ArticlePDF Available

Abstract and Figures

How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative “Paleoamerican” relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
Divergence estimates between Native Americans and Siberian Koryak. (A) The demographic model used allows for continuous gene flow between populations 1 and 2, starting from the time TDIV of divergence and ending at TM. The backward probability of migration per individual per generation is denoted by m. The bottleneck at TB captures the out-of-Africa event. (B) The red and black solid curves depict empirical distributions of IBS tracts shared between Karitiana-Koryak and Athabascan-Koryak, respectively. The orange, pink, dashed blue and dashed green curves depict IBS tracts shared between the two population pairs, simulated under two demographic models based on results from diCal2.0. Overall, for Karitiana-Koryak and Athabascan-Koryak, the migration scenarios (orange and pink, respectively) match the empirical curves (red and black, respectively) better than the clean split scenarios (dashed blue and dashed green, respectively), with more long IBS tracts showing evidence of recent common ancestry between Koryaks and Native Americans. (C and D) Relative cross coalescence rates (CCR) for the Karitiana-Koryak and Athabascan-Koryak divergence (red), respectively, including data simulated under the two demographic models in panel B. In both cases, the model with gene flow (orange) fits the data (red) better than the clean split model (blue). The migration model explains a broader CCR tail in the case of Karitiana-Koryak and the relatively late onset of the CCR decay for Athabascan-Koryak.
… 
Content may be subject to copyright.
Research Articles
It is generally agreed that ancestral Native Americans are
descendants of Siberian peoples who traversed the Bering
Land Bridge (Beringia) from northeast Asia in Late Pleisto-
cene times, and though consensus has yet to be reached, it is
mostly conceded that the Clovis archaeological complex,
dating to ca. 13 KYA, does not represent the first migration
as long supposed (17). Archaeological evidence accumulat-
ed over the last two decades indicates that people were
Genomic evidence for the Pleistocene and recent
population history of Native Americans
Maanasa Raghavan,1* Matthias Steinrücken,2,3,4* Kelley Harris,5* Stephan Schiffels,6* Simon
Rasmussen,7* Michael DeGiorgio,8* Anders Albrechtsen,9* Cristina Valdiosera,1,10* María C.
Ávila-Arcos,1,11* Anna-Sapfo Malaspinas,1* Anders Eriksson,12,13 Ida Moltke,9 Mait
Metspalu,14,15 Julian R. Homburger,11 Jeff Wall,16 Omar E. Cornejo,17 J. Víctor Moreno-Mayar,1
Thorfinn S. Korneliussen,1 Tracey Pierre,1 Morten Rasmussen,1,11 Paula F. Campos,1,18 Peter de
Barros Damgaard,1 Morten E. Allentoft,1 John Lindo,19 Ene Metspalu,14,15 Ricardo Rodríguez-
Varela,20 Josefina Mansilla,21 Celeste Henrickson,22 Andaine Seguin-Orlando,1 Helena
Malmström,23 Thomas Stafford Jr.,1,24 Suyash S. Shringarpure,11 Andrés Moreno-Estrada,11,25
Monika Karmin,14,15 Kristiina Tambets,14 Anders Bergström,6 Yali Xue,6 Vera Warmuth,26,27
Andrew D. Friend,28 Joy Singarayer,29 Paul Valdes,30 Francois Balloux,26 Ilán Leboreiro,21 Jose
Luis Vera,31 Hector Rangel-Villalobos,32 Davide Pettener,33 Donata Luiselli,33 Loren G. Davis,34
Evelyne Heyer,35 Christoph P. E. Zollikofer,36 Marcia S. Ponce de León,36 Colin I. Smith,10
Vaughan Grimes,37,38 Kelly-Anne Pike,37 Michael Deal,37 Benjamin T. Fuller,39 Bernardo
Arriaza,40 Vivien Standen,41 Maria F. Luz,42 Francois Ricaut,43 Niede Guidon,42 Ludmila
Osipova,44,45 Mikhail I. Voevoda,44,46,47 Olga L. Posukh,44,45 Oleg Balanovsky,48,49 Maria
Lavryashina,50 Yuri Bogunov,48 Elza Khusnutdinova,51,52 Marina Gubina,42 Elena
Balanovska,49 Sardana Fedorova,53,54 Sergey Litvinov,14,51 Boris Malyarchuk,55 Miroslava
Derenko,55 M. J. Mosher,56 David Archer,57 Jerome Cybulski,58,59,60 Barbara Petzelt,61
Joycelynn Mitchell,61 Rosita Worl,62 Paul J. Norman,63 Peter Parham,63 Brian M. Kemp,17,64
Toomas Kivisild,14,65 Chris Tyler-Smith,6 Manjinder S. Sandhu,6, 66 Michael Crawford,67
Richard Villems,14,15 David Glenn Smith,68 Michael R. Waters,69,70,71 Ted Goebel,69 John R.
Johnson,72 Ripan S. Malhi,19,73 Mattias Jakobsson,23 David J. Meltzer,1,74 Andrea Manica,12
Richard Durbin,6 Carlos D. Bustamante,11 Yun S. Song,2,3,75† Rasmus Nielsen,75† Eske
Willerslev,1
*These authors contributed equally to this work.
†Corresponding authors. E-mail: yss@berkeley.edu (Y.S.S.); rasmus_nielsen@berkeley.edu (R.N.); ewillierslev@snm.ku.dk
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide
data, we find that the ancestors of all present-day Native Americans, including Athabascans and
Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand
years ago (KYA), and after no more than 8,000-year isolation period in Beringia. Following their arrival to
the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 KYA, one
that is now dispersed across North and South America and the other is restricted to North America.
Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians
(including Siberians) and, more distantly, Australo-Melanesians. Putative ‘Paleoamerican’ relict
populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not
directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 1 / 10.1126/science.aab3884
on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from on July 22, 2015www.sciencemag.orgDownloaded from
south of the North American continental ice sheets more
than a millennium earlier and had reached as far south as
southern South America by at least ca. 14.6 KYA (13). In-
terpretations differ, however, regarding the precise spatio-
temporal dynamics of the peopling process, owing to ar-
chaeological claims for a significantly earlier human pres-
ence pre-dating the Last Glacial Maximum (LGM; ca. 20
KYA) (810), and conflicting interpretations of the number
and timing of migrations from Beringia based on anatomi-
cal and genetic evidence (1116). Much of the genetic evi-
dence is from studies of mitochondrial DNA (mtDNA) and
Y-chromosome, which as single, uniparentally inherited loci
are particularly subject to genetic drift and sex-biased de-
mographic and cultural practices.
Among the principal issues still to be resolved regarding
the Pleistocene and recent population history of Native
Americans are: (i) the timing of their divergence from their
Eurasian ancestors; (ii) whether the peopling was in a single
wave or multiple waves, and, consequently, if the genetic
differences seen between major subgroups of Native Ameri-
cans (e.g., Amerindian and Athabascan) result from differ-
ent migrations or in situ diversification in the Americas (5,
6, 17, 18); (iii) if the migration involved ca. 15,000 years of
isolation in the Bering Strait region, as proposed by the Ber-
ingian Incubation Model to explain the high frequency of
unique and widespread American mitogenomes and private
genetic variants (1922); and, finally, (iv) if there was post-
divergence gene flow from Eurasia and possibly even popu-
lation replacement in the Americas, the latter suggested by
the apparent differences in skull morphology between some
early (‘Paleoamerican’) remains and those of more recent
Native Americans (2327). We address these issues using
genomic data derived from modern populations, supple-
mented by ancient specimens that provide chronologically
controlled snapshots of the genetics of the peopling process
as it unfolded.
We sequenced 31 genomes from present-day individuals
from the Americas, Siberia and Oceania to an average depth
of ca. 20X: Siberians Altai (n = 2), Buryat (n = 2), Ket
(n=2), Koryak (n = 2), Sakha (n = 2), Siberian Yupik (n = 2);
North American Native Americans Tsimshian (n =);
southern North American and Central and South American
Natives Pima (n = 1), Huichol (n = 1), Aymara (n = 1),
Yukpa (n = 1); and, Oceanians Papuan (n = 14) (28) (Table
S1). All the genome-sequenced present-day individuals were
previously genotyped using single nucleotide polymorphism
(SNP) chips (4, 2935) except for the Aymara individual that
was SNP chip genotyped in this study (tables S3 and S4).
