有机质中的碳,剩余的过氧化剂用硫酸亚铁 (FeSO4
) 标准溶液滴
定,根据过氧化剂消耗的量计算出有机碳量,再换算成土壤有机质含量[11]。
656
4期 徐 伟 等:北部湾防城港沿岸土壤137Cs背景值及表层分布特征
3.3 研究方法
3.3.1 137Cs比活度的计算 使用相对法测量 137Cs比活度,计算公式如下:
Qx=Ax
A0×m0
mx×tx
t0
∙Q0(1)
式中: Q0为标准样比活度; m0为标准样质量; t0为计数时间; A0为面积; Qx为待测
样的比活度; mx为待测样的质量; tx为计数时间; Ax为面积。
标准样比活度 Q0为1160 Bq/kg(1990年1月1日),衰变校正至2012年为700.2 Bq/kg;
m0为65.4 g;A0为131823±381(2012年测得);计数时间 tx与t0均为 20小时。
3.3.2 标准剖面中 137Cs总量的计算 标准剖面中的137Cs蓄积总量用以下公式[12]计算:
CPI=∑
i=1
nCi×Bi×Di(2)
式中: CPI (
137Cs point inventory) 是采样站位点的 137Cs 总量 (Bq/m2
); i为层序号; n
为采样层数; Ci为第 i采样层中 137Cs的比活度 (Bq/kg),即式 (1) 中的 Qx;Bi为第 i
采样层的土壤容重 (kg/m3
); Di为第 i采样层的厚度 (m)。
4结果分析
4.1 标准剖面 137Cs总量
经计算得出 P01标准剖面的 137Cs 蓄积总量为 626±15 Bq/m2。剖面中的 137Cs主要分布
在30 cm以内,其中,0~10 cm的137Cs 总含量为 5.48 Bq/kg,占整个剖面含量的 65.7%。
图1研究区位置及采样点站位
Fig. 1 Location of the study area and sampling sites
657
地理研究 34卷
如图 2所示,10 cm 以下 137Cs含量较
低,其中 15~30 cm 的分布较为均
匀,30 cm以下已检测不出 137Cs。采
用OriginPro 8.0软件计算得出:剖面
各深度比活度与其变异系数存在指数
关系,用指数方程 y=aebx 拟合得出 y=
4.99e-0.16 x,由此可见,标准剖面 P01
柱样中的 137Cs比活度以指数形式随深
度递减。由图 2可知,P01柱样的土
壤颗粒以粉砂为主,为 59.8% ~
73.3% ;其次是粘土,为 18.9% ~
23.6%;细砂的含量极少,为 3.8%~
21.3%。各组分的比例基本保持稳
定,因此 P01剖面样中的 137Cs 分布与
粘土含量无关。
4.2 表层样 137Cs含量
沿岸总共采集 55 个表层样,耕
地样点总数最多,为 24 个,自然林
地为 7个,草地为 7个,滩涂为 17个。在耕地样点中,水稻田占 13 个,旱田占 11个;滩
涂样点中,沙滩为 8个,河口海湾为 9个。各个表层样的137Cs比活度见表 1。
沙滩样点的样品皆为粗砂,圆形及亚圆形,分选性较好。如表 1所示,沙滩样品仅
作为这次采样的一个参考,受粒度影响,未能检测出 137Cs。其他土地利用类型的土壤也
有多个表层样的 137Cs比活度为 0,这些样品的颗粒组分如表 2所示。这些样品中,除河口
海湾的样品 (45号、47 号和 49号) 外,其余样品的粗颗粒物质含量均较多,可能是受粒
度的影响,因此这些样品中 137Cs比活度较低而未能达到检测的下限。本研究主要讨论不
受粒度影响的表层样的 137Cs比活度的分布情况,因此在算取各种土地利用类型的 137Cs活
度均值与变异系数时,去除了 137Cs比活度为 0的样品。
耕地表层样的数量最多,137Cs比活度总体较高,变化范围亦较大。研究区的耕地类
型可分为水稻田和旱田两种,其中水稻田的 137Cs比活度范围在 0.34~3.88 Bq/kg,平均值
约为2.43 Bq/kg,比活度的变异系数为0.48。而旱田的137Cs比活度总体比水稻田低,范围在
0.1~2.61 Bq/kg,平均值约为1.41 Bq/kg,比活度的变异系数比水稻田大,为0.59。
自然林地的 137Cs 比活度总体最高,范围在 0.79~3.95 Bq/kg,平均值约 2.62 Bq/kg。
比活度的变异系数为 0.42,在所有土地利用类型中最小。在所采集的 7个样品中,37号
样品的 137Cs比活度仅为 0.79±0.27 Bq/kg,远小于其他样品,这可能是由于此处样点位于
