Content uploaded by Claudio Aguiar
Author content
All content in this area was uploaded by Claudio Aguiar on May 19, 2016
Content may be subject to copyright.
FocusingonModernFoodIndustryVolume4,2015www.fmfi‐journal.org
doi:10.14355/fmfi.2015.04.001
1
FactorsAffectingColorFormationDuring
StorageofWhiteCrystalSugar
ClaudioLimadeAguiar,AnaLauraBodoniRocha,JéssicaRodriguesJambassi,AntonioSampaio
BaptistaandRobertaBergaminLima
UniversidadedeSãoPaulo,ESALQ‐USP,DepartamentodeAgroindústria,AlimentoseNutrição,SetordeAçúcar
eÁlcool,LaboratórioHugotdeTecnologiaemSucroderivados,Piracicaba,SP.,Brasil.
Abstract
Therearemanyreportsofproblemscausedbyincorrectstorageofsugarproduction‐hardening,caking,dimming,lossesand
fires.Giventheimportanceofcrystalsugar,oneofthemainsugarcane‐basedproductsinLatinAmericaoraroundtheWorld,
thereisagrowingrealizationofworktoincreaseefficiencyandavoidlossesinthemanufacturing.However,during
sugarstorage,itisknownthatenvironmentalfactors(temperature,humidity,lightandweather)influencethequalityofthe
finalproduct–severaltypesofcrystalsugars,suchas:veryhighpolarization(VHP);very‐veryhighpolarization(V‐
VHP),andwhites–Types1,2,3or4.Duringstorage,thetemperaturemustbenotexceedand/orsensitivetovariations.The
optimumrelativehumidityis55‐65%withthemaximumequilibriummoistureat65%.Thisworkaimedtoassesswhichfactors
areimportanttoaccentuatethecolorduringthestorageprocess(specially,ICUMSAcolorandsucrosehydrolysis)ofwhite
sugar(Type1).TheresultsoftheamountsofreducingsugarsandICUMSAcolorwereevaluatedbytheresponse
surface.Itwasconcludedthattherewerechangesintheamountsofreducingsugars,sucroseandICUMSAcolorin
theanalyzedsamples,thatmoistureisthemostdecisivefactor.Therefore,itbecameclearthatyoushouldavoidsuch
conditionsofhighhumidityandtemperatureinstoragesugar,inordertopreservethequality,whichishighlyperishable.
Keywords
Sugar,Sucrose,Storage,Humidity,Temperature
Introduction
Theimportanceofindustryandtradebalanceofsugarcaneanditsderivativesintropicalcountries,especially
sugar,encouragepapersaddressingtheexportperformance.Thissectorhasdirectinvolvementinbothdomestic
andinternationalmarkets,sincesugarcaneisamajorcropintermsofarea,productionvolumeandcost(Alvesand
Bacchi,2004).Sucroseisthecarbohydratemoreinterestedintheprocessingofsugarcane,whichisdesiredin
crystallizedform,anditislikelythattheeffectoftemperature,enzymesandmicroorganismsismoreimportant
(Mantelatto,2005).
However,ABIA(2010)reportedthatduringstorageofcrystalsugar,itisknownthatdifferentenvironmental
factorsaffectthequalityofthefinishedproduct.Thesefactorescanbe:temperature,humidity,presenceoflight,
andthetime,i.e.,theperiodwhentheproductisstored.AccordingtoLegendreandClarke(LegendreandClarke),
thesugarcanejuicecolorandthereforesugaroriginatefromvariouscompounds,suchasflavonoids,phenolic
compounds,andthesepigmentsthatreactwithreducingsugars,whichaffectdirectlythejuicecolorandsugar
quality.Theformationofcoloredcompoundsintheprocessiscarriedoutmainlybydegradationofsugar(sucrose)
andtheformationofthemonosaccharides,glucoseandfructose(Mónicaetal.,2004).
Ingeneral,browningreactionsaredetrimentaltothenutritionalvalueofthefoodinquestion,andmayoccur
duringprocessingandstorageoffoodstuffs.Itisthereforenecessarytofindtheconditionstopreventthese
reactions,therefore,notonlytopreventanychangeindiet,butotherchangesthatmaycausethefood
unacceptablefortheconsumer(Eskinetal.,1971).