They were selected on the basis of their ancestry profiles
obtained with ADMIXTURE (36) to best represent their re-
spective populations, and to minimize recent genetic admix-
ture from populations of western Eurasian origin (28). For
populations represented by more than one individual, we
also verified from the genotype data that the sequenced in-
dividuals did not represent close relatives (28). We addi-
tionally sequenced 23 genomes from ancient individuals
dating between ca. 0.2-6 KYA from North and South Ameri-
ca, with an average depth ranging between 0.003X and 1.7X,
including specimens affiliated to putative relict Paleoameri-
can groups such as the Pericúes from Mexico and Fuego-
Patagonians from the southernmost tip of South America
(23, 2628) (table S5). Finally, we generated SNP chip geno-
type data from 79 present-day individuals belonging to 28
populations from the Americas and Siberia (28) (table S4).
All the aforementioned datasets were analyzed together
with previously published genomes and SNP chip genotype
data (Tables S1, S3, and S4), masking the data for recent
European admixture in some present-day Native American
populations (28).
The structure of Native American populations and
the timing of their initial divergence
We explored the genetic structure of Native American
populations in the context of worldwide populations using
ADMIXTURE (36), employing a reference panel consisting
of 3,053 individuals from 169 populations (table S3) (28).
The panel included SNP chip genotype data from present-
day individuals generated in this study and previously pub-
lished studies, as well as the 4,000 year-old Saqqaq individ-
ual from Greenland (29) and the 12,600 year-old Anzick-1
(Clovis culture) individual from Montana (5) (table S3).
When assuming four ancestral populations (K=4), we found
a Native American-specific genetic component, indicating a
shared genetic ancestry for all Native Americans including
Amerindians and Athabascans (fig. S4). Assuming K=15,
there is structure within the Native Americans. Athabascans
and northern Amerindians (primarily from Canada) differ
from the rest of the Native Americans in sharing their own
genetic component (fig. S4). As reported previously, Anzick-
1 falls within the genetic variation of southern Native Amer-
icans (5), while the Saqqaq individual shares genetic com-
ponents with Siberian populations (fig. S4) (29).
To ascertain the population history of present-day Amer-
ican populations in relation to worldwide populations, we
generated admixture graphs with TreeMix (28, 37). All the
modern Siberian and Native American genomes sequenced
in this study, except for the North American Tsimshian ge-
nome that showed evidence of recent western Eurasian ad-
mixture (28), were used for this analysis, together with
previously published genomes from Africa (Yoruba) (38),
Europe (Sardinian, French) (38), East Asia (Dai, Han) (38),
Siberia (Nivkh) (39) and the Americas (Karitiana, Athabas-
can, Greenlandic Inuit) (5, 38, 39) (table S1). The ancient
individuals included in the analysis were Saqqaq, Anzick-1
and the 24,000 year-old Mal’ta child from south-central Si-
beria (4). TreeMix affirms that all Native Americans form a
monophyletic group across all ten migration parameter val-
ues, with further diversification into two branches, one rep-
resenting Amerindians (represented in this analysis by
Amerindians from southern North America and Central and
South America) and the other Athabascans (Fig. 1B and fig.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 2 / 10.1126/science.aab3884
S5). Paleo-Eskimos and Inuit were supported as a separate
clade relative to the Native Americans, as reported previous-
ly (Fig. 1B and fig. S5) (29, 39). Our results show that the
Siberian Yupik and Koryak are the closest Eurasian popula-
tions to the Americas, with the Yupik likely representing
back-migration of the Inuit into Siberia (Fig. 1B and fig. S5).
To assess the pattern of the earliest human dispersal into
the Americas, we estimated the timing of the divergence of
ancestral Native Americans from East Asians (hereafter,
including Siberians) using multiple methods. There is still
some debate regarding mutation rates in the human ge-
nome (40), and this uncertainty could affect our estimates
and results.
We applied diCal2.0 (28) (Method 1), a new version of
diCal (41) extended to handle complex demographic models
involving multiple populations with migration (42), and an
identity-by-state (IBS) tract method (43) (Method 2) to the
modern genome dataset (28). With these, we first estimated
divergence times between Native Americans and the Koryak
of Siberia, one of the genetically closest sampled East Asian
populations to Native Americans (fig. S5), using demograph-
ic models that reflect a clean split between the populations
(28). With both diCal2.0 and IBS tract method, the split of
Native Americans (including Amerindians and Athabascans)
from the Koryak dates to ca. 20 KYA (28) (tables S11A and
S12 and fig. S15).
We further applied diCal2.0 to models with gene flow
post-dating the split between Native Americans and Koryak
(Fig. 2A) and found that they provided a better fit to the
data than the models without gene flow (28). Overall, simu-
lated databased on the models inferred using diCal2.0 and
real data show very similar IBS tract length distributions
(Fig. 2B) and relative cross coalescence rates (CCR) between
pairs of individuals estimated using the Multiple Sequential-
ly Markovian Coalescent (MSMC) method (Method 3) (28,
44) (Figs. 2, C and D). This serves as a confirmation for the
model estimates from diCal2.0. We evaluated all the three
methods using simulations under complex demographic
models, and additionally investigated the effects of switch-
errors in haplotype phasing on the estimates (28).
We then applied the diCal2.0 model that allows for gene
flow between populations after their split to estimate diver-
gence times for Native Americans from more geographically
and genetically distant East Asian groups, including the Si-
berian Nivkh and Han Chinese. As before, the divergence
estimates for Amerindians and Athabascans were very simi-
lar to one another, ca. 23 KYA (table S11B and figs. S18 and
S21).
Hence, our results suggest that Amerindians and Atha-
bascans were, by three different methods, consistently equi-
distant in time to populations that were sampled from
different regions of East Asia, including some proximate to
Beringia, and with varied population histories. This suggests
that these two major Native American sub-groups are de-
scendants of the same source population that split off from
ancestral East Asians during the LGM. It is conceivable that
harsh climatic conditions during the LGM may have con-
tributed to the isolation of ancestral Native Americans, ul-
timately leading to their genetic divergence from their East
Asian ancestors.
We also modeled the peopling of the Americas using a
climate-informed spatial genetic model (CISGeM), in which
the genetic history and local demography is informed by
paleoclimatic and paleovegetation reconstructions (28, 45),
and found the results to be in accordance with the conclu-
sion of a single migration source for all Native Americans.
Using present-day and ancient high coverage genomes, we
found that Athabascans and Anzick-1, but not Greenlandic
Inuit and Saqqaq (29, 39), belong to the same initial migra-
tion wave that also gave rise to present-day Amerindians
from southern North America and Central and South Amer-
ica (Fig. 3), and that this migration likely followed a coastal
route, given our current understanding of the glacial geolog-
ical and paleoenvironmental parameters of the Late Pleisto-
cene (fig. S31).
In all cases, the best fit of the demographic models to the
IBS tract distribution and relative CCR by MSMC required
gene flow between Siberian and Native American popula-
tions after their initial split (Figs. 2, B to D). We also found
strong evidence for gene flow between Athabascans and the
Inuit (table S11B) supported by results from ADMIXTURE
(fig. S4), TreeMix (fig. S5), D-statistics employing both whole
genome and SNP chip genotype data (28, 46, 47) (figs. S6
and S8A), and outgroup f3 statistics using whole genome
data (28, 47) (Fig. S12). We attempted to estimate the diver-
gence times between Inuit and Siberians as well as Inuit
and Native Americans (table S11 and figs. S19 and S25 to
S27), but our analyses were complicated by gene flow be-
tween Inuit and Athabascans as well as complex admixture
patterns among Arctic groups (fig. S5).
We tested the duration and magnitude of post-split gene
flow between Native Americans and Siberians using di-
Cal2.0 by introducing stopping time of gene flow as a free
parameter (28). We still obtained the highest likelihood for
a divergence time of 22 KYA between Amerindians and Si-
berians as well as Athabascans and Siberians, although es-
timates for gene flow rate and end of the gene flow differ
(table S11C and fig. S22). Significant gene flow between Ath-
abascans and Siberians seems to have stopped ca. 12 KYA
(Table S11C), suggesting a link to the breaching of the Ber-
ingian Land Bridge by rising sea levels (48).
Overall, our results support a common Siberian origin
for all Native Americans, contradicting claims for an early
migration to the Americas from Europe (49), with their ini-
tial isolation and entrance into the Americas occurring no
earlier than 23 KYA, but with subsequent admixture with
East Asian populations. This additionally suggests that the
Mal’ta-related admixture into the early Americans (4), rep-
resenting ancestors of both Amerindians and Athabascans
(Fig. 1 and fig. S5), occurred sometime after 23 KYA, follow-
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 3 / 10.1126/science.aab3884
ing the Native American split from East Asians.
Subsequent in situ diversification of Native Ameri-
can groups
That Amerindian and Athabascan groups were part of
the same migration implies that present-day genetic differ-
ences observed between them must have arisen later, after
ca. 23 KYA. Using the clean-split model in diCal2.0 on the
modern genomes dataset, we estimated that Athabascans
and Karitiana diverged ca. 13 KYA (95% confidence interval
of ca. 11.5-14.5 KYA, estimated from parametric bootstrap
results) (table S11A, fig. S16), which is consistent with results
from MSMC (fig. S27) (28).