人工码头旁边,码头的建设加剧了该样点的土壤侵蚀,尤其是细颗粒物质的流失,导致
土壤中所吸附的 137Cs的含量较低,因而该表层样的 137Cs比活度较低。除此之外,自然林
地中其他样品的 137Cs比活度分布较为均匀。
在草地表层样中,137Cs比活度总体偏低,比活度范围在 0.45~2.77 Bq/kg,平均值约
为1.37 Bq/kg,比活度的变异系数为0.85,是三种土地利用类型中的最高值,这主要是由于
草地的5个有效表层样中,比活度为“二大三小”,分布极不均匀。11号采样点旁有溪流,
而12号和 24号三个表层样采样点分别位于养鸡场、防城港核电站周围,可能是由于受到
水流或人为的干扰,致使这些区域的表层土壤流失了较多的 137Cs。
图2 P01标准剖面的 137Cs分布特征及颗粒组分
Fig. 2 The distribution of 137Cs and grain components
in the reference profile
658
4期 徐 伟 等:北部湾防城港沿岸土壤137Cs背景值及表层分布特征
河口海湾样品中,细沙含量为 12.7% ~
40.1%,粉沙含量为 46.3%~72.1%,粘土含量为
10.8%~18.3%。该 组样品 137Cs比活度极低,平均
值约为 0.42 Bq/kg,仅有 51号样品的 137Cs活度较
高,为 2.55±0.30 Bq/kg,这可能与采样点位置正
在建设一个居住地有关,由于开垦使得该处的山
坡上冲下较多的红色泥土。其他样点采集的表层
样都只能监测到微量的 137Cs。该组样品 137Cs比活
度低的原因可能是与粒径及流水侵蚀有关。此
外,137Cs比活度的变异系数为 1.94,属于强变异
范围,这主要是由于 51号 的 137Cs比活度值远高
于平均值造成的。
根据表层样中的 137Cs 比活度分布可知,土
壤表层样中的 137Cs分布有一定的空间差异,比活度值的高低具体表现为:自然林地>水
稻田>旱田>草地>河口海湾。
表1表层样 137Cs比活度
Tab. 1 137Cs activity in surface samples
土地利用
类型
耕地—
水稻田
耕地—
旱田
样品
编号
1
2
3
6
9
20
23
28
29
32
35
36
41
平均值
5
8
13
17
21
22
39
40
30
16
18
平均值
比活度
(Bq/kg)
3.55±0.33
3.78±0.30
3.02±0.29
1.96±0.26
1.99±0.27
2.62±0.29
2.14±0.30
0.68±0.25
0.34±0.09
0
3.88±0.27
0
2.80±0.26
2.43±0.28
1.63±0.22
1.41±0.24
0
0
1.23±0.28
2.10±0.28
0.1±0.04
0
0.76±0.25
0
2.61±0.28
1.41±0.26
土地利用
类型
自然
林地
草地
滩涂—
沙滩
样品
编号
4
31
37
43
48
33
34
平均值
10
11
12
15
24
25
27
平均值
7
14
19
26
38
42
50
54
平均值
比活度
(Bq/kg)
3.02±0.29
2.87±0.28
0.79±0.27
2.52±0.23
3.57±0.27
1.59±0.28
3.95±0.31
2.62±0.28
0
0.45±0.24
0.66±0.21
2.77±0.27
0.68±0.23
2.30±0.30
0
1.37±0.18
0
0
0
0
0
0
0
0
0
土地利用
类型
滩涂—
河口海湾
样品
编号
44
45
46
47
49
51
52
53
55
平均值
比活度
(Bq/kg)
0.09±0.26
0
0.04±0.27
0
0
2.55±0.30
0.45±0.25
0.34±0.28
0.33±0.145
0.42±0.17
表2表层样颗粒组分(%)
Tab. 2 Grain components in surface samples (%)
样品编号
10
13
16
17
27
32
36
40
45
47
49
细砂
49.7
39.4
43.7
42.5
42.6
41.2
44.5
46.0
14.1
15.7
22.6
粉砂
44.5
52.6
47.9
48.0
46.9
49.3
47.5
43.7
67.6
67.7
61.9
粘土
5.8
8.0
8.4
8.5
10.5
9.5
8.0
10.3
18.3
16.7
15.5