Whenrelatedtoinadequatestorage,formingadarkerisstillavisualthemethatcaninfluencethebuyingdecision
oftheconsumertooptforasugarmorewhite.Inaddition,changesintheenvironmentcausechangesintosugar,
becauseitabsorbsmoistureforbalance,andthismoisturedissolvesasmallamountofcrystalsugar.However,
whenthereisadecreaseinhumidity,sugarbecomesdifficultduetowaterevaporationandrecrystallizationofthe
www.fmfi‐journal.orgFocusingonModernFoodIndustryVolume4,2015
2
molecularsucrose.Thecontactpointoftwocrystalsexpandssothattheyholdtogether.Eachtimethisprocess
occurs,sugarturnsintoahardmassthatsignificantlyaffectsthequalityoftheproduct(Howes,1966).According
toSRI(2007),itisgenerallyacceptedthatforevery10ºCriseintemperaturetherateofcolourformationincreases
byafactorofapproximatelythree.AccordingtoTIS(2015),duringstorage,thetemperatureofsugarsmustnot
exceedamaximumand/ortheyaresensitivetotemperaturevariations,andfortheoptimumrelativehumidityis
55‐65%withthemaximumequilibriummoistureat65%.
Inthiscontext,thisstudywasaimedatassessingthedeterminantsthatemphasizetheprocessofcolorformation
duringstorageofwhitecrystalsugarandhowtheinteractionbetweenthemare,allowingknowledgetoadaptthe
warehousescurrentlyusedtomaintainproductquality.
Material and Methods
SamplePreparationandExperimentDesign
AssayswereperformedatHugotSugarTechnologyLaboratoryfromtheDepartmentofAgri‐FoodandNutrition
(LAN/ESALQ)UniversityofSanPauloandsamplesofhighpuritysucrosewereused(99%;SynthCo.,SanPaulo,
Brasil).
Toevaluatecolorchangesinthecrystalsugarsamples,thesampleswereplacedinsealeddesiccators,wherethe
relativehumiditywascontrolledwithinthevesselviasaturatedsolutionsof:magnesiumchloride(MgCl2.6H2O)to
obtainequalto30%moisture;magnesiumnitrate(MgN2O6.6H2O)forhumidityequalto50%;andsodiumchloride
(NaCl)forhumidityequalto70%(Rockland,1960).Theassembledgroupwastakentoafurnacewithcontrolled
temperatureat30,40and50°Cfor6,12and24hoursforaccompanyingfactorspotentiallyaffectingtheformation
ofcolorduringstorage,beingthefactorsstudied:temperatureandhumidity,bothfactorsassociatedwith
increasingintervalsoftime.
Forafullfactorialexperimentaldesignused23experimentswith3atthecenterpointreplicates,withatotalof11
trials(Table1).
TheresultsevaluatedthefactorsthatinfluenceICUMSAcolorformationincrystalsbytheresponsesurface
methodologywithallanalyticaldataevaluatedinstatisticalpackageStatSoft(2001),andthedataweresubjectedto
analysisofvariance(ANOVA)usingtheF‐testandtheaveragescomparedbyTukeytestat5%probability(p
<0.05).
TABLE1.FACTORS(INPARENTHESES)ANDFULLFACTORIALEXPERIMENTALDESIGNDOMAIN23FOREVALUATINGFACTORSTHATAFFECTTHESUGAR
STORAGE.
Runsfactors
x1:humidity(%)x2:temperature(°C)x3:time(hours)
1(‐)30(‐)30(‐)6
2(+)70(‐)30(‐)6
3(‐)30(+)50(‐)6
4(+)70(+)50(‐)6
5(‐)30(‐)30(+)24
6(+)70(‐)30(+)24
7(‐)30(+)50(+)24
8(+)70(+)50(+)24
9(0)50(0)40(0)12
10(0)50(0)40(0)12
11(0)50(0)40(0)12
FocusingonModernFoodIndustryVolume4,2015www.fmfi‐journal.org
3
EvaluationofReducingSugarsandICUMSAColorintoCrystalSugarSamples
Theparametersexaminedwere:
(1)Reducingsugars(RS)bytheSomogyi‐Nelson(Nelson,1960)colorimetricmethod,inwhichthereadingwas
takentransmittance(T%)at520nminspectrophotometerUVMini1240(ShimadzuCo.,Kyoto,Japón).Reducing
sugars(mgg‐1)werecalculatedbythefollowingequationofthestandardcurveofglucose:
%.