Where the divergence between Karitiana and Athabas-
cans occurred is not known. However, several independent
lines of evidence suggest that it is more likely to have oc-
curred in lower latitude North America instead of eastern
Beringia (Alaska). These include the equidistant split times
of Amerindians and Athabascans to Asian populations, the
relatively brief interval between their estimated divergence
date range and the age of Anzick-1 (12.6 KYA) (5), and lastly,
the geographic location of Anzick-1 to the south of the North
American ice sheets and its clear affiliation with the ‘south-
ern branch’ of Native Americans (taken broadly to include
Amerindians from southern North America and Central and
South America) (5), as determined with outgroup f3 statistics
using SNP chip genotype data from present-day worldwide
populations (47) (Fig. 4 and figs. S13 and S14). Divergence in
North America would also be consistent with the known
pre-Clovis age sites in the Americas, such as Monte Verde
(14.6 KYA) (50). The most parsimonious model would be
that both Amerindians and Athabascans are descendants of
the same ancestral Native American population that entered
the Americas then subsequently diversified. However, we
cannot discount alternative and more complex scenarios,
which could be tested with additional ancient samples.
By the Clovis period (ca. 12.6 KYA), the ancestral Native
American population had already diversified into 'northern'
and 'southern' branches, with the former including ances-
tors of present-day Athabascans and northern Amerindian
groups such as Chipewyan, Cree and Ojibwa and the latter
including Amerindians from southern North America and
Central and South America (Fig. 4 and fig. S14). We tested
whether later gene flow from East Asian sources, such as the
Inuit, might explain the genetic differences between these
two branches. Using D-statistics on SNP chip genotype data
(47) masked for non-Native ancestry, we observed a signal of
gene flow between the Inuit and northwest Pacific Coast
Amerindians such as Coastal Tsimshian and Nisga’a, resid-
ing in the same region as the northern Athabascans (28)
(fig. S8B). However, this signal of admixture with the Inuit,
also detected in Athabascans (figs. S6 and S8A), was not
evident among northern Amerindian populations located
further east such as Cree, Ojibwa and Chipewyan (28) (fig.
S8C). This suggests that the observed difference between the
‘northern’ and ‘southern’ branches is not a consequence of
post-split East Asian gene flow into the ‘northern branch’,
and also provides a possible explanation as to why the
’southern branch’ Amerindians such as Karitiana are genet-
ically closer to the northern Amerindians located further
east than to northwest coast Amerindians and Athabascans
(fig. S9).
In contrast to Anzick-1, several of the Holocene individu-
als from the Americas, including those sequenced in this
study as well as the 8,500 year old Kennewick Man (51), are
closely related to present-day Native American populations
from the same geographical regions (Fig. 4 and figs. S13 and
S14). This implies genetic continuity of ancient and modern
populations in some parts of the Americas over at least the
last 8.5 KYA, which is in agreement with recent results from
Kennewick Man (51).
Evidence of more distant Old World gene flow into
some Native Americans
When testing for gene flow between Athabascans and
Inuit with masked SNP chip genotype data-based D-
statistics (47) (fig. S8), we observed a weak tendency for the
Inuit to be much closer to the Athabascans than to certain
Amerindians like the North American Algonquin and Cree,
and the Yaqui and Arhuaco of Central and South America
(respectively), as compared to other Amerindians such as
the Palikur and Surui of Brazil (fig. S8).
To further investigate this trend, we tested for additional
gene flow from Eurasian populations into the Americas with
D-statistics using the masked SNP chip genotype dataset
(47). We found that some American populations, including
the Aleutian Islanders, Surui, and Athabascans are closer to
Australo-Melanesians compared to other Native Americans,
such as North American Ojibwa, Cree and Algonquin, and
the South American Purepecha, Arhuaco and Wayuu (fig.
S10). The Surui are, in fact, one of closest Native American
populations to East Asians and Australo-Melanesians, the
latter including Papuans, non-Papuan Melanesians, Solo-
mon Islanders, and South East Asian hunter-gatherers such
as Aeta (fig. S10). We acknowledge that this observation is
based on the analysis of a small fraction of the whole ge-
nome and SNP chip genotype datasets, especially for the
Aleutian Islander data that is heavily masked due to recent
admixture with Europeans (28), and that the trends in the
data are weak.
Nonetheless, if it proves correct, these results suggest
there may be a distant Old World signal related to Australo-
Melanesians and East Asians in some Native Americans.
The widely scattered and differential affinity of Native
Americans to the Australo-Melanesians, ranging from a
strong signal in the Surui to much weaker signal in north-
ern Amerindians such as Ojibwa, points to this gene flow
occurring after the initial peopling by Native American an-
cestors.
However, how this signal may have ultimately reached
South America remains unclear. One possible means is
along a northern route via the Aleutian Islanders, previously
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 4 / 10.1126/science.aab3884
found to be closely related to the Inuit (39), who have a rela-
tively greater affinity to East Asians, Oceanians and Den-
isovan than Native Americans in both whole genome and
SNP chip genotype data-based D-tests (table S10 and figs.
S10 and S11). On the basis of archaeological evidence and
mtDNA data from ancient and modern samples, the Aleu-
tian Islands are hypothesized to have been peopled as early
as ca. 9 KYA by ‘Paleo-Aleuts’ who were succeeded by the
‘Neo-Aleuts’, with present-day Aleutian Islanders potentially
resulting from admixture between these two populations
(52, 53). Perhaps their complex genetic history included in-
put from a population related to Australo-Melanesians
through an East Asian continental route, and this genomic
signal might have been subsequently transferred to parts of
the Americas, including South America, through past gene
flow events (Fig. 1). Evidence for this gene flow is supported
by diCal2.0 and MSMC analyses showing a weak but recent
gene flow into South Americans from populations related to
present-day Northeast Asians (Koryak) (Fig. 2C and table
S11C), who might be considered a proxy for the related Aleu-
tian Islanders.
Testing the Paleoamerican model
The detection of an Australo-Melanesian genetic signal
in the Americas, however subtle, returns the discussion to
the Paleoamerican model, which hypothesizes, on the basis
of cranial morphology, that two temporally and source-
distinct populations colonized the Americas. The earlier
population reportedly originated in Asia in the Late Pleisto-
cene and gave rise to both Paleoamericans and present-day
Australo-Melanesians, whose shared cranial morphological
attributes are presumed to indicate their common ancestry
(23). The Paleoamericans were, in turn, thought to have
been largely replaced by ancestors of present-day Amerindi-
ans, whose crania resemble modern East Asians and who
are argued to be descendants of later arriving Mongoloid
populations (14, 23, 26, 54). The presence of Paleoamericans
is inferred primarily from ancient archaeological specimens
in North and South America, and a few relict populations of
more recent age, which include the extinct Pericúes and
Fuego-Patagonians (24, 25, 55).
The Paleoamerican hypothesis predicts that these groups
should be genetically closer to Australo-Melanesians than
other Amerindians. Previous studies of mtDNA and Y chro-
mosome data obtained from Fuego-Patagonian and Paleo-
american skeletons have identified haplogroups similar to
those of modern Native Americans (5557). Although these
results indicate some shared maternal and paternal ancestry
with contemporary Native Americans, uniparental markers
can be misleading when drawing conclusions about the de-
mographic history of populations. To conclusively identify
the broader population of ancestors who may have contrib-
uted to the Paleoamerican gene pool, autosomal genomic
data are required.
We, therefore, sequenced 17 ancient individuals affiliated
to the now-extinct Pericúes from Mexico and Fuego-
Patagonians from Chile and Argentina (28), who, on the
basis of their distinctive skull morphologies, are claimed to
be relicts of Paleoamericans (23, 27, 58, 59). Additionally, we
sequenced two pre-Columbian mummies from northern
Mexico (Sierra Tarahumara) to serve as morphological con-
trols, since they are expected to fall within the range of Na-
tive American morphological cranial variation (28). We
found that the ancient samples cluster with other Native
American groups and are outside the range of Oceanian ge-
netic variation (28) (Fig. 5 and figs. S32, S33, and S34). Simi-
larly, outgroup f3 statistics (47) reveal low shared genetic
ancestry between the ancient samples and Oceanians (28)
(Figs. S36, S37), and genome-based and masked SNP chip
genotype data-based D-statistics (46, 47) show no evidence
for gene flow from Oceanians into the Pericúes or Fuego-
Patagonians (28) (fig. S39).