659
地理研究 34卷
4.3 土壤样品有机质含量
63个土壤样品的有机质含量范围在
1.13~74.97 g/kg,其中 56~63 号样品为
P01标准剖面样。由图 3可知,有机质含
量百分比变动于 0.11%~7.5%间,且主要
分布在 1%~3%之间 (30 个样品)。有机
质含量百分比大于3%的样品主要分布在
耕地、自然林地和河口海湾,其中,1号
和6号有机质含量分别为 74.97 g/kg 和
73.73 g/kg,远大于其他样品,而草地表
层样的有机质含量均偏低。P01 剖面样
有机质含 量 均较低 (4.76~10.89 g/kg),
其有机质含量百分比最高仅为 1.09%。
5讨论
5.1 北部湾防城港沿岸土壤中的 137Cs背景值
研究区位于北部湾防城港沿岸,采样区包括防城港、钦州、北海三个城市,正在建
设的红沙核电站位于防城港市港口区光坡镇,而目前国内暂无报道北部湾沿岸区域具体
的137Cs背景值。P01标准剖面样采于防城港红沙核电站周围,根据以上的计算可知,P01
标准剖面的 137Cs蓄积总量为 626±15 Bq/m2,即为北部湾防城港沿岸 137Cs背景值。
根据 Michio Aoyama 等[13]绘制的全球 10°×10°137Cs总沉降分布图 (截至 1970 年1月1
日),选取图上距 P01标准剖面样 (21°42′58″N、108°31′59″E) 最近 的 4个点位,沉降总
量分别为 1460 Bq/m2(25°N、105°E),1110 Bq/m2(25°N、115°E),1110 Bq/m2(15°N、
105°E) 和 1670 Bq/m2(15°N、115°E)。 根据 4个点位的沉降情况,利用插值法可得出
P01标准 剖面样位置的沉降量在 1320~1390 Bq/m2区间。经衰变校正至 2012年11 月1日,
可得研究区137Cs的总沉降量大约在 504~530 Bq/m2区间,与 P01柱样计算所得的 137Cs 蓄积
总量 (626±15 Bq/m2
) 相差不大。由于 Aoyama等计算的数据是基于1970年前的 137Cs沉
降数据计算的,有研究表明,截至 1970 年,全球137Cs 的大气沉降量约占总沉降量的
81.79%[14,15],这也导致了插值所得的结
果应比实际总沉降值略小。因此,P01
标准剖面样的 137Cs 蓄积总量结果是合
理的。
在全球范围内,137Cs的分布与纬度
有关,且在相同的纬度带或者某区域
内,137Cs的沉降量与降雨量密切相关,
同纬度圈中的 137Cs 沉降量与其降水量
基本呈正相关关系。研究区 (21.7°N、
108.5°E) 位于热带高纬度地区,137Cs
的背景值为 626±15 Bq/m2,将此背景值
与国内相同纬度带区域 (均衰变校正至
2012 年) 进行比较[16,17]。如图 4所示 ,
图3土壤样品中有机质含量
Fig. 3 Percentages of organic matter contents in soil samples
图4防城港同纬度带区域137Cs背景值与年均降雨量对比
Fig. 4 Comparison of 137Cs reference inventory and average
annual rainfall at the same latitude of Fangchenggang
660
4期 徐 伟 等:北部湾防城港沿岸土壤137Cs背景值及表层分布特征
香港地区长洲岛 (22.2°N、114.0°E) 的背景值为 314.6 Bq/m2,低于研究区的背景值;而
香港地区大帽山 (22.4°N、114.2E°) 的背景值为 873.9 Bq/m2,台湾地区南仁山 (22.1°
N、120.9°E) 的背景值为 850.4 Bq/m2,均大于研究区的背景值;而香港地区北潭 (22.4°
N、114.4°E) 的背景值为 634.8 Bq/m2,接近于研究区的背景值。防城港市的年均降雨量
为2136 mm,长洲岛、大帽山、南仁山、北潭的年均降雨量分别为 1757mm、3126 mm、
3300mm、2400 mm。对比可 知,研究区 的 137Cs背景值与这些地区背景值的差异,与其降
水量的差异情况基本一致,说明研究区的137Cs背景值符合北半球137Cs的沉降情况。
另外,在不同纬度带之间,台风等气候因素、地区地理位置的特殊性也可能会成为
影响 137Cs沉降的主要因素。
5.2 北部湾防城港沿岸表层土壤中的 137Cs分布特征
