Chapter

Snake Venom Toxins Targeted at the Nervous System

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

One of the main venom targets in a prey organism is the nervous system. The disturbance of this system kills or paralyzes a prey effectively. To achieve this task, snake venoms contain an array of peptide and protein toxins called neurotoxins which belong to several structural types and possess diverse biological activities. The most abundant neurotoxin groups are three-finger toxins and phospholipases A2, while other less represented groups include dendrotoxins of BPTI–Kunitz-type family, CRISPs (cysteine-rich secretory proteins), acetylcholine esterase, and peptide toxins. Neurotoxins affect different departments of the nervous system including both the central nervous system (CNS) and the peripheral nervous system (PNS). The toxins impairing the somatic PNS are acting at presynaptic site (b-neurotoxicity) or postsynaptic site (a-neurotoxicity); there are neurotoxins active inside a synaptic cleft as well. Effectors of sympathetic and parasympathetic systems of the autonomic PNS are also found in the venoms. Snake venom contains also neurotrophins and blockers of several types of ion channels, including effectors of sensory systems. Acting at different sites of the nervous system and being complementary, neurotoxins produce a cumulative effect resulting in very efficient oppression of the prey or predator.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Three-fingers toxins (3FTXs) are non-enzymatic neurotoxins ranging from 58 to 81 residues that contain a three-finger fold structure stabilized by disulfide bridges (Osipov and Utki, 2015;Kessler et al., 2017; Figure 4A). They are present mostly in the venoms of elapid and colubrid snakes, and exert their neurotoxic effects by binding postsynaptically at the neuromuscular junctions to induce flaccid paralysis in snakebite victims (Barber et al., 2013). ...
Article
Full-text available
Animal venoms have evolved over millions of years for prey capture and defense from predators and rivals. Snake venoms, in particular, have evolved a wide diversity of peptides and proteins that induce harmful inflammatory and neurotoxic effects including severe pain and paralysis, hemotoxic effects, such as hemorrhage and coagulopathy, and cytotoxic/myotoxic effects, such as inflammation and necrosis. If untreated, many envenomings result in death or severe morbidity in humans and, despite advances in management, snakebite remains a major public health problem, particularly in developing countries. Consequently, the World Health Organization recently recognized snakebite as a neglected tropical disease that affects ~2.7 million p.a. The major protein classes found in snake venoms are phospholipases, metalloproteases, serine proteases, and three-finger peptides. The mechanisms of action and pharmacological properties of many snake venom toxins have been elucidated, revealing a complex multifunctional cocktail that can act synergistically to rapidly immobilize prey and deter predators. However, despite these advances many snake toxins remain to be structurally and pharmacologically characterized. In this review, the multifunctional features of the peptides and proteins found in snake venoms, as well as their evolutionary histories, are discussed with the view to identifying novel modes of action and improving snakebite treatments.
Article
Full-text available
The immunotoxic effects of some anthropogenic pollutants on aquatic organisms are among the causes of concern over the presence of these pollutants in the marine environment. The immune system is part of an organism’s biological defense necessarily for homeostasis. Thus, the immunotoxicological impacts on aquatic organisms are important to understand the effects of pollutant chemicals in the aquatic ecosystem. When aquatic organisms are exposed to pollutant chemicals with immunotoxicity, it results in poor health. In addition, aquatic organisms are exposed to pathogenic bacteria, viruses, parasites, and fungi. Exposure to pollutant chemicals has reportedly caused aquatic organisms to show various immunotoxic symptoms such as histological changes of lymphoid tissue, changes of immune functionality and the distribution of immune cells, and changes in the resistance of organisms to infection by pathogens. Alterations of immune systems by contaminants can therefore lead to the deaths of individual organisms, increase the general risk of infections by pathogens, and probably decrease the populations of some species. This review introduced the immunotoxicological impact of pollutant chemicals in aquatic organisms, including invertebrates, fish, amphibians, and marine mammals; described typical biomarkers used in aquatic immunotoxicological studies; and then, discussed the current issues on ecological risk assessment and how to address ecological risk assessment through immunotoxicology. Moreover, the usefulness of the population growth rate to estimate the immunotoxicological impact of pollution chemicals was proposed.
Chapter
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Article
Full-text available
Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.
Article
Full-text available
Background Vertebrate predators use a broad arsenal of behaviors and weaponry for overcoming fractious and potentially dangerous prey. A unique array of predatory strategies occur among snakes, ranging from mechanical modes of constriction and jaw-holding in non-venomous snakes, to a chemical means, venom, for quickly dispatching prey. However, even among venomous snakes, different prey handling strategies are utilized, varying from the strike-and-hold behaviors exhibited by highly toxic elapid snakes to the rapid strike-and-release envenomation seen in viperid snakes. For vipers, this mode of envenomation represents a minimal risk predatory strategy by permitting little contact with or retaliation from prey, but it adds the additional task of relocating envenomated prey which has wandered from the attack site. This task is further confounded by trails of other unstruck conspecific or heterospecific prey. Despite decades of behavioral study, researchers still do not know the molecular mechanism which allows for prey relocation. Results During behavioral discrimination trials (vomeronasal responsiveness) to euthanized mice injected with size-fractionated venom, Crotalus atrox responded significantly to only one protein peak. Assays for enzymes common in rattlesnake venoms, such as exonuclease, L-amino acid oxidase, metalloproteinase, thrombin-like and kallikrein-like serine proteases and phospholipase A2, showed that vomeronasal responsiveness was not dependent on enzymatic activity. Using mass spectrometry and N-terminal sequencing, we identified the proteins responsible for envenomated prey discrimination as the non-enzymatic disintegrins crotatroxin 1 and 2. Our results demonstrate a novel and critical biological role for venom disintegrins far beyond their well-established role in disruption of cell-cell and cell-extracellular matrix interactions. Conclusions These findings reveal the evolutionary significance of free disintegrins in venoms as the molecular mechanism in vipers allowing for effective relocation of envenomated prey. The presence of free disintegrins in turn has led to evolution of a major behavioral adaptation (strike-and-release), characteristic of only rattlesnakes and other vipers, which exploits and refines the efficiency of a pre-existing chemical means of predation and a highly sensitive olfaction system. This system of a predator chemically tagging prey represents a novel trend in the coevolution of predator-prey relationships.
Article
Full-text available
Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.
Article
Full-text available
Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a β-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 μm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 μm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1β1εδ) than the fetal form (α1β1γδ), EC(50) being 0.44 ± 0.1 μm and 1.56 ± 0.37 μm, respectively. The peptide had no effect on GABA(A) (α1β3γ2 or α2β3γ2) receptors at a concentration up to 100 μm or on 5-HT(3) receptors at a concentration up to 10 μm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.
Article
Full-text available
In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3β2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3β2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3β2 nAChR.