.
0.00157
(2)ICUMSAcolor:themethoddescribedbyLopes(1985),inwhichthesampleswerereadinspectrophotometer
UVMini1240(ShimadzuCo.,Kyoto,Japón)at420nm.Distilledwaterwasusedascontrolsolutiontoevaluatethe
device.Thecolorindexwascalculatedaccordingtothefollowingequation:
1000 log
bc
T=solutiontransmittance(%);b=measureofthecell(cm);c=solutionconcentration(gmL‐1);
AnalysisofSugarsUsingUltraFastLiquidChromatograph(UFLC)
ThemethodemployinganUFLCchromatographicsystem(ShimadzuCo.;Kyoto,Japan)equippedwithELS‐LT
(evaporativelightscatteringatlowtemperature)detectorwascarriedoutat35ºCusingisocraticelutionof
acetonitrile(HPLCgrade;TediaCo.,Farfield,USA)andwater(deionized;Millipore,France)ataflowrateof1.0
mLmin‐1.Isocraticelutionwasemployedfor12minwithamixtureof70:30(v/v)acetonitrile‐water.Nitrogen
(≥99.0%;AirLiquide,SãoPaulo,Brazil)at350kPawasusedtonebulizetheeffluentcomingfromthecolumn
NH2P‐504E(250mmx4.6mm)ShodexPacked(ShodexGroup,Kawasaki,Japan)at30ºC,andtheevaporation
temperatureofthechromatographiceluentwas30°C.Beforetheinjection(samplevolume=10μL),thesamples
wereclarifiedwithleadsubacetate,dilutedto1/10(v/v),andfilteredthroughDuraporefilters0.45μmand13mm
(Millipore‐Merck,SãoPaulo,Brazil).Allsugars(sucrose–Gainat3;andglucoseandfructose–Gainat7)were
analyzedagainstknownstandardspurchasedbySigma‐Aldrich(≥99.0%,MSgrade).
UV‐visibleSpectrophotometricAnalysisoftheCrystalSugarSamples
Sampleswereconditionedindesiccatorswithrelativehumiditycontrolled,suchas30,50,and70%,suchas
temperaturesof30,40,and50ºC.Thestoragetimewas6,12,and24h,accordingtoTable1.Toevaluatingthe
spectraofmaximumabsorption(scanning),thesampleswereadded12.5gofsugarandthendilutedindistilled
water(25mL).ThespectrawereobtainedbyUVMini‐1240spectrophotometer(ShimadzuCo.,Kyoto,Japan)
between250and470nmatdifferenttimeintervals,being:0,24,and96hafterstorage.Thesampleswereexamined
underUV‐visiblelightforproximateanalysis.ForUV‐VISspectrophotometeranalysis,crystalsugarswere
conditionedindesiccatorswithrelativehumiditycontrolled,suchas30,50,and70%,suchastemperaturesof30,
40,and50ºC.Thestoragetimewas6,12,and24h,accordingtoTable1.Toevaluatingthespectraofmaximum
absorption(scanning),thesampleswereadded12.5gofsugarandthendilutedindistilledwater(25mL).The
solutionswerescannedinthewavelengthrangingfrom200‐1100nmusingUVMini‐1240spectrophotometer
(ShimadzuCo.,Kyoto,Japan)andthecharacteristicpeaksweredetected.ThepeakvaluesoftheUV‐VISwere
recordedintriplicate.