137Cs经干湿沉降到达地表后,迅速被土壤中的细颗粒物质所吸附,在土壤表层形成
一层活度极高的 137Cs富集层。然而,由于表层土壤物质中的 137Cs活度极高,轻微的侵蚀
即可造成 137Cs较大的损失,而轻微的沉积则导致表层有更多的 137Cs 富集。当 137Cs扩散到
一定的程度时,其堆积部位的表层 137Cs比活度最高[18]。
对于耕作土和非耕作土而言,土壤质地和其他土壤性质有着明显差异。长期的耕作
活动会导致耕作土壤中的 137Cs分布较深[19],且研究发现,在非农耕地里,137Cs 集中分布
在10 cm的表层土壤中,而 137Cs 在水稻田内呈均匀分布,且主要分布在耕层 20 cm 内,
所以对于耕作土壤而言,其表层的 137Cs活度会有一定程度上的流失,因此研究区耕地表
层土壤中的 137Cs比活度较低。其中旱田表层的 137Cs比活度小于水稻田,这可能是由于旱
田耕作环境的不封闭性,使得其更容易受到风力侵蚀和雨水冲刷等侵蚀作用的影响。自
然林地受人为干扰的程度小,植被覆盖率高,因而土壤表层的 137Cs不容易流失,甚至形
成净沉积,所以自然林地的土壤表层 137Cs比活度较高 (均值约为 2.62 Bq/kg)。草地表层
的植被覆盖率高,137Cs本应不易流失而在草地表层大量富集形成较高的 137Cs 比活度层,
但是由于部分采样点区域受水流或人为因素干扰,导致这些区域的土壤表层中 137Cs发生
较大程度流失。这说明自然因素和人为活动对 137Cs在土壤中的再分配起到重要的作用[20]。
河口海湾采集的样品中 137Cs活度偏小,甚至接近于 0,这可能与采样点位置及样品
的粒径及流水的侵蚀有关。44~47号样品均采于北仑河口,站位相近,粒度测试得出样
品中的细砂含量超过 40%,可能是因颗粒较粗而导致 137Cs核素吸附受影响。49号和 55 号
样品分别采于公园附近的湾内和潮水闸口,可能是受人工建设的影响,导致 137Cs活度极
小。52号和 53号样品采于北海银滩附近的红树林内,样品的颗粒较细,且这一区域受人
为因素的干扰较小,137Cs活度偏低可能是由于河水的侵蚀及潮流的扰动造所成的。河口
海湾中,仅有 51号样品的 137Cs活度较高,为 2.55±0.30 Bq/kg,这可能与采样点位置的山
坡上冲下较多的红色泥土有关。因此,自然因素和人为建设同样会影响到水底沉积物的
137Cs活度分布。
5.3 北部湾防城港沿岸 137Cs比活度与有机质的关系
放射性核素 137Cs沉降到地表后,主要被土壤中的粘土矿物及有机质所吸附,因此,
土壤中的有机质含量与137Cs含量有一定的相关性[21]。 图 5为137Cs比活度及有机质百分比
在表层样与 P01标准剖面样中的分布图 (不包含比活度为 0的表层样)。研究区表层样的
137Cs比活度与有机质百分比存在较为一致的变化关系,利用 SPSS软件对比活度与有机质
百分比进行相关分析得出,两者的相关性显著 (P<0.05),但相关系数仅为 0.414,相关
度较低。而 P01标准剖面样的比活度与有机质百分比在 20~25 cm区间存在较不一致的变
化趋势,这与该层样品的有机质百分比较高有关,其他深度的变化趋势基本一致,同理
661
地理研究 34卷
利用 SPSS软件对比活度与有机质百分比进行相关分析得出,两者存在显著正相关 (P<
0.05),相关系数为 0.732。
在小流域的研究中,多位学者均认为土壤中的 137Cs含量与有机质呈显著相关,尤其
是在 0~10 cm的表层土壤[22],即使是有机质含量较低的黄土高原,有研究也表明两者呈
显著相关,相关系数为0.791。De Jong E等研究也得出相同的结论[23]。另外,Turnage K
M等研究表明,大部分137Cs吸附在土壤表面有机质层,被有机质紧密吸附,表土层以下
137Cs活度随着有机质含量的下降而下降[24]。但贺国良等对紫色土的研究却发现,137Cs 与
有机质并没有显著的相关关系[25],Tang等对中国红壤区的研究也得出了相似的结论[26],
可见各地土壤中的 137Cs与有机质含量的研究结论各不相同。而研究区土壤的 137Cs含量与
有机质含量则存在正相关关系。
6结论
通过对北部湾防城港沿岸样品进行 137Cs比活度、粒度和有机质分析,结合前人的研
究,重点讨论了研究区137Cs的背景值及表层土壤中的分布特征、137Cs 比活度与有机质含
量的相关性,得出以下结论:
(1) 标准剖面 P01柱样中的 137Cs 蓄积总量为 626±15 Bq/m2,且柱样中的 137Cs 比活度