Article
Full-text available
Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K⁺ channels. Crotalphine (0.2 or 5 μg/kg, orally; 0.0006 μg/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of δ-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of κ-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K⁺ channel blocker. The results suggest that peripheral δ-opioid and κ-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K⁺ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain.
Article
Full-text available
Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.
Article
Full-text available
Snake venoms are cocktails of enzymes and non-enzymatic proteins used for both the immobilization and digestion of prey. The most common snake venom enzymes include acetylcholinesterases, l-amino acid oxidases, serine proteinases, metalloproteinases and phospholipases A(2) . Higher catalytic efficiency, thermal stability and resistance to proteolysis make these enzymes attractive models for biochemists, enzymologists and structural biologists. Here, we review the structures of these enzymes and describe their structure-based mechanisms of catalysis and inhibition. Some of the enzymes exist as protein complexes in the venom. Thus we also discuss the functional role of non-enzymatic subunits and the pharmacological effects of such protein complexes. The structures of inhibitor-enzyme complexes provide ideal platforms for the design of potent inhibitors which are useful in the development of prototypes and lead compounds with potential therapeutic applications.
Article
Full-text available
Nerve growth factor (NGF) plays an important role in regulating mammalian neuronal/embryonic development, angiogenesis, and other physiological processes and has recently been investigated as a potential treatment for the neurodegenerative disorder, Alzheimer disease. In this study, we provide evidence that human NGF may also function as a metalloproteinase inhibitor, based on studies of NGF from snake venom. Originally, our aim was to isolate snake venom metalloproteinases targeting platelet receptors and/or ligands relevant to hemostasis and thrombosis, using Ni(2+)-agarose as a purification step based on the conserved metal ion-coordination motif in venom metalloproteinases. However, subsequent analysis of cobra (Naja kaouthia) venom led to the unexpected discovery that cobra venom NGF bound to Ni(2+)-agarose, eluting at approximately 15 mm imidazole, enabling a one-step purification. The identity of the purified protein was confirmed by mass spectrometry and N-terminal sequence analysis. Partial co-purification of NGF within metalloproteinase-enriched venom fractions led us to test whether NGF affected metalloproteinase activity. Venom NGF potently inhibited metalloproteinases isolated from the same or different venom and specifically bound to purified Nk metalloproteinase immobilized on agarose beads. Human NGF also interacted with human metalloproteinases because it blocked metalloproteinase-mediated shedding of the platelet collagen receptor, glycoprotein (GP)VI, and associated with recombinant ADAM10 by surface plasmon resonance. Together, these results suggest that NGF can function as a metalloproteinase inhibitor.
Article
Full-text available
Snake venom toxins evolve more rapidly than other proteins through accelerated changes in the protein coding regions. Previously we have shown that accelerated segment switch in exons to alter targeting (ASSET) might play an important role in its functional evolution of viperid three-finger toxins. In this phenomenon, short sequences in exons are radically changed to unrelated sequences and hence affect the folding and functional properties of the toxins. Here we analyzed other snake venom protein families to elucidate the role of ASSET in their functional evolution. ASSET appears to be involved in the functional evolution of three-finger toxins to a greater extent than in several other venom protein families. ASSET leads to replacement of some of the critical amino acid residues that affect the biological function in three-finger toxins as well as change the conformation of the loop that is involved in binding to specific target sites. ASSET could lead to novel functions in snake venom proteins. Among snake venom serine proteases, ASSET contributes to changes in three surface segments. One of these segments near the substrate binding region is known to affect substrate specificity, and its exchange may have significant implications for differences in isoform catalytic activity on specific target protein substrates. ASSET therefore plays an important role in functional diversification of snake venom proteins, in addition to accelerated point mutations in the protein coding regions. Accelerated point mutations lead to fine-tuning of target specificity, whereas ASSET leads to large-scale replacement of multiple functionally important residues, resulting in change or gain of functions.
Article
Full-text available
The present study investigated the inhibitory effect of cobratoxin (CTX) on pain-evoked discharge of neurons in thalamic parafascicular nucleus (Pf) of rats and analyzed some of the mechanisms involved in this effect. Intracerebroventricular injection (icv) of CTX at 0.56, 1.12 and 4.50 microg/kg resulted in a dose-dependent inhibitory effect on the pain-evoked discharges of Pf neurons. The inhibition of pain-evoked discharges of Pf neurons by CTX at high dose (4.50 microg/kg) persisted at least for 2h, while the inhibitory effect of morphine (40 microg) persisted no longer than 30 min. The inhibitory effect of CTX was reversed by pretreatment with atropine (icv, 5 microg). In contrast, icv injection of naloxone (4 microg) had no effect on CTX-induced inhibition. Furthermore, pretreatment with parachlorophenylalanine, a specific inhibitor of tryptophan hydroxylase, also significantly attenuated the inhibitory effect of CTX. The results suggested that: (a) CTX has a dose-dependent inhibitory effect on pain-evoked discharges of Pf neurons, confirming electrophysiologically the antinociceptive action of CTX; (b) the inhibitory effect of CTX has a longer duration compared to that of morphine; (c) central cholinergic and serotonergic systems, but not opioidergic system, are involved in the inhibitory effect of CTX.
Article
Full-text available
Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn²⁺-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn²⁺ ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn²⁺ binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.
Article
Full-text available
Neuropathic pain is an important clinical problem and it is usually resistant to the current therapy. We have recently characterized a novel analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in an experimental model of neuropathic pain induced in rats by chronic constriction of sciatic nerve. The effect of the peptide was compared to that induced by the crude venom, which confirmed that crotalphine is responsible for the antinociceptive effect of the crotalid venom on neuropathic pain. For characterization of neuropathic pain, the presence of hyperalgesia, allodynia and spontaneous pain was assessed at different times after nerve constriction. These phenomena were detected 24 h after surgery and persisted at least for 14 days. The pharmacological treatments were performed on day 14 after surgery. Crotalphine (0.2-5 microg/kg) and the crude venom (400-1600 microg/kg) administered p.o. inhibited hyperalgesia, allodynia and spontaneous pain induced by nerve constriction. The antinociceptive effect of the peptide and crude venom was long lasting, since it was detected up to 3 days after treatment. Intraplantar injection of naloxone (1 microg/paw) blocked the antinociceptive effect, indicating the involvement of opioid receptors in this phenomenon. Gabapentin (200 mg/kg, p.o.), and morphine (5 mg/kg, s.c.), used as positive controls, blocked hyperalgesia and partially inhibited allodynia induced by nerve constriction. These data indicate that crotalphine induces a potent and long lasting opioid antinociceptive effect in neuropathic pain that surpasses that observed with standard analgesic drugs.