As the Paleoamerican model is based on cranial mor-
phology (23, 27, 58, 59), we also measured craniometric data
for the ancient samples and assessed their phenotypic affin-
ities to supposed Paleoamericans, Amerindians and world-
wide populations (28). The results revealed that the
analyzed Fuego-Patagonians showed closest craniometric
affinity to Arctic populations and the Paleoamericans, while
the analyzed female Pericúes showed closest craniometric
affinities to populations from North America, the Arctic re-
gion and Northern Japan (table S15). More importantly, our
analyses demonstrated that the presumed ancestral ancient
Paleoamerican reference sample from Lagoa Santa, Brazil
(24) had closest affinities to Arctic and East Asian popula-
tions (table S15). Consequently, for the Fuego-Patagonians,
the female Pericúes and the Lagoa Santa Paleoamerican
sample, we were not able to replicate previous results (24)
that report close similarity of Paleoamerican and Australo-
Melanesian cranial morphologies. We note that male
Pericúes samples displayed more craniometric affinities
with populations from Africa and Australia relative to the
female individuals of their population (fig. S41). The results
of analyses based on craniometric data are, thus, highly sen-
sitive to sample structure and the statistical approach and
data filtering used (51). Our morphometric analyses suggest
that these ancient samples are not true relicts of a distinct
migration, as claimed, and hence do not support the Paleo-
american model. Similarly, our genomic data also provide
no support for an early migration of populations directly
related to Australo-Melanesians into the Americas.
Discussion
That Native Americans diverged from their East Asian
ancestors during the LGM and no earlier than 23 KYA pro-
vides an upper bound, and perhaps the climatic and envi-
ronmental context, for the initial isolation of their ancestral
population, and a maximum estimate for the entrance and
subsequent spread into the Americas. This result is con-
sistent with the model that people entered the Americas
prior to the development of the Clovis complex and had
reached as far as southern South America by 14.6 KYA. As
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 5 / 10.1126/science.aab3884
archaeological evidence provides only a minimum age for
human presence in the Americas, we can anticipate the pos-
sible discovery of sites that approach the time of the diver-
gence of East Asians and Native Americans. However, our
estimate for the initial divergence and entry of Native Amer-
ican ancestors does not support archaeological claims for an
initial peopling significantly earlier than the LGM (810).
While our data cannot provide the precise geographical
context for the initial peopling process, it has allowed us to
more accurately estimate its temporal dynamics. This, in
turn, has enabled us to re-assess the Beringian Incubation
Model, which, based on mtDNA data and the timing and
geographical distribution of archaeological sites, hypothe-
sized a ca. 15,000 year-long period of isolation of ancestral
Native Americans in Beringia during the LGM (1921). Our
results, along with recent findings of mtDNA haplogroup C1
in Iceland and ancient northwest Russia (60), do not fit with
the proposed 15,000-year span of the Beringian Incubation
Model (1921). It is possible that a shorter period of isola-
tion occurred (ca. 8 KYA), but whether it occurred in Siberia
or Beringia will have to be determined by future ancient
DNA and archaeological findings. Given the genetic continu-
ity between Native Americans and some East Asian popula-
tions (figs. S4 and S5), other demographic factors, such as
surfing during population expansions into unoccupied re-
gions (61), may ultimately need to be taken into account to
better understand the presence of a large number of high
frequency private variants in the indigenous populations of
the Americas.
The data presented here are consistent with a single ini-
tial migration of all Native Americans and with later gene
flow from sources related to East Asians and, more distant-
ly, Australo-Melanesians. From that single migration, there
was a diversification of ancestral Native Americans leading
to the formation of ‘northern’ and ‘southern’ branches,
which appears to have taken place ca. 13 KYA within the
Americas. This split is consistent with the patterns of unip-
arental genomic regions of mtDNA haplogroup X and some
Y chromosome C haplotypes being present in northern, but
not southern, populations in the Americas (18, 62). This di-
versification event coincides roughly with the opening of
habitable routes along the coastal and the interior corridors
into unglaciated North America some 16 KYA and 14 KYA,
respectively (63, 64), suggesting a possible role of one or
both these routes in the isolation and subsequent dispersal
of Native Americans across the continent.
Methods
DNA was extracted from 31 present-day individuals from
the Americas, Siberia and Oceania and 23 ancient samples
from the Americas, and converted to Illumina libraries and
shotgun-sequenced (28). Three of the ancient samples were
radiocarbon dated, of which two were corrected for marine
reservoir offset (28). SNP chip genotype data was generated
from 79 present-day Siberians and Native Americans affili-
ated to 28 populations (28). Raw data from SNP chip and
shotgun sequencing were processed using standard compu-
tational procedures (28). Error rate analysis, DNA damage
analysis, contamination estimation, sex determination,
mtDNA and Y chromosome haplogroup assignment,
ADMIXTURE analysis, ancestry painting and admixture
masking, Principal Component Analysis using SNP chip
genotype data, TreeMix analysis on genomic sequence data,
D-statistic and outgroup f3-statistic tests on SNP chip geno-
type and genomic sequence data, divergence time estima-
tion using diCal2.0, an IBS tract method and MSMC,
Climate-Informed Spatial Genetic Model analysis, and, cra-
niometric analysis were performed as described (28).
REFERENCES AND NOTES
1. T. D. Dillehay, The late Pleistocene cultures of South America. Evol. Anthropol.
7
,
206216 (1999). doi:10.1002/(SICI)1520-6505(1999)7:6<206::AID-
EVAN5>3.0.CO;2-G
2. D. L. Jenkins, L. G. Davis, T. W. Stafford Jr., P. F. Campos, B. Hockett, G. T. Jones,
L. S. Cummings, C. Yost, T. J. Connolly, R. M. Yohe 2nd, S. C. Gibbons, M.
Raghavan, M. Rasmussen, J. L. Paijmans, M. Hofreiter, B. M. Kemp, J. L. Barta, C.
Monroe, M. T. Gilbert, E. Willerslev, Clovis age Western Stemmed projectile
points and human coprolites at the Paisley Caves. Science
337
, 223228 (2012).
Medline
3. D. J. Meltzer, First Peoples in a New World: Colonizing Ice Age America (University
of California Press, Berkeley, 2009).
4. M. Raghavan, P. Skoglund, K. E. Graf, M. Metspalu, A. Albrechtsen, I. Moltke, S.
Rasmussen, T. W. Stafford Jr., L. Orlando, E. Metspalu, M. Karmin, K. Tambets,
S. Rootsi, R. Mägi, P. F. Campos, E. Balanovska, O. Balanovsky, E.
Khusnutdinova, S. Litvinov, L. P. Osipova, S. A. Fedorova, M. I. Voevoda, M.
DeGiorgio, T. Sicheritz-Ponten, S. Brunak, S. Demeshchenko, T. Kivisild, R.
Villems, R. Nielsen, M. Jakobsson, E. Willerslev, Upper Palaeolithic Siberian
genome reveals dual ancestry of Native Americans. Nature
505
, 8791 (2014).
Medline doi:10.1038/nature12736
5. M. Rasmussen, S. L. Anzick, M. R. Waters, P. Skoglund, M. DeGiorgio, T. W.
Stafford Jr., S. Rasmussen, I. Moltke, A. Albrechtsen, S. M. Doyle, G. D. Poznik, V.
Gudmundsdottir, R. Yadav, A.-S. Malaspinas, S. S. White 5th, M. E. Allentoft, O. E.
Cornejo, K. Tambets, A. Eriksson, P. D. Heintzman, M. Karmin, T. S.
Korneliussen, D. J. Meltzer, T. L. Pierre, J. Stenderup, L. Saag, V. M. Warmuth, M.
C. Lopes, R. S. Malhi, S. Brunak, T. Sicheritz-Ponten, I. Barnes, M. Collins, L.
Orlando, F. Balloux, A. Manica, R. Gupta, M. Metspalu, C. D. Bustamante, M.
Jakobsson, R. Nielsen, E. Willerslev, The genome of a Late Pleistocene human
from a Clovis burial site in western Montana. Nature
506
, 225229 (2014).
Medline doi:10.1038/nature13025
6. D. Reich, N. Patterson, D. Campbell, A. Tandon, S. Mazieres, N. Ray, M. V. Parra,
W. Rojas, C. Duque, N. Mesa, L. F. García, O. Triana, S. Blair, A. Maestre, J. C. Dib,
C. M. Bravi, G. Bailliet, D. Corach, T. Hünemeier, M. C. Bortolini, F. M. Salzano, M.
L. Petzl-Erler, V. Acuña-Alonzo, C. Aguilar-Salinas, S. Canizales-Quinteros, T.
Tusié-Luna, L. Riba, M. Rodríguez-Cruz, M. Lopez-Alarcón, R. Coral-Vazquez, T.
Canto-Cetina, I. Silva-Zolezzi, J. C. Fernandez-Lopez, A. V. Contreras, G.
Jimenez-Sanchez, M. J. Gómez-Vázquez, J. Molina, A. Carracedo, A. Salas, C.