以指数形式随深度递减。通过对比全球137Cs总沉降分布图,并把研究区的降雨量与 137Cs
蓄积总量同国内多个地区进行比较,确定了北部湾防城港沿岸土壤中的 137Cs背景值为
626±15 Bq/m2。
(2) 与国内多个地区 137Cs的背景值对比可知,同纬度带区域中的 137Cs 背景值的差异
主要受降雨量的影响。
图5137Cs比活度与有机质含量百分比在表层样 (a)与标准剖面样 (b) 中的对比
Fig. 5 Compare of 137Cs activity and organic matter contents in surface (a) and reference profile (b) samples
662
4期 徐 伟 等:北部湾防城港沿岸土壤137Cs背景值及表层分布特征
(3) 自然因素和人为活动对 137Cs 在海岸带土壤及沉积物中的再分配起到重要的作
用,不同的表层样中 137Cs比活度值的高低具体表现为:自然林地>水稻田>旱田>草地
>河口海湾。
(4) 研究区土壤表层样及 P01柱样中的 137Cs 含量与有机质含量存在正相关关系,土
壤表层样的相关度较低,而 P01柱样的相关度较高。
参考文献(References)
[1]张金良,于志刚,张经,等.黄海西部大气湿沉降(降水)中各元素沉降通量的初步研究.环境化学, 2000, 19(4): 352-
356. [Zhang Jinliang, Yu Zhigang, Zhang Jing, et al. Wet deposition (precipitation) of major elements at two sites of
northwestern Yellow Sea. Environmental Chemistry, 2000, 19(4): 352-356.]
[2]李占斌,朱冰冰,李鹏.土壤侵蚀与水土保持研究进展.土壤学报, 2008, 45(5): 802-809. [Li Zhanbin, Zhu Bingbing,
Li Peng. Advancement in study on soil erosion and soil and water conservation. Acta Pedologica Sinica, 2008, 45(5):
802-809.]
[3]刘宇,吕一河,傅伯杰,等.137Cs示踪法土壤侵蚀量估算的本底值问题.地理研究, 2010, 29(7): 1171-1181. [LiuYu, Lv
Yihe, Fu Bojie, et al. Reference value of 137Cs tracing technique in soil loss estimation:A spatial variation analysis. Geo-
graphical Research, 2010, 29(7): 1171-1181.]
[4]齐永青,张信宝,贺秀斌,等.中国 137Cs本底值区域分布研究.核技术, 2006, 29(1): 42-50. [Qi Yongqing, Zhang Xin-
bao, He Xiubin, et al. 137Cs reference inventories distribution pattern in China. Nuclear Techniquest, 2006, 29(1): 42-50.]
[5]谭光华.北部湾海区水文结构及其特征的初步分析.海洋湖沼通报, 1987, 9(4): 7-15. [Tan Guanghua. Preliminary
analysis of hydrologic structure and hydrologic feature in the sea region of the Beibu Gulf. Transactions of Oceanology
and Limnology, 1987, 9(4): 7-15.]
[6]秦曾灏,刘凤珍.北部湾中平台海域热带气旋的气候特征.海岸工程, 1990, 9(1): 67-74. [Qin Zenghao, Liu Feng-
zheng. The climatological characteristics of tropical cyclones impinging on the Gulf of Beibu. Coastal Engineering,
1990, 9(1): 67-74.]