Article
Full-text available
Calcicludine (CaC) is a 60-amino acid polypeptide from the venom of Dendroaspis angusticeps. It is structurally homologous to the Kunitz-type protease inhibitor, to dendrotoxins, which block K+ channels, and to the protease inhibitor domain of the amyloid beta protein that accumulates in Alzheimer disease. Voltage-clamp experiments on a variety of excitable cells have shown that CaC specifically blocks most of the high-threshold Ca2+ channels (L-, N-, or P-type) in the 10-100 nM range. Particularly high densities of specific 125I-labeled CaC binding sites were found in the olfactory bulb, in the molecular layer of the dentate gyrus and the stratum oriens of CA3 field in the hippocampal formation, and in the granular layer of the cerebellum. 125I-labeled CaC binds with a high affinity (Kd = 15 pM) to a single class of noninteracting sites in rat olfactory bulb microsomes. The distribution of CaC binding sites in cerebella of three mutant mice (Weaver, Reeler, and Purkinje cell degeneration) clearly shows that the specific high-affinity labeling is associated with granule cells. Electrophysiological experiments on rat cerebellar granule neurons in primary culture have shown that CaC potently blocks the L-type component of the Ca2+ current (K0.5 = 0.2 nM). Then CaC, in the nanomolar range, appears to be a highly potent blocker of an L-subtype of neuronal Ca2+ channels.
Article
Full-text available
A novel "weak toxin" (WTX) from Naja kaouthia snake venom competes with [(125)I]alpha-bungarotoxin for binding to the membrane-bound Torpedo californica acetylcholine receptor (AChR), with an IC(50) of approximately 2.2 microm. In this respect, it is approximately 300 times less potent than neurotoxin II from Naja oxiana and alpha-cobratoxin from N. kaouthia, representing short-type and long-type alpha-neurotoxins, respectively. WTX and alpha-cobratoxin displaced [(125)I]alpha-bungarotoxin from the Escherichia coli-expressed fusion protein containing the rat alpha7 AChR N-terminal domain 1-208 preceded by glutathione S-transferase with IC(50) values of 4.3 and 9.1 microm, respectively, whereas for neurotoxin II the IC(50) value was >100 microm. Micromolar concentrations of WTX inhibited acetylcholine-activated currents in Xenopus oocyte-expressed rat muscle AChR and human and rat alpha7 AChRs, inhibiting the latter most efficiently (IC(50) of approximately 8.3 microm). Thus, a virtually nontoxic "three-fingered" protein WTX, although differing from alpha-neurotoxins by an additional disulfide in the N-terminal loop, can be classified as a weak alpha-neurotoxin. It differs from the short chain alpha-neurotoxins, which potently block the muscle-type but not the alpha7 AChRs, and is closer to the long alpha-neurotoxins, which have comparable potency against the above-mentioned AChR types.
Article
Full-text available
Different types of cardiotoxin (I-V and n) were isolated and purified from the venom of the Taiwan cobra (Naja naja atra). The effects of these cardiotoxins were studied on membrane-bound acetylcholinesterase, which was isolated from a sheep's brain cortex. The results showed that cardiotoxins I-III, V, and n activated the enzyme by modification of substrate inhibition, but cardiotoxin IV's reaction was different. The inhibition and activation of acetylcholinesterase were linked to the functions of the hydrophobicity index, presence of a cationic cluster, and the accessible arginine residue. Our results indicate that Cardiotoxins have neither a cationic cluster nor an arginine residue in their surface area of loop I; therefore, in contrast to fasciculin, cardiotoxins are attached by loop II to the peripheral site of the enzyme. As a result, fasciculin seems to stabilize nonfunctional conformation, but cardiotoxins seem to stabilize the functional conformation of the enzyme. Based on our experimental and theoretical findings, similar secondary and tertiary structures of cardiotoxins and fasciculin seem to have an opposite function once they interact with acetylcholinesterase.
Article
Full-text available
We have identified, purified, and determined the complete amino acid sequence of a novel protein, ohanin from Ophiophagus hannah (king cobra) venom. It is a small protein containing 107 amino acid residues with a molecular mass of 11951.47 +/- 0.67 Da as assessed by electrospray ionization-mass spectrometry. It does not show similarity to any known families of snake venom proteins and hence is the first member of a new family of snake venom proteins. It shows similarity to PRY and SPRY domain proteins. It is nontoxic up to 10 mg/kg when injected intraperitoneally in mice. Ohanin produced statistically significant and dose-dependent hypolocomotion in mice. In a pain threshold assay, it showed dose-dependent hyperalgesic effect. The ability of the protein to elicit a response at greatly reduced doses when injected intracerebroventricularly as compared with intraperitoneal administration in both the locomotion and hot plate experiments strongly suggests that ohanin acts on the central nervous system. Since the natural abundance of the protein in the venom is low (approximately 1 mg/g), a synthetic gene was constructed and expressed. The recombinant protein, which was obtained in the insoluble fraction in Escherichia coli, was purified under denaturing condition and was refolded. Recombinant ohanin is structurally and functionally similar to native protein as determined by circular dichroism and hot plate assay, suggesting that it will be useful in future structure-function relationship studies.
Article
Crotalphine is an antinociceptive peptide that, despite its opioid-like activity, does not induce some of the characteristic side effects of opioids, and its amino acid sequence has no homology to any known opioid peptide. Here, we evaluated the involvement of the peripheral cannabinoid system in the crotalphine effect and its interaction with the opioid system. Hyperalgesia was evaluated using the rat paw pressure test. Involvement of the cannabinoid system was determined using a selective cannabinoid receptor antagonist. Cannabinoid and opioid receptor activation were evaluated in paw slices by immunofluorescence assays using conformation state-sensitive antibodies. The release of endogenous opioid peptides from skin tissue was measured using a commercial enzyme immunoassay (EIA). Both p.o. (0.008-1.0 μg·kg(-1) ) and intraplantar (0.0006 μg per paw) administration of crotalphine induced antinociception in PGE2 -induced hyperalgesia. Antinociception by p.o. crotalphine (1 μg·kg(-1) ) was blocked by AM630 (50 μg per paw), a CB2 receptor antagonist, and by antiserum anti-dynorphin A (1 μg per paw). Immunoassay studies confirmed that crotalphine increased the activation of both κ-opioid (51.7%) and CB2 (28.5%) receptors in paw tissue. The local release of dynorphin A from paw skin was confirmed by in vitro EIA and blocked by AM630. Crotalphine-induced antinociception involves peripheral CB2 cannabinoid receptors and local release of dynorphin A, which is dependent on CB2 receptor activation. These results enhance our understanding of the mechanisms involved in the peripheral effect of crotalphine, as well as the interaction between the opioid and cannabinoid systems.
Article
Among snake venom toxins, three-finger toxins - a superfamily of nonenzymatic proteins - are found in the venoms of all families of snakes. They share a common structure of three β-stranded loops extending from a central core containing all four conserved disulfide bonds. Despite the similar structural fold, they exhibit a wide variety of biological effects. This review describes briefly the structure-function relationships and evolution of this group of toxins. The functional sites in these šsibling' toxins are located on various segments of the molecular surface. This group of mini proteins appears to evolve through a combination of accelerated rate of exchange of segments as well as point mutations in exons.