Results and Discussion
ByFig.1a,itcanbeinferredthatthereisaprogressiveincreaseinthelevelsofreducingsugarswithtemperature
change.Thismayberelatedtotemperatureincrease,contributingtotheprocessofinversionofsucroseinto
glucoseandfructose(evaluatedasreducingsugarsbySomogyi‐Nelsonmethod).Fig.1banalysisallowedverifying
that,sincethereisnoincreaseinrelativehumidity,obtainedhigherconcentrationsofthereducingsugars,thusthe
reactioniscatalyzedasahigherwatercontentavailableintheenvironment(desiccators).Inthisexperiment,the
levelsofreducingsugarsincreasedastemperaturealsoincreased.
www.fmfi‐journal.orgFocusingonModernFoodIndustryVolume4,2015
4
Rodriguesetal.(2000)instudiesofcatalytichydrolysisofsucrosefoundthatthemostinfluentialfactoristhe
temperature,andthatthisincreasewasdirectlyproportionaltotheinversion(orhydrolysis)ofsucrosetoglucose
andfructose.
FIG.1.RESPONSESURFACEGENERATEDBYTHEINTERACTIONFROMTHEVARIABLES(A)TEMPERATURE(°C)ANDTIME(H)AND
FORINTERACTIONFROMTHEVARIABLES(B)MOISTURE(%)ANDTEMPERATURE(°C)TOOBTAINVALUESREDUCINGSUGARS
(RS)(mgg
‐1
).
Afterthemelting,sucroseloseswaterandglucoseandfructoseanhydridesorglucosansandlevulosansbecome.
Thereactionisself‐catalyzedwaterformedasafunctionofacceleratingthereaction.Theanhydridesformed
combinewithwatertoproduceacidderivativesandhydrolyzetheremainingsucrose,fructoseandglucose.The
glucosansandlevulosansformedalsocanbecombinedwithwaterandreappearfructoseandglucose(Oettereret
al.,2006).
AccordingtoAraujo(1995),sugarsattemperaturesabovedescribed120°Carepyrolizedatvariousdegradation
productsandhighmolecularweightcalleddarkcaramel.Thisreactioninvolvesthesugardegradationinthe
absenceofaminoacidsorproteins.
Duringthewholetimeofdehydrationandhydrolysisreactionsoccurring,withpredominanceofacidssuchas
aceticandformic,oraldehydessuchasformaldehydeand5‐hydroxymethylfurfural,diacetyl,carbonylandenol
groups.Thesecompoundsareresponsibleforthearomaandcolor,whichrecombineandformpolymerscalled
melanoidins(Oettereretal.,2006).
EvaluatingthetrendofincreasingICUMSAcolor(Fig.2),itappearsthatunderhighrelativehumidity,regardless
ofthetemperatureinquestion,therewasanincreaseincolor,withthefactthatstorageprocessofsugarwas
unwanted.
Fig.2cshowstheresponsesurfaceforICUMSAcolorfrominteractionbetweenhumidityandtime.Itwasnoted
that,regardlessofthetimeinexperimentaldesign,ICUMSAcolorwasmorepronouncedinthemaximumrelative
humidityused.ICUMSAcolorresultspresentedaninversebehavior,andseveralauthors(Arenaetal.,2001;Ibarz
etal.,2000;SapersandHicks,1989;Namiki,1988)haveshownthatthetime‐temperaturerelationshipismarkedly
importantforthehydrolysisofsucrose.However,theformationofpigmentedcompoundspromotessugar’scolor.
Byanalyzingresponsesurfaces,onecanobserveageneraltrendofincreasingICUMSAcolor,andreducingsugars
accordingtoprogressiveincreasesinrelativehumidityoftheenvironment,regardlessofthetemperaturesand
timesused.
FocusingonModernFoodIndustryVolume4,2015www.fmfi‐journal.org
5
FIG.2.RESPONSESURFACEGENERATEDBYTHEINTERACTIONFROMTHEVARIABLES(A)TEMPERATURE(°C)ANDHUMIDITY(%);
FORINTERACTIONFROMTHEVARIABLES(B)MOISTURE(%)ANDTIME(H);ANDFORINTERACTIONFROMTHEVARIABLES(C)
TEMPERATURE(ºC)ANDTIME(H)TOOBTAINVALUESICUMSACOLOR.
Belowrelatedtablesofanalysisofvariance(ANOVA)fortreatmentsperformedinthesamples.InTable2,wecan
observethedataforanalysisofICUMSAcolorandTable3observesthedataforanalysisofreducingsugars.