Gallo, G. Poletti, D. B. Witonsky, G. Alkorta-Aranburu, R. I. Sukernik, L. Osipova,
S. A. Fedorova, R. Vasquez, M. Villena, C. Moreau, R. Barrantes, D. Pauls, L.
Excoffier, G. Bedoya, F. Rothhammer, J. M. Dugoujon, G. Larrouy, W. Klitz, D.
Labuda, J. Kidd, K. Kidd, A. Di Rienzo, N. B. Freimer, A. L. Price, A. Ruiz-Linares,
Reconstructing Native American population history. Nature
488
, 370374
(2012). Medline
7. M. R. Waters, S. L. Forman, T. A. Jennings, L. C. Nordt, S. G. Driese, J. M. Feinberg,
J. L. Keene, J. Halligan, A. Lindquist, J. Pierson, C. T. Hallmark, M. B. Collins, J. E.
Wiederhold, The Buttermilk Creek complex and the origins of Clovis at the Debra
L. Friedkin site, Texas. Science
331
, 15991603 (2011). Medline
doi:10.1126/science.1201855
8. G. M. Santos, M. I. Bird, F. Parenti, L. K. Fifield, N. Guidon, P. A. Hausladen, A
revised chronology of the lowest occupation layer of Pedra Furada Rock Shelter,
Piauí, Brazil: The Pleistocene peopling of the Americas. Quat. Sci. Rev.
22
, 2303
2310 (2003). doi:10.1016/S0277-3791(03)00205-1
9. S. R. Holen, K. Holen, K, in Paleoamerican Odyssey, K. E. Graf, C. V. Ketron, M. R.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 6 / 10.1126/science.aab3884
Waters, Eds. (Texas A&M University Press, College Station, 2014), pp. 429-444.
10. E. Boëda, I. Clemente-Conte, M. Fontugne, C. Lahaye, M. Pino, G. D. Felice, N.
Guidon, S. Hoeltz, A. Lourdeau, M. Pagli, A.-M. Pessis, S. Viana, A. Da Costa, E.
Douville, A new late Pleistocene archaeological sequence in South America: The
Vale da Pedra Furada (Piauí, Brazil). Antiquity
88
, 927941 (2014).
doi:10.1017/S0003598X00050845
11. D. W. Owsley, R. L. Jantz, Kennewick Man: The Scientific Investigation of an
Ancient American Skeleton (Texas A&M University Press, College Station, 2014).
12. A. Achilli, U. A. Perego, C. M. Bravi, M. D. Coble, Q. P. Kong, S. R. Woodward, A.
Salas, A. Torroni, H. J. Bandelt, The phylogeny of the four pan-American MtDNA
haplogroups: Implications for evolutionary and disease studies. PLOS ONE
3
,
e1764 (2008). Medline doi:10.1371/journal.pone.0001764
13. V. Battaglia, V. Grugni, U. A. Perego, N. Angerhofer, J. E. Gomez-Palmieri, S. R.
Woodward, A. Achilli, N. Myres, A. Torroni, O. Semino, The first peopling of South
America: New evidence from Y-chromosome haplogroup Q. PLOS ONE
8
, e71390
(2013). Medline doi:10.1371/journal.pone.0071390
14. C. L. Brace, A. R. Nelson, N. Seguchi, H. Oe, L. Sering, P. Qifeng, L. Yongyi, D.
Tumen, Old World sources of the first New World human inhabitants: A
comparative craniofacial view. Proc. Natl. Acad. Sci. U.S.A.
98
, 1001710022
(2001). Medline doi:10.1073/pnas.171305898
15. U. A. Perego, A. Achilli, N. Angerhofer, M. Accetturo, M. Pala, A. Olivieri, B.
Hooshiar Kashani, K. H. Ritchie, R. Scozzari, Q.-P. Kong, N. M. Myres, A. Salas, O.
Semino, H.-J. Bandelt, S. R. Woodward, A. Torroni, Distinctive Paleo-Indian
migration routes from Beringia marked by two rare mtDNA haplogroups. Curr.
Biol.
19
, 18 (2009). Medline doi:10.1016/j.cub.2008.11.058
16. U. A. Perego, N. Angerhofer, M. Pala, A. Olivieri, H. Lancioni, B. Hooshiar Kashani,
V. Carossa, J. E. Ekins, A. Gómez-Carballa, G. Huber, B. Zimmermann, D. Corach,
N. Babudri, F. Panara, N. M. Myres, W. Parson, O. Semino, A. Salas, S. R.
Woodward, A. Achilli, A. Torroni, The initial peopling of the Americas: A growing
number of founding mitochondrial genomes from Beringia. Genome Res.
20
,
11741179 (2010). Medline doi:10.1101/gr.109231.110
17. N. J. R. Fagundes, R. Kanitz, S. L. Bonatto, A reevaluation of the Native American
mtDNA genome diversity and its bearing on the models of early colonization of
Beringia. PLOS ONE
3
, e3157 (2008). Medline doi:10.1371/journal.pone.0003157
18. S. L. Zegura, T. M. Karafet, L. A. Zhivotovsky, M. F. Hammer, High-resolution
SNPs and microsatellite haplotypes point to a single, recent entry of Native
American Y chromosomes into the Americas. Mol. Biol. Evol.
21
, 164175 (2004).
Medline doi:10.1093/molbev/msh009
19. E. Tamm, T. Kivisild, M. Reidla, M. Metspalu, D. G. Smith, C. J. Mulligan, C. M.
Bravi, O. Rickards, C. Martinez-Labarga, E. K. Khusnutdinova, S. A. Fedorova, M.
V. Golubenko, V. A. Stepanov, M. A. Gubina, S. I. Zhadanov, L. P. Ossipova, L.
Damba, M. I. Voevoda, J. E. Dipierri, R. Villems, R. S. Malhi, Beringian standstill
and spread of Native American founders. PLOS ONE
2
, e829 (2007). Medline
doi:10.1371/journal.pone.0000829
20. A. Kitchen, M. M. Miyamoto, C. J. Mulligan, A three-stage colonization model for
the peopling of the Americas. PLOS ONE
3
, e1596 (2008). Medline
doi:10.1371/journal.pone.0001596
21. C. J. Mulligan, A. Kitchen, M. M. Miyamoto, Updated three-stage model for the
peopling of the Americas. PLOS ONE
3
, e3199 (2008). Medline
doi:10.1371/journal.pone.0003199
22. K. B. Schroeder, T. G. Schurr, J. C. Long, N. A. Rosenberg, M. H. Crawford, L. A.
Tarskaia, L. P. Osipova, S. I. Zhadanov, D. G. Smith, A private allele ubiquitous in
the Americas. Biol. Lett.
3
, 218223 (2007). Medline
doi:10.1098/rsbl.2006.0609
23. R. González-José, A. González-Martín, M. Hernández, H. M. Pucciarelli, M. Sardi,
A. Rosales, S. Van Der Molen, Craniometric evidence for Palaeoamerican survival
in Baja California. Nature
425
, 6265 (2003). Medline doi:10.1038/nature01816
24. W. A. Neves, M. Hubbe, Cranial morphology of early Americans from Lagoa
Santa, Brazil: Implications for the settlement of the New World. Proc. Natl. Acad.
Sci. U.S.A.
102
, 1830918314 (2005). Medline doi:10.1073/pnas.0507185102
25. W. Neves et al., in Paleoamerican Odyssey, K. E. Graf, C. V. Ketron, M. R. Waters,
Eds. (Texas A&M University Press, College Station, 2014), pp. 397-412.
26. R. González-José, M. C. Bortolini, F. R. Santos, S. L. Bonatto, The peopling of
America: Craniofacial shape variation on a continental scale and its
interpretation from an interdisciplinary view. Am. J. Phys. Anthropol.
137
, 175
187 (2008). Medline doi:10.1002/ajpa.20854
27. M. M. Lahr, Patterns of modern human diversification: Implications for
Amerindian origins. Am. J. Phys. Anthropol.
38
(S21), 163198 (1995).
doi:10.1002/ajpa.1330380609
28. Materials and methods are available as supplementary materials on Science
Online.
29. M. Rasmussen, Y. Li, S. Lindgreen, J. S. Pedersen, A. Albrechtsen, I. Moltke, M.
Metspalu, E. Metspalu, T. Kivisild, R. Gupta, M. Bertalan, K. Nielsen, M. T. Gilbert,
Y. Wang, M. Raghavan, P. F. Campos, H. M. Kamp, A. S. Wilson, A. Gledhill, S.
Tridico, M. Bunce, E. D. Lorenzen, J. Binladen, X. Guo, J. Zhao, X. Zhang, H.
Zhang, Z. Li, M. Chen, L. Orlando, K. Kristiansen, M. Bak, N. Tommerup, C.