Article
The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.
Article
Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target-derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, leads to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect one's ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti-NGF therapy for the clinical management of pain. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry, J. Neurochem. (2012) 10.1111/jnc.12093.
Article
Crotamine, a 4.88 kDa neurotoxic protein, has been purified to apparent homogeneity from Crotalus durissus terrificus venom by gel filtration on Sephadex G-75. When injected (i.p. or s.c.) in adult male Swiss mice (20–25 g), it induced a time-dose dependent analgesic effect which was inhibited by naloxone, thus suggesting an opioid action mechanism. When compared with morphine (4 mg/kg), crotamine, even in extremely low doses (133.4 μg/kg, i.p., about 0.4% of a ld50) is approximately 30-fold more potent than morphine (w/w) as an analgesic. On a molar basis it is more than 500-fold more potent than morphine. It is also much more potent than the lower molecular weight crude fractions of the same venom. The antinociceptive effects of crotamine and morphine were assayed by the hot plate test and by the acetic acid-induced writhing method. Therefore, both central and peripheral mechanisms should be involved. Histopathological analysis of the brain, liver, skeletal muscles, stomach, lungs, spleen, heart, kidneys and small intestine of the crotamine injected mice did not show any visible lesion in any of these organs by light microscopy. Since crotamine accounted for 22% (w/w) of the desiccated venom, it was identified as its major antinociceptive low molecular weight peptide component.
Article
Kumar, A., S. Morrison and A. Gulati. Effect of EtA receptor antagonists on cardiovascular responses induced by centrally administered sarafotoxin 6b: Role of sympathetic nervous system. Peptides 18(6) 855–864, 1997.— The present study was carried out to investigate the cardiovascular effects of centrally administered SRT6b in saline, BQ123 and BMS182874 pretreated male Sprague-Dawley rats, using a radioactive microsphere technique. SRT6b (100 ng, ICV) produced a transient increase (40%) in blood pressure at 5 min followed by a sustained decrease (−42%) at 30 and 60 min in control rats. Total peripheral resistance and heart rate were not significantly altered. Cardiac output increased (16%) at 5 min and decreased 30 and 60 min following SRT6b administration. Central venous pressure was not affected by SRT6b. Regional blood flow and vascular resistance did not change at 5 min following administration of SRT6b. However, a significant decrease in blood flow to the brain, heart, kidneys, liver, spleen, gastrointestinal tract and mesentery and pancreas was observed 30 and 60 min following administration of SRT6b in control (saline treated) rats. Pretreatment with ETA selective receptor antagonists, BQ123 (10 μg, ICV) or BMS182874 (50 μg, ICV) significantly attenuated the pressor and depressor effects of centrally administered SRT6b. SRT6b induced decrease in blood flow was completely blocked by pretreatment with BQ123 or BMS182874. ET-1 (100 ng, ICV) produced an increase followed by a decrease similar to SRT6b. Reserpine (5 mg/kg, IP) pretreatment attenuated the cardiovascular effects of ET-1. Role of sympathetic nervous system was determined by measuring splanchnic nerve activity. SRT6b when administered in the lateral cerebral ventricle did not produce any significant effect at 5 min, however, a significant decrease in sympathetic nerve activity was observed 30 min after its administration. It is concluded that centrally administered SRT6b produces significant changes in systemic and regional blood circulation which can be completely blocked by ETA receptor antagonist. The cardiovascular effects of centrally administered SRT6b appear to be mediated through the sympathetic nervous system.
Article
Kappa-bungarotoxin, a snake venom α-neurotoxin, blocks nicotinic transmission in chick lumbar sympathetic ganglia as well as in the rat superior cervical ganglion. Intracellular and extracellular recordings support the conclusion that the toxin has a specific action at the postsynaptic nicotinic receptors on ganglia neurons. The affinity of kappa-bungarotoxin for receptors in chick ganglia appears to be higher than that for receptors in the rat ganglia. Kappa-bungarotoxin can thus be used as a ligand for studying nicotinic receptors in a variety of neuronal preparations.
Article
The venoms of snakes from Viperidae family mainly influence the function of various blood components. However, the published data indicate that these venoms contain also neuroactive components, the most studied being neurotoxic phospholipases A2 (PLA2s). Earlier we have shown (Gorbacheva et al., 2008) that several Viperidae venoms blocked nicotinic acetylcholine receptors (nAChRs) and voltage-gated Ca2+ channels in isolated identified neurons of the fresh-water snail Lymnaea stagnalis. In this paper, we report on isolation from puff adder Bitis arietans venom and characterization of a novel protein bitanarin that reversibly blocks nAChRs. To isolate the protein, the venom of B. arietans was fractionated by gel-filtration, ion-exchange and reversed phase chromatography and fractions obtained were screened for capability to block nAChRs. The isolated protein competed with [125I]iodinated alfa-bungarotoxin for binding to human alfa7 and Torpedo californica nAChRs, as well as to acetylcholine-binding protein from L. stagnalis, the IC50 being 20 +- 1.5, 4.3+- 0.2, and 10.6+- 0.6 mkM, respectively. It also blocked reversibly acetylcholine-elicited current in isolated L. stagnalis neurons with IC50 of 11.4 mkM. Mass-spectrometry analysis determined the molecular mass of 27.4 kDa and the presence of 28 cysteine residues forming 14 disulphide bonds. Edman degradation of the protein and tryptic fragments showed its similarity to PLA2s from snake venoms. Indeed, the protein possessed high PLA2 activity, which was 1.95 mmol/min/mkmol. Bitanarin is the first described PLA2 that contains 14 disulphide bonds and the first nAChR blocker possessing PLA2 activity. � 2011 Elsevier Ltd. All rights reserved.
Article
Nerve growth factor (NGF) is a protein which stimulates the differentiation and maintenance of sympathetic and embryonic sensory neurons. Snake venoms are a rich source of NGF. Due to small quantities it is sometimes difficult and laborious to isolate NGF from the venoms. In this study the use of Ni-NTA-agarose for isolation of NGF is studied. Anti-Vipera lebetina NGF antibodies were used for identification of NGF during Ni-NTA-agarose fractionation as well as for cross-reaction studies with 21 snake venoms. All studied venoms contained NGF. The molecular masses of the NGFs from Echis ocellatus, Agkistrodon contortrix contortrix, A. bilineatus, A. blomhoffii, A. saxatilis, Calloselasma rhodostoma, Bothrops jararaca and B. lanceolatus were determined for the first time. Some previous results of the NGF studies are revaluated.