[7]苏志,余韦东,黄理,等.北部湾海岸带的地理环境及其对气候的影响.气象研究与应用, 2009, 30(3): 44-47. [Su Zhi,
Yu Weidong, Huang Li, et al. Geographical environment of the Beibu Gulf coast and its impact on the climate. Journal
of Meteorological Research and Application, 2009, 30(3): 44-47.]
[8]侯西勇,徐新良. 21世纪初中国海岸带土地利用空间格局特征.地理研究, 2011, 30(8): 1370-1379. [Hou Xiyong, Xu
Xinliang. Spatial patterns of land use in coastal zones of China in the early 21st century. Geographical Research, 2011,
30(8): 1370-1379.]
[9]王 倩.防城港海岸带景观格局变化研究.南宁:广西大学硕士学位论文, 2013. [Wang Qian. The research about the
changes on landscape pattern in Fangchenggang coastal zone. Guangxi: Master Dissertation of Guangxi University,
2013.]
[10] 陆益新,梁畴芬.广西植物地理的基本情况和基本特征.广西植物, 1983, 3(3): 153-165. [Lu Yixin, Liang Choufen.
General information and fundamental features of plant geography of Guangxi. Guihaia, 1983, 3(3): 153-165.]
[11] 刘志强.黄土高原137Cs 背景值空间分布特征与影响因素研究.北京:中国科学院研究生院硕士学位论文, 2009. [Liu
Zhiqiang. The spatial distribution of 137Cs reference inventory and its influence factors on the Loess Plateau. Beijing:
Master Dissertation of Graduate University of Chinese Academy of Sciences, 2009.]
[12] Sutherland R A, De Jong E. Estimation of sediment redistribution within agricultural fields using Caesium-137, Crystal
Springs, Saskatchewan, Canada. Applied Geography, 1990, 10(3): 205-221.
[13] Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137Cs fall-
out. Journal of Environment Monitoring, 2006, 7(4): 431-438.
[14] Kachanoski R G, Jong E. Predicting the temporal relationship between soil caesium-137 and erosion rate. Journal of En-
vironmental Quality, 1984, 13(2): 301-304.
[15] 何坚,潘少明.辽东湾沿岸土壤中 137Cs背景值及分布特征研究.水土保持学报, 2011, 25(3): 169-173. [He Jian, Pan
Shaoming. 137Cs reference inventory and its distribution in soils along the Liaodong Bay. Journal of Soil and Water Con-
servation, 2011, 25(3): 169-173.]
[16] Ruse M E, Peart M R. 137Cs reference site characteristics in Hong Kong: Some considerations. Physics and Chemistry of
the Earth, Part A: Solid Earth and Geodesy, 1999, 24(10): 887-891.
[17] AHuh C, C Su C. Distribution of fallout radionuclides (7Be,137Cs,210Pb and 239,240Pu) in soils of Taiwan. Journal of Environ-
663
地理研究 34卷
mental Radioactivity, 2004, 77(1): 87-100.
[18] 张春来,邹学勇,董光荣,等.干草原地区土壤 137Cs 沉积特征.科学通报, 2002, 47(3): 221-225. [Zhang Chunlai, Zou
Xueyong, Dong Guangrong, et al. Deposit characteristics of 137Cs in soil of steppe region. Chinese Science Bulletin,
2002, 47(3): 221-225.]
[19] 唐翔宇,杨浩,曹慧,等.137Cs 法估算南方红壤地区土壤侵蚀作用的初步研究.水土保持学报, 2001, 15(3): 4-11.
[Tang Xiangyu, Yang Hao, Cao Hui, et al. Preliminary estimate of soil erosion rate in haplic red soil in Southern China
using 137Cs technique. Journal of Soil Water Conservation, 2001, 15(3): 4-11.]
[20] 张明礼,杨浩,王小雷,等.中国季风区土壤137Cs 背景值研究.核农学报, 2009, 23(4): 669-675. [Zhang Mingli, Yang
Hao, Wang Xiaolei, et al. Soil 137Cs background values in monsoon region of China. Journal of Nuclear Agricultural Sci-
ences, 2009, 23(4): 669-675.]