Bendixen, T. L. Pierre, B. Grønnow, M. Meldgaard, C. Andreasen, S. A. Fedorova,
L. P. Osipova, T. F. Higham, C. B. Ramsey, T. V. Hansen, F. C. Nielsen, M. H.
Crawford, S. Brunak, T. Sicheritz-Pontén, R. Villems, R. Nielsen, A. Krogh, J.
Wang, E. Willerslev, Ancient human genome sequence of an extinct Palaeo-
Eskimo. Nature
463
, 757762 (2010). Medline doi:10.1038/nature08835
30. B. Yunusbayev, M. Metspalu, E. Metspalu, A. Valeev, S. Litvinov, R. Valiev, V.
Akhmetova, E. Balanovska, O. Balanovsky, S. Turdikulova, D. Dalimova, P.
Nymadawa, A. Bahmanimehr, H. Sahakyan, K. Tambets, S. Fedorova, N.
Barashkov, I. Khidiyatova, E. Mihailov, R. Khusainova, L. Damba, M. Derenko, B.
Malyarchuk, L. Osipova, M. Voevoda, L. Yepiskoposyan, T. Kivisild, E.
Khusnutdinova, R. Villems, The genetic legacy of the expansion of Turkic-
speaking nomads across Eurasia. PLOS Genet.
11
, e1005068 (2015). Medline
doi:10.1371/journal.pgen.1005068
31. A. Cardona, L. Pagani, T. Antao, D. J. Lawson, C. A. Eichstaedt, B. Yngvadottir, M.
T. Shwe, J. Wee, I. G. Romero, S. Raj, M. Metspalu, R. Villems, E. Willerslev, C.
Tyler-Smith, B. A. Malyarchuk, M. V. Derenko, T. Kivisild, Genome-wide analysis
of cold adaptation in indigenous Siberian populations. PLOS ONE
9
, e98076
(2014). Medline
32. J. Z. Li, D. M. Absher, H. Tang, A. M. Southwick, A. M. Casto, S. Ramachandran, H.
M. Cann, G. S. Barsh, M. Feldman, L. L. Cavalli-Sforza, R. M. Myers, Worldwide
human relationships inferred from genome-wide patterns of variation. Science
319
, 11001104 (2008). Medline doi:10.1126/science.1153717
33. A. Moreno-Estrada, S. Gravel, F. Zakharia, J. L. McCauley, J. K. Byrnes, C. R.
Gignoux, P. A. Ortiz-Tello, R. J. Martínez, D. J. Hedges, R. W. Morris, C. Eng, K.
Sandoval, S. Acevedo-Acevedo, P. J. Norman, Z. Layrisse, P. Parham, J. C.
Martínez-Cruzado, E. G. Burchard, M. L. Cuccaro, E. R. Martin, C. D. Bustamante,
Reconstructing the population genetic history of the Caribbea n. PLOS Genet.
9
,
e1003925 (2013). Medline doi:10.1371/journal.pgen.1003925
34. A. Moreno-Estrada, C. R. Gignoux, J. C. Fernández-López, F. Zakharia, M. Sikora,
A. V. Contreras, V. Acuña-Alonzo, K. Sandoval, C. Eng, S. Romero-Hidalgo, P.
Ortiz-Tello, V. Robles, E. E. Kenny, I. Nuño-Arana, R. Barquera-Lozano, G. Macín-
Pérez, J. Granados-Arriola, S. Huntsman, J. M. Galanter, M. Via, J. G. Ford, R.
Chapela, W. Rodriguez-Cintron, J. R. Rodríguez-Santana, I. Romieu, J. J. Sienra-
Monge, B. del Rio Navarro, S. J. London, A. Ruiz-Linares, R. Garcia-Herrera, K.
Estrada, A. Hidalgo-Miranda, G. Jimenez-Sanchez, A. Carnevale, X. Soberón, S.
Canizales-Quinteros, H. Rangel-Villalobos, I. Silva-Zolezzi, E. G. Burchard, C. D.
Bustamante, The genetics of Mexico recapitulates Native American substructure
and affects biomedical traits. Science
344
, 12801285 (2014). Medline
doi:10.1126/science.1251688
35. P. Verdu, T. J. Pemberton, R. Laurent, B. M. Kemp, A. Gonzalez-Oliver, C.
Gorodezky, C. E. Hughes, M. R. Shattuck, B. Petzelt, J. Mitchell, H. Harry, T.
William, R. Worl, J. S. Cybulski, N. A. Rosenberg, R. S. Malhi, Patterns of
admixture and population structure in native populations of Northwest North
America. PLOS Genet.
10
, e1004530 (2014). Medline
doi:10.1371/journal.pgen.1004530
36. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry
in unrelated individuals. Genome Res.
19
, 16551664 (2009). Medline
doi:10.1101/gr.094052.109
37. J. K. Pickrell, J. K. Pritchard, Inference of population splits and mixtures from
genome-wide allele frequency data. PLOS Genet.
8
, e1002967 (2012). Medline
doi:10.1371/journal.pgen.1002967
38. M. Meyer, M. Kircher, M. T. Gansauge, H. Li, F. Racimo, S. Mallick, J. G. Schraiber,
F. Jay, K. Prüfer, C. de Filippo, P. H. Sudmant, C. Alkan, Q. Fu, R. Do, N. Rohland,
A. Tandon, M. Siebauer, R. E. Green, K. Bryc, A. W. Briggs, U. Stenzel, J. Dabney,
J. Shendure, J. Kitzman, M. F. Hammer, M. V. Shunkov, A. P. Derevianko, N.
Patterson, A. M. Andrés, E. E. Eichler, M. Slatkin, D. Reich, J. Kelso, S. Pääbo, A
high-coverage genome sequence from an archaic Denisovan individual. Science
338
, 222226 (2012). Medline
39. M. Raghavan, M. DeGiorgio, A. Albrechtsen, I. Moltke, P. Skoglund, T. S.
Korneliussen, B. Grønnow, M. Appelt, H. C. Gulløv, T. M. Friesen, W. Fitzhugh, H.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 7 / 10.1126/science.aab3884
Malmström, S. Rasmussen, J. Olsen, L. Melchior, B. T. Fuller, S. M. Fahrni, T.
Stafford Jr., V. Grimes, M. A. Renouf, J. Cybulski, N. Lynnerup, M. M. Lahr, K.
Britton, R. Knecht, J. Arneborg, M. Metspalu, O. E. Cornejo, A. S. Malaspinas, Y.
Wang, M. Rasmussen, V. Raghavan, T. V. Hansen, E. Khusnutdinova, T. Pierre, K.
Dneprovsky, C. Andreasen, H. Lange, M. G. Hayes, J. Coltrain, V. A. Spitsyn, A.
Götherström, L. Orlando, T. Kivisild, R. Villems, M. H. Crawford, F. C. Nielsen, J.
Dissing, J. Heinemeier, M. Meldgaard, C. Bustamante, D. H. O’Rourke, M.
Jakobsson, M. T. Gilbert, R. Nielsen, E. Willerslev, The genetic prehistory of the
New World Arctic. Science
345
, 12558321255832 (2014). Medline
doi:10.1126/science.1255832
40. A. Scally, R. Durbin, Revising the human mutation rate: Implications for
understanding human evolution. Nat. Rev. Genet.
13
, 745753 (2012). Medline
doi:10.1038/nrg3295
41. S. Sheehan, K. Harris, Y. S. Song, Estimating variable effective population sizes
from multiple genomes: A sequentially markov conditional sampling distribution
approach. Genetics
194
, 647662 (2013). Medline
doi:10.1534/genetics.112.149096
42. M. Steinrücken, J. S. Paul, Y. S. Song, A sequentially Markov conditional sampling
distribution for structured populations with migration and recombination. Theor.
Popul. Biol.
87
, 5161 (2013). Medline doi:10.1016/j.tpb.2012.08.004
43. K. Harris, R. Nielsen, Inferring demographic history from a spectrum of shared
haplotype lengths. PLOS Genet.
9
, e1003521 (2013). Medline
doi:10.1371/journal.pgen.1003521
44. S. Schiffels, R. Durbin, Inferring human population size and separation history
from multiple genome sequences. Nat. Genet.
46
, 919925 (2014). Medline
doi:10.1038/ng.3015
45. A. Eriksson, L. Betti, A. D. Friend, S. J. Lycett, J. S. Singarayer, N. von Cramon-
Taubadel, P. J. Valdes, F. Balloux, A. Manica, Late Pleistocene climate change
and the global expansion of anatomically modern humans. Proc. Natl. Acad. Sci.
U.S.A.