Article
At a time when pharmaceutical companies are having trouble finding new low MW drugs and when biologics are becoming more common, animal venoms could constitute an underexploited source of novel drug candidates. We looked for identifying novel animal toxins active against G protein-coupled receptors (GPCR), the most frequently exploited class of treatment targets, with the aim to develop novel research tools and drug candidates. Screening of green mamba (Dendroaspis angusticeps) venom against adrenoceptors identified two novel venom peptides. ρ-Da1a shown an affinity of 0.35 nM for the α1a-AR while ρ-Da1b displayed affinities between 14 and 73 nM for the three α2-ARs. These two venom peptides have sequences similar to those of muscarinic toxins and belong to the three-finger-fold protein family. α1a-AR is the primary target for the treatment of prostate hypertrophy. In vitro and in vivo tests demonstrated that ρ-Da1a reduced prostatic muscle tone as efficiently as tamsulosin (an antagonist presently used), but with fewer cardiovascular side effects. α2-ARs are the prototype of GPCRs not currently used as treatment targets due to a lack of specific ligands. Blockage of these receptors increases intestinal motility, which may be compromised by abdominal surgery and reduces orthosteric hypotension. In vitro and in vivo tests demonstrated that ρ-Da1b antagonizes α2-ARs in smooth muscles and increased heart rate and blood catecholamine concentrations. These results highlight possible exploitation of ρ-Da1a and ρ-Da1b in important pathologies.
Article
Iodinated [125I] weak toxin from Naja kaouthia (WTX) cobra venom was injected into mice, and organ-specific binding was monitored. Relatively high levels of [125I]WTX were detected in the adrenal glands. Rat adrenal membranes were therefore used for analysis of [125I]WTX-binding sites. Specific [125I]WTX binding was partially inhibited by both alpha-cobratoxin, a blocker of the alpha7 and muscle-type nicotinic acetylcholine receptors (nAChRs), and by atropine, an antagonist of the muscarinic acetylcholine receptor (mAChR). Binding to rat adrenal nAChR had a Kd of 2.0+/-0.8 microM and was inhibited by alpha-cobratoxin but not by a short-chain alpha-neurotoxin antagonist of the muscle-type nAChR, suggesting a specific interaction with the alpha7-type nAChR. WTX binding was reduced not only by atropine but also by other muscarinic agents (oxotremorine and muscarinic toxins from Dendroaspis angusticeps), indicating an interaction with mAChR. This interaction was further characterized using individual subtypes of human mAChRs expressed in Chinese hamster ovary cells. WTX concentrations up to 30 microM did not inhibit binding of [3H]acetylcholine to any subtype of mAChR by more than 50%. Depending on receptor subtype, WTX either increased or had no effect on the binding of the muscarinic antagonist [3H]N-methylscopolamine, which binds to the orthosteric site, a finding indicative of an allosteric interaction. Furthermore, WTX alone activated G-protein coupling with all mAChR subtypes and reduced the efficacy of acetylcholine in activating G-proteins with the M1, M4, and M5 subtypes. Our data demonstrate an orthosteric WTX interaction with nAChR and an allosteric interaction with mAChRs.
Article
Muscarinic receptors mediate metabotropic actions of acetylcholine in the CNS and PNS and autocrine functions of acetylcholine in non-neuronal systems. Because of the lack of highly selective muscarinic ligands, the precise location, functional role, and roles in various diseases of the five muscarinic receptor subtypes remain unclear. Muscarinic toxins isolated from the venom of Dendroaspis snakes have a natural high affinity and selectivity, associated with roles as competitive antagonists, allosteric modulators, and potential agonists. These toxins may therefore be invaluable tools for studying muscarinic receptors. We review data on the structural and pharmacological characterization of the muscarinic toxins, focusing on recent structure-function studies on toxin-receptor interactions. We discuss the potential benefits of using these toxins for investigating muscarinic function in vivo.
Article
Snake venoms are a rich source of various compounds that have applications in medicine and biochemistry. Recently, it has been demonstrated that najanalgesin isolated from the venom of Naja naja atra exerts analgesic effects on acute pain in mice. The objective of this study was to evaluate the antinociceptive effect of najanalgesin in a rat model of neuropathic pain, induced by L5 spinal nerve ligation and transaction. We observed that intraperitoneal (i.p.) administration of najanalgesin produced significant increase in hind paw withdrawal latency (HWL) in response to both mechanical and thermal stimulation. Moreover, a single dose of najanalgesin was able to induce antinociceptive activity that lasted for 1 week. Intrathecal injection of najanalgesin increased the HWL in response to mechanical stimuli. The antinociceptive effect of najanalgesin administered intrathecally was partly inhibited by intrathecal injection of naloxone or atropine. These results demonstrate that najanalgesin has antinociceptive effects on the central and peripheral system in the rat neuropathic pain model. The opioid receptor and muscatinic receptor are involved in najanalgesin-induced antinociception in the spinal cord. This research supports the possibility of using najanalgesin as a novel pharmacotherapeutic agent for neuropathic pain.
Article
The inhibition of locus coeruleus (LC) acetylcholinesterase (AChE) by Fasciculin II (FAS), a novel anticholinesterase peptide from the green mamba (Dendroaspis angusticeps) venom, was studied in rats. FAS was stereotaxically injected (0.5 microliters of a 1 mg/ml solution) in the right LC. The left LC was taken as control. A group of rats received only saline injected with the same procedure. An inhibition of 80% of LC AChE activity was observed 24 h later. Monoamine and metabolite levels were assessed by high-performance liquid chromatography (HPLC) with electrochemical detection. A significant increase of noradrenaline (NA) levels was found in the injected side when compared with controls 24 h after injection. Neither dopamine, serotonin nor their metabolites or the NA metabolite 4-methoxyhydroxyphenylglycol showed any change after FAS injection. Atropine (30 mg/kg, i.p.) did not prevent the NA increase.
Article
Snake venom phospholipase A2 enzymes induce a wide variety of pathological symptoms in animals, despite sharing a common catalytic activity and similar structural features with nontoxic mammalian pancreatic enzymes. A hypothetical model is described to explain how specific pharmacological effects, such as presynaptic neurotoxicity, cardiotoxicity, myotoxicity, anticoagulant and platelet effects are exhibited by venom PLA2 enzymes. The model is an effort to elucidate many controversial and contradictory observations which have previously been difficult to interpret. The essential feature of the model is the targeting of venom PLA2 enzymes to the specific tissue or cell due to their affinity towards specific proteins, rather than lipid domains. After the initial binding, PLA2 enzymes induce various pharmacological effects by mechanisms which are either dependent or independent of their enzymatic activity. The model and its predicted target proteins thus provide a new focus for toxin research.