TABLE
2.
RESULTSOFANALYSISOFVARIANCEFORICUMSACOLOR
.
SSdfMSFp
Regression16579,126862763,1886,347490,047578
Residual1741,27894435,3197
Total18320,4057101832,041
R²0,904954
TABLE
3.
RESULTSOFANALYSISOFVARIANCEFORREDUCINGSUGARS
.
SSdfMSFp
Regression573980,976,0095663,4914,90870,010375
Residual25666,494,006416,621
Total599647,4510,0059964,75
R²0,957197
www.fmfi‐journal.orgFocusingonModernFoodIndustryVolume4,2015
6
AsshowninTables2and3,R²valuesweresignificantatthe5%levelofconfidenceforallanalyses.Therefore,the
responsesurfaceresultsarepresentedbelow.Throughdataanalysis,itcanbeinferredthatthereisaprogressive
increaseinthereducingsugarcontentswithincreasingoftemperature.Thisfacthasbeenrelatedtothetrendof
increasingtemperature,whichcontributedtotheprocessofinversionofsucrosetoglucoseandfructose.
Echavarriaetal.(2013),instudiesofnon‐enzymaticbrowninginpotatos,reportedatrendinreductionofsucrose
levelsforincreasingtemperature.
AccordingtoTomasiketal.(1989)andSuarez‐Pereiraetal.(2010),intheoligomerizationreaction,thereisa
formationofbrownandthechangeinmaterialtextureismoreviscous.First,theindividualsugarsreacttoforma
moleculecontaininganewformoftworingsconnectedbyathirdcentralring.Thiscompoundcanalsoreactby
threeways.Atfirst,water‐losingmoleculesformacompositestructurecalledcaramelans(C
12
H
12
O
9
),addingto
formsmalldarkparticlesofthesize0.46μm.Thesecondtypeofmoleculecanform,iscaramelens(C
36
H
18
O
24
),
whichaggregatetoformmoleculeswith0.95μm.Finally,itispossibletoformthecaramelins(C
24
H
26
O
13
),the
combinationoftwofructosedianhydridesandtheeliminationof27watermolecules.Thesecaramelinsare
generallyaggregateswithasizeof4.33μm.
Fig.3(adaptedfromTomasiketal.,1989)showsthedecompositionreactionofsucrose(seeFig.4)andthe
oligomerizationofglucoseandfructoseformedafterinductionbytemperatureandhumidity.
Theanalysisofthechromatograms(Fig.4)showsthattheyareconsistentwiththecharacteristicsucroseprofiles,
andthevariationintheglucoseandfructosecontentsresultsfromthehydrolysisofsucrose.Thedegradationof
sucrosewasrepresentedinFig.4.8.Sampleswerepreparedatconcentrationsof1gmL
‐1
andsubjectedto
chromatographicanalysisshowingreducedlevelsofsucrose.
FIG.3.CARAMELIZATIONREACTIONCAUSEDBYTHESUCROSEDECOMPOSITIONANDOLIGOMERIZATIONOFTHEGLUCOSE
ANDFRUCTOSE(ADAPTEDFROM20).
FocusingonModernFoodIndustryVolume4,2015www.fmfi‐journal.org
7
FIG.4.CHROMATOGRAMSPROFILESOFSUCROSESUBMMITEDTODIFFERENTTREATMENTS(TABLE1)OFCRYSTALSUGAR
SAMPLES.
AccordingtoPalashudin‐Sketal.(2012),instudieswithcaramels,itwasobservedthatthesucroseprofilewhen
subjectedtothemaximumabsorptionspectrumwasfoundtobeconsistentwithresultsobtainedinthis
experiment,whichdemonstratesthatchangesinthecurvesarerelatedwithformationofothercompoundsformed
duringthetreatmentandthegreaterthetimewas,thelargerthesechangesalsoare.Thatis,samplesforthechange
intheprofileofthemaximumabsorptionspectrumbetween250and470nmfordifferenttemperaturesandtime
intervalsareshowninFig.5(to30%,50%,and70%humidity).
www.fmfi‐journal.orgFocusingonModernFoodIndustryVolume4,2015
8
FIG.5.SPECTRASCANNINGBETWEEN250TO470nmOFTHESUGARSAMPLESUNDERDIFFERENTSTORAGECONDITIONS.