109
, 1608916094 (2012). Medline doi:10.1073/pnas.1209494109
46. R. E. Green, J. Krause, A. W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N.
Patterson, H. Li, W. Zhai, M. H. Fritz, N. F. Hansen, E. Y. Durand, A. S. Malaspinas,
J. D. Jensen, T. Marques-Bonet, C. Alkan, K. Prüfer, M. Meyer, H. A. Burbano, J.
M. Good, R. Schultz, A. Aximu-Petri, A. Butthof, B. Höber, B. Höffner, M.
Siegemund, A. Weihmann, C. Nusbaum, E. S. Lander, C. Russ, N. Novod, J.
Affourtit, M. Egholm, C. Verna, P. Rudan, D. Brajkovic, Z. Kucan, I. Gusic, V. B.
Doronichev, L. V. Golovanova, C. Lalueza-Fox, M. de la Rasilla, J. Fortea, A.
Rosas, R. W. Schmitz, P. L. Johnson, E. E. Eichler, D. Falush, E. Birney, J. C.
Mullikin, M. Slatkin, R. Nielsen, J. Kelso, M. Lachmann, D. Reich, S. Pääbo, A draft
sequence of the Neandertal genome. Science
328
, 710722 (2010). Medline
doi:10.1126/science.1188021
47. N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Genschoreck,
T. Webster, D. Reich, Ancient admixture in human history. Genetics
192
, 1065
1093 (2012). Medline doi:10.1534/genetics.112.145037
48. J. F. Hoffecker, S. A. Elias, Human Ecology of Beringia (Columbia University
Press, New York, 2007).
49. S. Oppenheimer, B. Bradley, D. Stanford, Solutrean hypothesis: Genetics, the
mammoth in the room. World Archaeol.
46
, 752774 (2014).
doi:10.1080/00438243.2014.966273
50. T. D. Dillehay, Monte Verde, A Late Pleistocene Settlement in Chile: The
archaeological context and interpretation (Smithsonian Institution Press,
Washington D.C., 1997).
51. M. Rasmussen, M. Sikora, A. Albrechtsen, T. S. Korneliussen, J. V. Moreno-Mayar,
G. D. Poznik, C. P. Zollikofer, M. S. Ponce de León, M. E. Allentoft, I. Moltke, H.
Jónsson, C. Valdiosera, R. S. Malhi, L. Orlando, C. D. Bustamante, T. W. Stafford
Jr., D. J. Meltzer, R. Nielsen, E. Willerslev, The ancestry and affiliations of
Kennewick Man. Nature (2015). 10.1038/nature14625 Medline
doi:10.1038/nature14625
52. R. S. Davis, R. A. Knecht, Continuity and change in the eastern Aleutian
archaeological sequence. Hum. Biol.
82
, 507524 (2010). Medline
53. M. H. Crawford, R. C. Rubicz, M. Zlojutro, Origins of Aleuts and the genetic
structure of populations of the archipelago: Molecular and archaeological
perspectives. Hum. Biol.
82
, 695717 (2010). Medline
54. M. Hubbe, W. A. Neves, K. Harvati, Testing evolutionary and dispersion scenarios
for the settlement of the new world. PLOS ONE
5
, e11105 (2010). Medline
55. J. C. Chatters, D. J. Kennett, Y. Asmerom, B. M. Kemp, V. Polyak, A. N. Blank, P.
A. Beddows, E. Reinhardt, J. Arroyo-Cabrales, D. A. Bolnick, R. S. Malhi, B. J.
Culleton, P. L. Erreguerena, D. Rissolo, S. Morell-Hart, T. W. Stafford Jr., Late
Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native
Americans. Science
344
, 750754 (2014). Medline doi:10.1126/science.1252619
56. J. García-Bour, A. Pérez-Pérez, S. Alvarez, E. Fernández, A. M. López-Parra, E.
Arroyo-Pardo, D. Turbón, Early population differentiation in extinct aborigines
from Tierra del Fuego-Patagonia: Ancient mtDNA sequences and Y-chromosome
STR characterization. Am. J. Phys. Anthropol.
123
, 361370 (2004). Medline
doi:10.1002/ajpa.10337
57. S. I. Perez, V. Bernal, P. N. Gonzalez, M. Sardi, G. G. Politis, Discrepancy between
cranial and DNA data of early Americans: Implications for American peopling.
PLOS ONE
4
, e5746 (2009). Medline doi:10.1371/journal.pone.0005746
58. M. Hernández, C. L. Fox, C. García-Moro, Fueguian cranial morphology: The
adaptation to a cold, harsh environment. Am. J. Phys. Anthropol.
103
, 103117
(1997). Medline doi:10.1002/(SICI)1096-8644(199705)103:1<103::AID-
AJPA7>3.0.CO;2-X
59. R. González-José, S. L. Dahinten, M. A. Luis, M. Hernández, H. M. Pucciarelli,
Craniometric variation and the settlement of the Americas: Testing hypotheses
by means of R-matrix and matrix correlation analyses. Am. J. Phys. Anthropol.
116
, 154165 (2001). Medline doi:10.1002/ajpa.1108
60. C. Der Sarkissian, P. Brotherton, O. Balanovsky, J. E. Templeton, B. Llamas, J.
Soubrier, V. Moiseyev, V. Khartanovich, A. Cooper, W. Haak; Genographic
Consortium, Mitochondrial genome sequencing in Mesolithic North East Europe
Unearths a new sub-clade within the broadly distributed human haplogroup C1.
PLOS ONE
9
, e87612 (2014). Medline doi:10.1371/journal.pone.0087612
61. L. Excoffier, N. Ray, Surfing during population expansions promotes genetic
revolutions and structuration. Trends Ecol. Evol.
23
, 347351 (2008). Medline
doi:10.1016/j.tree.2008.04.004
62. A. Achilli, U. A. Perego, H. Lancioni, A. Olivieri, F. Gandini, B. Hooshiar Kashani, V.
Battaglia, V. Grugni, N. Angerhofer, M. P. Rogers, R. J. Herrera, S. R. Woodward,
D. Labuda, D. G. Smith, J. S. Cybulski, O. Semino, R. S. Malhi, A. Torroni,
Reconciling migration models to the Americas with the variation of North
American native mitogenomes. Proc. Natl. Acad. Sci. U.S.A.
110
, 1430814313
(2013). Medline
63. E. J. Dixon, Late Pleistocene colonization of North America from Northeast Asia:
New insights from large-scale paleogeographic reconstructions. Quat. Int.
285
,
5767 (2013). doi:10.1016/j.quaint.2011.02.027
64. C. A. S. Mandryk, H. Josenhans, D. W. Fedje, R. W. Mathewes, Late Quaternary
paleoenvironments of Northwestern North America: Implications for inland
versus coastal migration routes. Quat. Sci. Rev.
20
, 301314 (2001).
doi:10.1016/S0277-3791(00)00115-3
65. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J.
Maller, P. Sklar, P. I. de Bakker, M. J. Daly, P. C. Sham, PLINK: A tool set for
whole-genome association and population-based linkage analyses. Am. J. Hum.
Genet.
81
, 559575 (2007). Medline doi:10.1086/519795
66. H. M. Cann, C. de Toma, L. Cazes, M. F. Legrand, V. Morel, L. Piouffre, J. Bodmer,
W. F. Bodmer, B. Bonne-Tamir, A. Cambon-Thomsen, Z. Chen, J. Chu, C.
Carcassi, L. Contu, R. Du, L. Excoffier, G. B. Ferrara, J. S. Friedlaender, H. Groot,
D. Gurwitz, T. Jenkins, R. J. Herrera, X. Huang, J. Kidd, K. K. Kidd, A. Langaney, A.
A. Lin, S. Q. Mehdi, P. Parham, A. Piazza, M. P. Pistillo, Y. Qian, Q. Shu, J. Xu, S.
Zhu, J. L. Weber, H. T. Greely, M. W. Feldman, G. Thomas, J. Dausset, L. L.
Cavalli-Sforza, A human genome diversity cell line panel. Science
296
, 261b262
(2002). Medline doi:10.1126/science.296.5566.261b
67. Y. Cui, J. Lindo, C. E. Hughes, J. W. Johnson, A. G. Hernandez, B. M. Kemp, J. Ma,
R. Cunningham, B. Petzelt, J. Mitchell, D. Archer, J. S. Cybulski, R. S. Malhi,
Ancient DNA analysis of mid-holocene individuals from the Northwest Coast of
North America reveals different evolutionary paths for mitogenomes. PLOS ONE
8
, e66948 (2013). Medline doi:10.1371/journal.pone.0066948
68. D. Archer, The Lucy Island Archaeological Project, Unpublished report on file with
the British Columbia Archaeology Branch, Victoria (2011).
69. D. McLaren, Sea level change and archaeological site locations on the Dundas
Island Archipelago of North Coastal British Columbia. PhD dissertation,
University of Victoria (2008).