Article
The interaction of snake alpha-neurotoxins with neuronal membranes has been examined in the chick ciliary ganglion. Some, but not all, alpha-neurotoxins block nicotinic transmission in this ganglion. alpha-Bungarotoxin (ABgT), the major alpha-neurotoxin in the venom of Bungarus multicinctus, does not block transmission at high concentrations (1.2 microM) although it binds (Kd = 1 nM) to a pharmacologically nicotinic site in the ganglion. A toxin (kappa-bungarotoxin, KBgT) has been purified from the venom of Bungarus multicinctus. KBgT has a molecular weight of 6500 daltons and a pI of 9.1. KBgT is a potent inhibitor of nicotinic transmission in the ciliary ganglion, producing a reversible (overal several hours) blockade at 75 nM. Pre-exposure of ganglia to 1.2 microM ABgT does not prevent the effects of KBgT, indicating that the blockade occurs at a site distinct from that recognized by ABgT. Binding of [125I]KBgT to ciliary ganglia reveals two binding sites: one which has previously been characterized by [125I]ABgT and one which is not identified by [125I]ABgT. Both of these [125I]KBgT binding sites are blocked following pre-treatment of ganglia with the irreversible nicotinic affinity agent bromoacetylcholine. A two-site model is proposed to account for these observations. One site (the ABgT binding site) is seen by both ABgT and KBgT, and has as yet no physiological function associated with it. The second site is recognized only by the physiologically active KBgT, and may represent binding of the toxin to the physiologically detected nicotinic receptor.
Article
Homologues of dendrotoxin (Dtx) were isolated from the crude venom of Green and Black Mamba snakes and examined for K ⁺ channel blocking activity in neonatal rat dorsal root ganglion cells (DRGs) by whole‐cell patch clamp recording. Outward potassium current activated by depolarization was composed of two major components: a slowly inactivating current (SIC, τ decay ≅ 50ms, 200 ms and 2 s), and a non‐inactivating current (NIC, τ decay > 2 min). Tail current analysis revealed two time constants of deactivation of total outward current, 3–12 ms and 50–150 ms (at −80 mV) which corresponded to SIC and NIC, respectively. All the homologues (α‐, β‐, γ‐ and γ‐Dtx and toxins I and K) blocked outward current activated by depolarization in a dose‐dependent manner. The most potent in blocking total outward current was γ‐Dtx (EC 50 of 0.5 ± 0.2 n m ), although there were no statistically significant differences in potency between any of the homologues. Qualitative differences in the nature of the block were noted between homologues. In particular, the block by γ‐Dtx was time‐dependent, whereas that by γ‐Dtx was not. α‐Dtx was a much better blocker of SIC (EC 50 = 1.0 ± 0.4 n m ) than was γ‐Dtx (EC 50 = 17.6 ± 5.8 n m ). Furthermore, γ‐Dtx was selective for NIC (EC 50 ± 0.24 ± 0.03 n m ) over SIC and reduced the slow component of tail currents (NIC), preferentially. On the other hand, α‐Dtx did not significantly distinguish between SIC and NIC although tail current analysis showed that α‐Dtx preferentially reduced the fast component of tail currents (SIC). The results confirm, using direct electrophysiological methods, that homologues of dendrotoxins from Mamba snake venom block K ⁺ channels in rat sensory neurones. Furthermore, α‐Dtx and γ‐Dtx distinguish between sub‐types of K ⁺ channels in these cells and may thus be useful pharmacological tools in other neuronal K ⁺ channel studies.
Article
Calciseptine (CaS) is a natural peptidic L-type Ca2+ channel blocker consisting of 60 amino acids with four disulfide bonds. The effects of synthetic CaS on the binding of various ligands to Ca2+ channels of rat brain synaptosomal membranes were studied. The membranes possessed specific binding sites for L-type Ca2+ channel ligands [3H]nitrendipine, [3H]diltiazem and [3H]verapamil, derivatives of 1,4-dihydropyridine, benzothiazepine and papaverine, respectively, and also for N-type Ca2+ channel ligand omega-[125I]-conotoxin GVIA (omega-[125I]CTX). Lineweaver-Bulk plot analysis disclosed that CaS competitively inhibited the binding of [3H]nitrendipine, with maximal binding capacity of 0.19 pmol/mg protein and dissociation constant (Kd) of 290 nM, being about 10(3) times the Kd value of [3H]nitrendipine. Similar to nitrendipine, CaS noncompetitively enhanced the binding of [3H]diltiazem, but did not affect the binding of [3']verapamil. CaS at up to 10.0 microM did not affect the binding of omega-[125I]CTX. These observations indicate that CaS shares the properties of 1,4-dihydropyridine derivatives, and allosterically modulates the binding of other L-type Ca2+ channel ligands.
Article
Waglerins are 22-24 residue lethal peptides, found in the venom of Trimeresurus (Tropidolaemus) wagleri. The effects upon lethality and immunoreactivity resulting from structural modifications of these peptides were studied. A synthetic analogue with alanine residues in place of the two half-cystines of native peptide was nontoxic, suggesting that the single intramolecular disulfide bond in waglerins is critical for bioactivity. Substituting glutamic acid for aspartic acid at residue 5 slightly diminished lethality. Analogues containing asparagine instead of aspartic acid at residue 5 and/or a carboxamide- instead of a carboxy-terminus were lethal, demonstrating that neither a negative charge on residue 5 nor on the carboxy-terminus was required for bioactivity. A proteolytic fragment of waglerin I containing residues 6-22 was isolated and proved nontoxic. Therefore, one or more of the first five residues were necessary for bioactivity. Antiserum against waglerin I bound strongly to waglerins I, II, and SL-I, and to various analogues, proteolytic fragments, and chemically modified waglerin I. These findings suggest that the antibodies might be directed mainly against short, linear epitopes, implying an extended conformation for waglerin I.
Article
The pharmacological effects of a purified neurotoxin from king cobra (Ophiophagus hannah) venom were studied. Using the hot-plate test, it is shown that this neurotoxin increased latency time dose-dependently when administered i.p. Similar analgesic action was observed when it was administered p.o. or i.c.v. The rota-rod performance, which is a good index for neurological deficits including sedation, muscle relaxant and impairment of motor activity and coordination, was not significantly affected in the dose range of 16-32 ng/g that caused analgesia. The toxin did not increase the convulsion threshold in the dose range of 8-64 ng/g in the maximal electroshock seizure tests. These results demonstrated that this neurotoxin produced analgesia in the dose range of 16-32 ng/g (i.p.) without causing any neurological or muscular deficits. It is further shown that such analgesic action was blocked by naloxone and L-NG-nitro-arginine methyl ester, suggesting the possible involvement of the opioid and nitric oxide systems, respectively. In view of the source of this neurotoxin (O. hannah) and its potent analgesic action, it is proposed that this toxin be named hannalgesin.