AnalyzingFig.5,itispossibletoobservechangesinabsorptionprofilesofthescanspectrumsamples,andithas
beenassociatedbyothercompoundssuchasquinones,caramelans,caramelensandcaramelins(Palashudin‐Sket
al.,2012;Zhangetal.,2015;GolonandKuhnert,2013;GolonandKuhnert,2012),whichalsochangethecolorofthe
samplesandareresponsibleforthecharacteristiccaramel.Thereisaclearobservationthatthehigherthereaction
timeinthiscasewasanalyzedintime0,24and96h,thegreaterthechangeintospectraprofiles;andthehigherthe
temperaturewas,whichwastheformationofpigmentedcompounds,themoresamplesweremarked,.
Caramelization,accordingtoAraujo(1995),requiresneitheroxygennornitrogencompounds,occurringatthe
optimumpHof3.0and9.0,theproductionofcaramels.Nonenzymaticbrowningmayalsobetheoxidation
reactionofascorbicacidwhichrequiresoxygen,butdoesnotrequirenitrogencompoundsproducedbetweenpH
3.0and5.0toproducemelanoidins.Themechanismofthisbrowningreaction,accordingtoSeravalliandRibeiro
FocusingonModernFoodIndustryVolume4,2015www.fmfi‐journal.org
9
(2007),isstillunknown.Accordingtotheauthors,itisknownthatheatingcausesbreakageofglycosidicbonds,
andformationofnewglycosidicbonds,andtheformationofunsaturatedpolymers‐caramels.
Morespecifically,Evangelista(2005)reportsthatthebrowningistheresultofthereactionbetweensugars
containinghydroxylandcarbonylgroups.Thisreactiontakesplaceathightemperatureswithsugardehydration
andformationofveryaldehydessuchas5‐hydroxy‐methylfurfural(5‐HMF)responsibleforthecharacteristicodor
ofcaramelizedsugar.
Conclusion
Theanalysisoftheeffectsofdifferentsugarstorageconditionsshowsthatthereareconsistentalterationsinthe
profileofsucrose,glucoseandfructosecontents,andthereiscolorformationduringthestorage.Bythemaximum
absorptionspectraitwaspossibletoobservechangesinabsorptionprofilesofthesamplessubjectedtohigh
temperaturesandhumidity,thusbeingthebinomialtemperature‐timeassociatedwithmoisture,importantfactors
inmaintainingthequalityofsugarwhitestored.
Acknowledgements
TheauthorsacknowledgethesupportoftheFoundationfortheSupportofResearchintheStateofSãoPaulo
FAPESP2009/54635‐1)andNationalCouncilofScientificandTechnologicalDevelopment(CNPq506328/2010‐4)
forfinancialsupportofthisresearchproject.
References
[1] ABIA.BrazilianAssociationofFoodIndustries.Guidelinesforcarriersandretailoutletsonthestorage,transportand
handlingofpackagedfoods.ABIA:SãoPaulo,2010.14p.
[2] AlvesLRA,BacchiMRP.ExportsupplyofsugarfromBrazil.RevEconSociolRural2004;42:1‐10.
[3] AraújoJMA.FoodChemistry.Viçosa:UFV,1995.
[4] ArenaE,FallicoB,MaccaroneE.Thermaldamageinbloodorangejuice:kineticsof5‐hydroxymethyl‐2‐
furancarboxaldehydeformation.IntlJFoodSciTechnol2001,36:145‐151.
[5] EchavarríaAP,PagánJ,IbarzA.OptimizationofMaillardreactionproductsisolatedfromsugar‐aminoacidmodelsystem
andtheirantioxidantactivity.AfinidadLXX2013,562:86‐92.
[6] EskinNAM,HendersonHM,TownsendRJ.Biochemistryoffoods.AcademicPress:NewYork,1971.240p.
[7] EvangelistaJ.FoodTechnology.SãoPaulo:Atheneu,2005.