[21] 刘志强,杨明义,刘普灵,等.137Cs示踪技术背景值研究进展与建议.核农学报, 2008, 22(6): 913-917. [Liu Zhiqiang,
Yang Mingyi, Liu Puling, et al. Progress and suggestions on the investigation of 137Cs reference inventory. Journal of Nu-
clear Agricultural Sciences, 2008, 22(6): 913-917.]
[22] Quang N H, Long N Q, Lieu D B, et al. 239+240Pu, 90Sr and 137Cs inventories in surface soils of Vietnam. Journal of Environ-
mental Radioactivity, 2004, 75(3): 329-337.
[23] De Jong E, Wang C, Rees H W. Soil redistribution on three cultivated New Brunswick hillslopes calculated form 137Cs
measurements, solum data and the USLE. Canadian Journal of Soil Science, 1986, 66(4): 721-730.
[24] Turnage K M, Lee S Y, Foss J E, et al. Comparison of soil erosion and deposition rates using radiocesium, RUSLE, and
buried soils in dolines in East Tennessee. Environmental Geology, 1997, 29(1-2): 1-10.
[25] 贺良国,张一云,李家柱,等.紫色土草地表层土壤137Cs含量与粒度和有机质的相关性研究.水土保持通报, 2007, 27
(2): 43-45. [He Liangguo, Zhang Yiyun, Li Jiazhu. Relationship between 137Cs activities and soil particle size in purple
surface soil on grass land. Bulletin of Soil and Water Conservation, 2007, 27(2): 43-45.]
[26] Tang Xiangyu,Yang Hao, Zhao Qiguo, et al. 137Cs depth distribution in Haplic-Udic Ferrosols of Southern China and its
implication for soil erosion. Soil Science, 2002, 167(2): 147-163.
664
4期 徐 伟 等:北部湾防城港沿岸土壤137Cs背景值及表层分布特征
137Cs reference inventory and its distribution in surface soil
along the Fangchenggang coastal zone of Beibu Gulf
XU Wei1, PAN Shaoming1, JIA Peihong1, YANG Xu1, CAO Liguo1,
ZHANG Wei1, RUAN Xiangdong2, GUAN Yongjing2
(1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China;
2. Physics Science and Engineering Technology Department, Guangxi University, Nanning 530004, China)
Abstract: The background values of 137Cs along the coast of the Beibu Gulf have not been
sufficiently presented in China so far. This thesis collected 55 surface samples and 1 profile
sample in the Beibu Gulf. The specific activity of 137Cs and organic contents of individual
sample were tested and the accumulation amount of 137Cs in the section sample was calculated.
The background value of 137Cs in the research area was finally determined. The thesis also
analyzed the distribution features of 137Cs in surface soil along the Fangchenggang coastal zone
of the Beibu Gulf. The relationship between the specific activity of 137Cs and organic contents
in the sample soil was discussed as well. The findings showed that the background value of
137Cs in the soil of the research area was 626±15 Bq/m2, and the atmospheric precipitation of
137Cs accorded with the precipitation condition of 137Cs in the northern hemisphere. By
comparing the background values of 137Cs in multiple places within China, it is suggested that
the variance among the background values of 137Cs in regions at the same latitude can mainly be
attributed to rainfall. Moreover, the spacial distribution variance of latitude zone, climate
factors like typhoon and the particularity of geographic position also have great potential to
influence the precipitation of 137Cs. The research on the specific activity of the surface samples
and the distribution of sampling sites suggested that natural factors and human activities played
an important role in the redistribution of 137Cs in soil. The specific activity of 137Cs in different
surface samples exhibited the following order from high to low: natural forest land, paddy
field, dry land, grassland, and estuary and gulf. APearson’s correlation analysis was conducted
and significant corelation was found between the values of 137Cs content and organic contents in
the surface samples and P01 sediment core, with the corelation coefficients being respectively
0.414 and 0.732.
Discussing the background value of 137Cs in the Fangchenggang coastal zone of the Beibu
Gulf and the distribution features of 137Cs in surface soil along the coast can promote further
quantitative research on soil erosion and accumulation along the coast of the Beibu Gulf as well
as provide scientific evidence for the evaluation of the environmental impact of the Red Sand
Plant.
Keywords: 137Cs reference inventory; 137Cs distribution in surface soil; organic content;
atmospheric precipitation; Beibu Gulf; Fangchenggang
665