Article
In the rat striatum, acetylcholine (ACh) increases dopamine (DA) release. The role of increased cholinergic activity provoked by acetylcholinesterase inhibitors (AChEi) on DA release is currently under revision after recent papers have shown a blockade of nicotinic transmission by AChEi in vitro. To study the effects of AChEi in vivo, Fasciculin2 (FAS), a peptidergic AChEi, and physostigmine (PHY), a classical carbamate AChEi, were applied through push-pull or microdialysis cannulae respectively, to the striatum of rats, alone or with ACh. Extracellular concentrations of DA were assessed by HPLC with electrochemical detection. Alone, the AChEi studied did not provoke changes in basal extracellular levels of DA, in the different doses studied. ACh (100 microM, 1 and 5 mM) applied through the push-pull cannulae in basal conditions provoked a dose-dependent increase of extracellular DA. This effect was not observed with ACh in concentrations of 100 microM and 1 mM if FAS (0.4 and 4.2 microM) was applied first. Higher concentrations of ACh (5 mM) evoked a partial response after FAS 0.42 microM, an effect still blocked by FAS at 4.2 microM. PHY 50 microM applied through microdialysis completely blocked the increase in DA release provoked by ACh 10, 20 mM, while at ACh 30 mM, PHY 50 microM only partially blocked the evoked increase. A partial blockade was also observed with PHY 20 microM, on the three different concentrations of ACh. On the other hand PHY 10 microM did not block any of the ACh doses perfused. These results showed that AChEi like FAS and PHY interfere with the ACh-evoked DA release in the striatum.
Article
The tertiary structure of waglerin I has been determined by NMR and dynamic simulated annealing [Chuang et al., Biochim. Biophys. Acta 1292, 145-155 (1996)]. It is believed that the peptide basicity of waglerin may play an important role for its activity due to its high content of basic amino acids. In order to investigate the active site of the toxin, seven analogues of waglerin, [Ala3]-waglerin, [Ala7]-waglerin, [Ala10]-waglerin, [Ala14]-waglerin, [Ala18]-waglerin, [Ala20]-waglerin and [Ala22]-waglerin have been synthesized chemically by single replacement of basic amino acid residues one by one with Ala. By correlation of structures for each analogue with LD50 toxicity bioassays, it is found that the [Ala10]-waglerin exhibits no toxicity and the active site of the native toxin seems to reside in the proximity of the disulfide loop, which is spatially close to His10. Furthermore, the closer is the disulfide loop to the basic amino acid in waglerin, the more influential is the basic amino acid on the toxicity of waglerin. Based on the tertiary structure of waglerin, the structures of all synthetic analogues were derived based on computer-simulated modelling. By the pair-wise structural comparison, the disulfide loop in [Ala10]-waglerin analogue is found to be twisted as compared to the native form, in agreement with the lack of toxicity for this synthetic analogue.
Article
From skin secretions of Bombina variegata and Bombina bombina, we isolated a small protein termed Bv8. The sequence of its 77 amino acids was established by peptide analysis and by cDNA cloning of the Bv8 precursor. Bv8 stimulates the contraction of the guinea-pig ileum at nanomolar concentrations. The contraction is not inhibited by a variety of antagonists. Injection of a few micrograms of Bv8 into the brain of rats elicits, as assessed by the tail-flick test and paw pressure threshold, a marked hyperalgesia which lasts for about 1 h. Bv8 is related to protein A, a component of the venom of the black mamba. After i.c.v. injection, protein A is even more active than Bv8 in inducing hyperalgesia.
Article
The nerve growth factor, NGF, from Chinese cobra Naja naja atra venom was isolated by gel-filtration and ion-exchange chromatography. Cobra NGF was characterized by analytical HPLC techniques as well as SDS-PAGE, and was proven to be a glycoprotein with a mol. wt. of 23 (+/- 2) kD and a pI of 9.2. The amino acid analysis and N-terminal sequencing were performed using conventional methods. Bioassays with cultured chick embryos ganglia and rat pheochromocytoma PC-12 cells revealed a promotion of fiber outgrowth, which is typical of NGF activity. Absence of enzymatic, toxicological, and teratogenic activities were shown by quality inspection. Since 1994, many clinical cases about volunteers receiving NGF treatment have been reported in mainland China. Bioactivities of NGF deal with a wide range of disciplines and technologies. In this paper we will discuss neuronal and non-neuronal effects of NGF treatment. Does the NGF cross the blood-brain barrier by transcytosis into the brain tissue? How is NGF important in wound healing, especially in peripheral nerve injury and diabetic neuritis? NGF may also be useful for male volunteers suffering from sterility, because it is possible that the sexual cells of testis can be promoted to maturity.
Article
Dendrotoxins are small proteins that were isolated 20 years ago from mamba (Dendroaspis) snake venoms (Harvey, A.L., Karlsson, E., 1980. Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps: a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Naunyn-Schmiedebergs Arch. Pharmacol. 312, 1-6.). Subsequently, a family of related proteins was found in mamba venoms and shown to be homologous to Kunitz-type serine protease inhibitors, such as aprotinin. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges. The dendrotoxins have little or no anti-protease activity, but they were demonstrated to block particular subtypes of voltage-dependent potassium channels in neurons. Studies with cloned K(+) channels indicate that alpha-dendrotoxin from green mamba Dendroaspis angusticeps blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas toxin K from the black mamba Dendroaspis polylepis preferentially blocks Kv1.1 channels. Structural analogues of dendrotoxins have helped to define the molecular recognition properties of different types of K(+) channels, and radiolabelled dendrotoxins have also been useful in helping to discover toxins from other sources that bind to K(+) channels. Because dendrotoxins are useful markers of subtypes of K(+) channels in vivo, dendrotoxins have become widely used as probes for studying the function of K(+) channels in physiology and pathophysiology.
Article
Dendrotoxins, important pharmacological tools for studying K(+) channels, are potently convulsant in the central nervous system and evidence suggests that different members of the dendrotoxin family may act at pre- or post-synaptic sites. Using a combination of intrahippocampal infusion, microdialysis and electroencephalograph (EEG) recording, we have compared the effects of alpha-dendrotoxin and dendrotoxin K on extracellular levels of excitatory amino acids in anaesthetised rats. Our findings show that although infusion of 35 pmol of both peptides was associated with elevated extracellular aspartate and glutamate, these increased levels were more sustained with dendrotoxin K. Furthermore, there was EEG evidence of an associated transient functional change consistent with an action on pre-synaptic K(+) channels. In contrast, infusion of alpha-dendrotoxin produced only a brief effect on amino acid levels and no evidence of a functional consequence.
Article
Three new polypeptides were isolated from the venom of the Thailand cobra Naja kaouthia and their amino-acid sequences determined. They consist of 65-amino-acid residues and have four disulfide bridges. A comparison of the amino-acid sequences of the new polypeptides with those of snake toxins shows that two of them (MTLP-1 and MTLP-2) share a high degree of similarity (55–74% sequence identity) with muscarinic toxins from the mamba. The third polypeptide (MTLP-3) is similar to muscarinic toxins with respect to the position of cysteine residues and the size of the disulfide-confined loops, but shows less similarity to these toxins (30–34% sequence identity). It is almost identical with a neurotoxin-like protein from Bungarus multicinctus (TrEMBL accession number Q9W727), the sequence of which has been deduced from cloned cDNA only. The binding affinities of the isolated muscarinic toxin-like proteins towards the different muscarinic acetylcholine receptor (mAChR) subtypes (m1–m5) was determined in competition experiments with N-[3H]methylscopolamine using membrane preparations from CHO-K1 cells, which express these receptors. We found that MTLP-1 competed weakly with radioactive ligand for binding to all mAChR subtypes. The most pronounced effect was observed for the m3 subtype; here an IC50 value of about 3 µm was determined. MTLP-2 had no effect on ligand binding to any of the mAChR subtypes at concentrations up to 1 µm. MTLP-1 showed no inhibitory effect on α-cobratoxin binding to the nicotinic acetylcholine receptor from Torpedo californica at concentrations up to 20 µm.