[8] GolonA,KuhnertN.Characterisationof“caramel‐type”termaldecompositionproductsofselectedmonosaccharides
includingfructose,mannose,galactose,arabinoseandribosebyadvancedelectrosprayionizationmassspectrometry
methods.FoodFunct,2013,4:1040–1050.
[9] GolonA,KuhnertN.Unravelingthechemicalcompositionofcaramel.JAgricFoodChem2012,60:3266−3274.
[10] Howes,A.M.Refinedsugarconditioningandsotrage.ProcSouthAfricanSugarTechnolAssoc1966,214‐219.
[11] IbarzA,PaganJ,GarzaS.Kineticmodelsofnon‐enzymaticbrowniginapplepuree.JSciFoodAgric2000,80:1162‐1168.
[12] LegendreRB,ClarkeMA.Qualityofsugarcane:Impactsontheyieldofsugarandqualityfactors.STAB1999;17:36‐40.
[13] LopesCH.MethodsofSugarAnalysis.2ed.RiodeJaneiro:MIC.IAA.DAP,1985.39p.
[14] MantelattoPE.Studyofcrystallizationofsucrosepuresolutionsofsugarcanebycooling.2005.Thesis(MasterofScience)‐
CentrodeCiênciasExataseTecnologia‐UniversidadeFederaldeSãoCarlos.
[15] MónicaC,GarcíaMT,GonzálezG,MarP,JorgeA,GarcíaJA.Studyofcolouredcomponentsformedinsugarbeet
processing.FoodChem2004;86:421–433.
[16] NamikiM.ChemistryofMaillardReactions:recentstudiesonthebrowningreactionmechanismandthedevelopmentof
antioxidantandmutagens.AdvFoodRes1988,32:116‐170.
[17] NelsonN.AphotometricadaptationofSomogyimethodfordeterminationofglucose.JBiolChem1960,153:375‐380.
www.fmfi‐journal.orgFocusingonModernFoodIndustryVolume4,2015
10
[18] OettererM,Regitano‐D’arceMAB,SpotoMHF.Basicsscienceandfoodtechnology.Baureri,2006.
[19] Palashudin‐SkMP,JaiswalA,PaulA,GhoshSS,ChattopadhyayA.Presenceofamorphouscarbonnanoparticlesinfood
caramels.SciRep.2012;2:383.
[20] RocklandLB.Saturatedsaltsolutionsforstaticcontrolofrelativehumiditybetween5and40°C.AnalChem1960,32:1375‐
1376.
[21] RodriguesMVN,RodriguesRAF,SerraGE,AndriettaSR,FrancoTT.Productionofsugarsyrupinvertedby
heterogeneoushydrolysisusingexperimentaldesign.CiencTecnolAliment2000,20:103‐109.
[22] SapersGM,HicksKB.Inhibitionofenzymaticbrowninginfruitsandvegetable.Inqualityfactorsoffruitsandvegetables.
ChemTechnol1989,29‐43.
[23] SeravalliEAG,RibeiroEP.FoodChemistry.SãoPaulo:EdgardBlucher,2007.
[24] SRI.SugarResearchInstitute.Handbookforchemicalsupervisioncourse,2007.
[25] Statsoft.Statistica(dataanalysissoftwaresystem),6.2001.
[26] Suárez‐PereiraE,RubioEM,PilardS,OrtizMelletC,García‐FernándezJM.Di‐D‐fructosedianhydride(DFA)‐enriched
caramelsbyacidion‐exchangeresin‐promotedcaramelizationofD‐fructose:chemicalanalysis.JAgricFoodChem2010,
58:1777–1787.
[27] TIS.TransportInformationService.Whitesugar,2015.
[28] TomasikP,WiejakS,PalansinskiM.Thetermaldecompositionofcarbohydrates.PartII.AdvCarbChemBiochem1989,
47:279.
[29] ZhangX,TaoN,WangX,ChenF,WangM.Thecolorants,antioxidants,andtoxicantsfromnonenzymaticbrowning
reactionsandtheimpactsofdietarypolyphenolsontheirthermalformation.FoodFunct2015,6:345–355.