Article
gamma-Bungarotoxin was isolated from Bungarus multicinctus (Taiwan banded krait) venom using a combination of chromatography on a SP-Sephadex C-25 column and a reverse-phase high-performance liquid chromatography column. Circular dichroism (CD) measurement revealed that its secondary structure was dominant with beta-sheet structure as is that of snake venom alpha-neurotoxins and cardiotoxins. gamma-Bungarotoxin exhibits activity on inhibiting the binding of [3H]quinuclidinyl benzilate to the M2 muscarinic acetylcholine receptor subtype, and competes weakly with radioiodinated alpha-bungarotoxin for binding to the Torpedo nicotinic acetylcholine receptor. Moreover, the toxin inhibits collagen-induced platelet aggregation, with an IC50 of approximately 200 nM. The genomic DNA encoding the gamma-bungarotoxin precursor is amplified by polymerase chain reaction (PCR). The gene is organized with three exons separated by two introns, and shares virtually identical overall organization with those reported for alpha-neurotoxin and cardiotoxin genes, including similar intron insertions. The intron sequences of these genes share sequence identity up to 85%, but the exon sequences are highly variable. These observations suggest that gamma-bungarotoxin, alpha-neurotoxins, and cardiotoxins originate from a common ancestor, and the evolution of these genes shows a tendency to diversify the functions of snake venom proteins.
Article
In 1999, we purified pseudechetoxin (PsTx), the first peptide toxin known to block cyclic nucleotide-gated (CNG) ion channels, from the venom of Pseudechis australis [Brown, R. L., Haley, T. L., West, K. A., and Crabb, J. W. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 754-759]. Here we report the cloning of the cDNA encoding PsTx, as well as the discovery and cloning of pseudecin, a homologous toxin from the venom of Pseudechis porphyriacus. The mature proteins are 211 and 210 amino acids in length, and the amino acid sequences are 96.7% identical, differing in only seven residues. The purified toxins were applied to outside-out patches excised from Xenopus oocytes expressing CNG channels composed of the rod CNGA1 or olfactory CNGA2 channel subunits. Surprisingly, these patch-clamp studies revealed a 30-fold difference in affinity between PsTx and pseudecin for channels composed of CNGA2 subunits. The apparent K(i) of PsTx was 15 nM, while the affinity of pseudecin was 460 nM. The difference in affinities for the CNGA1 subunit from rod photoreceptors was less pronounced, but the affinity of PsTx was 70 nM, compared with 1000 nM for pseudecin. This difference in affinity may be instructive as we attempt to identify the regions of the toxins that contact CNG channels. As the only known protein blockers of CNG channels, these toxins promise to be valuable tools to study the structure of the external face of these channels.
Article
Two novel proteins, BM8 and BM14, were isolated from Bungarus multicinctus (Taiwan banded krait) venom using the combination of chromatography on a SP-Sephadex C-25 column and a reverse-phase HPLC column. Both proteins contained 82 amino acid residues including 10 cysteine residues, but there were two amino acid substitutions at positions 37 and 38 (Glu37-Ala38 in BM8; Lys37-Lys38 in BM14). CD spectra and acrylamide quenching studies revealed that the gross conformation of BM8 and BM14 differed. In contrast to BM8, BM14 inhibited the binding of [3H]quinuclidinyl benzilate to the M2 muscarinic acetylcholine (mAchR) receptor subtype. Trinitrophenylation of Lys residues abolished the mAchR-binding activity of BM14, indicating that the Lys substitutions at positions 37 and 38 played a crucial role in the activity of BM14. The genomic DNA encoding the precursor of BM14 was amplified by PCR. The gene shared virtually identical structural organization with alpha-neurotoxin and cardiotoxin genes. The intron sequences of these genes shared a sequence identity up to 84%, but the protein-coding regions were highly variable. These results suggest that BM8, BM14, neurotoxins and cardiotoxins may have originated from a common ancestor, and the evolution of snake venom proteins shows a tendency to diversify their functions.
Article
To investigate the therapeutic effects of a nerve growth factor (NGF) isolated and purified from the venom of Naja naja atra on injured sciatic nerves in adult cat. Model of sciatic nerve crush lesion in 20 cats was made. After the operation, in the therapeutic group, NGF(2 micrograms/kg) was injected intramuscularly into the cat's leg once a day for 10 d (n = 5) and for 30 d (n = 5) respectively; in the control group, NGF was not injected and the cats were allowed to survive 10 d (n = 5) and 30 d (n = 5) respectively. Ten days after the operation, the number of distal nerve fibers was significantly smaller in the control group than in the therapeutic group (P < 0.01); the reaction to planta stimulation appeared earlier and the leg action recovered faster in the therapeutic group. Thirty day after the operation, the number of distal nerve fibers in the therapeutic group was significantly greater than that of other groups (P < 0.01), but the histologic structure of the nerve fibers was in disorder and the axon and Ranvier node disappeared. About 16 days after injury and injection of NGF for consecutive days, the reaction to planta stimulation disappeared and leg paraplegia occurred in the operated side. The results showed that NGF could obviously reduce the degeneration of nerve fibers and enhance the peripheral nerve regeneration and functional recovery from ingury early, but daily injection of NGF in the injured region for a long period could significantly result in over-regeneration of nerve fibers, and the conductive function of the injured peripheral nerves would be lost.
Article
Recent in vitro studies of weak neurotoxins from snake venoms have demonstrated their ability to interact with both muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChR). However, the biological activity in vivo of weak neurotoxins remains largely unknown. We have studied the influence of weak neurotoxin (WTX) from the venom of cobra Naja kaouthia on arterial blood pressure (BP) and heart rate (HR) in rats and mice. It was found that intravenous injection of WTX induced a dose-dependent decrease in BP and an increase in HR in both species, the rats being more sensitive to WTX. Application of WTX following blockade of nAChRs or muscarinic acetylcholine receptors (mAChR) by hexamethonium or atropine, respectively, showed that both nAChRs and mAChRs are involved in the haemodynamic effects of WTX. Blockade of either nAChRs or mAChRs affected WTX action differently in rats and mice, thus reflecting interspecies differences in haemodynamic regulation.