70. J. S. Cybulski, “Human Remains from Lucy Island, British Columbia, Site GbTp 1,
1984/85,” ms. 2360 (Canadian Museum of Civilization Library Archives,
Gatineau, Canada, 1986).
71. B. S. Chisholm, D. E. Nelson, H. P. Schwarcz, Marine and terrestrial protein in
prehistoric diets on the British Columbia coast. Curr. Anthropol.
24
, 396398
(1983). doi:10.1086/203018
72. J. S. Cybulski, in Human Variation in the Americas: The Integration of Archaeology
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 8 / 10.1126/science.aab3884
and Biological Anthropology, B. M. Auerbach, Ed. (Center for Archaeological
Investigations, Carbondale, 2010), pp. 77-112.
73. J. S. Cybulski, in Violence and Warfare Among Hunter-Gatherers, M. W. Allen, T. L.
Jones, Eds., (Left Coast Press, Walnut Creek, 2014), pp. 333-350.
74. M. Meyer, M. Kircher, Illumina sequencing library preparation for highly
multiplexed target capture and sequencing. Cold Spring Harb. Protoc.
2010
,
t5448 (2010). 10.1101/pdb.prot5448 Medline doi:10.1101/pdb.prot5448
75. T. Maricic, M. Whitten, S. Pääbo, Multiplexed DNA sequence capture of
mitochondrial genomes using PCR products. PLOS ONE
5
, e14004 (2010).
Medline doi:10.1371/journal.pone.0014004
76. B. Arriaza, Beyond Death: The Chinchorro Mummies of Ancient Chile
(Smithsonian Insitiution Press, 1995).
77. B. T. Arriaza et al., Chemical and mineral characterization of gray sediments used
to model Chinchorro bodies. Chungara
44
, 177194 (2012).
78. B. Arriaza, V. Standen, K. Reinhard, A. Araújo, J. Heukelbach, K. Dittmar, On head
lice and social interaction in archaic Andean coastal populations. Int. J.
Paleopathol.
3
, 257268 (2013). doi:10.1016/j.ijpp.2013.10.001
79. L. Orlando, A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, M.
Schubert, E. Cappellini, B. Petersen, I. Moltke, P. L. Johnson, M. Fumagalli, J. T.
Vilstrup, M. Raghavan, T. Korneliussen, A. S. Malaspinas, J. Vogt, D. Szklarczyk,
C. D. Kelstrup, J. Vinther, A. Dolocan, J. Stenderup, A. M. Velazquez, J. Cahill, M.
Rasmussen, X. Wang, J. Min, G. D. Zazula, A. Seguin-Orlando, C. Mortensen, K.
Magnussen, J. F. Thompson, J. Weinstock, K. Gregersen, K. H. Røed, V.
Eisenmann, C. J. Rubin, D. C. Miller, D. F. Antczak, M. F. Bertelsen, S. Brunak, K.
A. Al-Rasheid, O. Ryder, L. Andersson, J. Mundy, A. Krogh, M. T. Gilbert, K. Kjær,
T. Sicheritz-Ponten, L. J. Jensen, J. V. Olsen, M. Hofreiter, R. Nielsen, B. Shapiro,
J. Wang, E. Willerslev, Recalibrating Equus evolution using the genome sequence
of an early Middle Pleistocene horse. Nature
499
, 7478 (2013). Medline
doi:10.1038/nature12323
80. P. D. Clarke, A la recherché de La Petite-Rochelle: Memory and Identity in
Restigouche. Acadiensis (Frederict.)
XXVIII
, 340 (1999).
81. P. D. Clarke, Land of East Wind: Mise en Forme d’une Memoire Mi’gmaq. Can.
Rev. Sociol.
37
, 167195 (2000). doi:10.1111/j.1755-618X.2000.tb01263.x
82. K. Leonard, Archaeology of the Restigouche River, New Brunswick: A Summary.
Wesgijinua’luet Research Title Project, Mi’gmawei Mawiomi Secretariat (2002).
83. K. Leonard, Archaeology of the New Brunswick Sites of Gespegewagji.
Wesgijinua’luet Research Title Project, Mi’gmawei Mawiomi Secretariat (2002).
84. C. Martijn, An Archaeological Survey of the Northeast Coast of New Brunswick
1968 (Restigouche and Gloucester Counties). Historical Resources
Administration, Fredericton, New Brunswick (1968).
85. C. J. Turnbull, in Old Mission Point 1973: Report for an Archaeological Survey of
Canada Salvage Contract (Archaeological Survey of Canada, Ottawa, 1974).
86. C. J. Turnbull, The Richibucto Burial Site (CeDf-18), New Brunswick. Manuscript
on file with Archaeological Services Unit, New Brunswick (1981).
87. T. N. Garlie, An Ethnohistorical and Archaeological Review regarding Aboriginal
Mortuary Remains reported from Nova Scotia and New Brunswick and the
Potential for Future Research. Unpublished Honours Essay, Memorial University
(1992).
88. K. A. Pike, Bearing Identity: A Biocultural Analysis of Human Remains from Old
Mission Point (ClDq-1), New Brunswick. Unpublished Master of Arts Thesis,
Memorial University (2014).
89. C. J. Turnbull, S. W. Turnbull, in Preliminary Report of the 1973 Excavations at Old
Mission Point (ClDq-1) New Brunswick (Archaeological Survey of Canada,
Ottawa, 1973).
90. J. B. Petersen, D. Sanger, in Prehistory of the Maritime Provinces: Past and
Present Research, M. Deal, S. Blair, Eds. (Council of Maritime Premiers,
Fredericton, 1991), pp. 113-170.
91. E. M. Svensson, C. Anderung, J. Baubliene, P. Persson, H. Malmström, C. Smith,
M. Vretemark, L. Daugnora, A. Götherström, Tracing genetic change over time
using nuclear SNPs in ancient and modern cattle. Anim. Genet.
38
, 378383
(2007). Medline doi:10.1111/j.1365-2052.2007.01620.x
92. G. V. Pijoan, A. Romero, J. Mansilla, Los Pericues de Baja California Sur en
Perspectiva Tafonómica. Colección Científica INAH
560
, 67 (2010).
93. J. García-Bour, A. Pérez-Pérez, S. Alvarez, E. Fernández, A. M. López-Parra, E.
Arroyo-Pardo, D. Turbón, Early population differentiation in extinct aborigines
from Tierra del Fuego-Patagonia: Ancient mtDNA sequences and Y-chromosome
STR characterization. Am. J. Phys. Anthropol.
123
, 361370 (2004). Medline
doi:10.1002/ajpa.10337
94. C. Lalueza, A. Pérez-Pérez, E. Prats, L. Cornudella, D. Turbón, Lack of founding
Amerindian mitochondrial DNA lineages in extinct aborigines from Tierra del
Fuego-Patagonia. Hum. Mol. Genet.
6
, 4146 (1997). Medline
doi:10.1093/hmg/6.1.41
95. M. L. Moraga, P. Rocco, J. F. Miquel, F. Nervi, E. Llop, R. Chakraborty, F.
Rothhammer, P. Carvallo, Mitochondrial DNA polymorphisms in Chilean
aboriginal populations: Implications for the peopling of the southern cone of the
continent. Am. J. Phys. Anthropol.
113
, 1929 (2000). Medline
doi:10.1002/1096-8644(200009)113:1<19::AID-AJPA3>3.0.CO;2-X
96. D. Y. Yang, B. Eng, J. S. Waye, J. C. Dudar, S. R. Saunders, Improved DNA
extraction from ancient bones using silica-based spin columns. Am. J. Phys.
Anthropol.
105
, 539543 (1998). Medline doi:10.1002/(SICI)1096-
8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1
97. N. Rohland, M. Hofreiter, Ancient DNA extraction from bones and teeth. Nat.
Protoc.
2
, 17561762 (2007). Medline doi:10.1038/nprot.2007.247
98. M. T. P. Gilbert, A. S. Wilson, M. Bunce, A. J. Hansen, E. Willerslev, B. Shapiro, T.
F. Higham, M. P. Richards, T. C. O’Connell, D. J. Tobin, R. C. Janaway, A. Cooper,
Ancient mitochondrial DNA from hair. Curr. Biol.
14
, R463R464 (2004).
Medline doi:10.1016/j.cub.2004.06.008
99. D. M. Behar, B. Yunusbayev, M. Metspalu, E. Metspalu, S. Rosset, J. Parik, S.
Rootsi, G. Chaubey, I. Kutuev, G. Yudkovsky, E. K. Khusnutdinova, O. Balanovsky,
O. Semino, L. Pereira, D. Comas, D. Gurwitz, B. Bonne-Tamir, T. Parfitt, M. F.
Hammer, K. Skorecki, R. Villems, The genome-wide structure of the Jewish
people. Nature
466
, 238242 (2010). Medline doi:10.1038/nature09103
100. D. M. Behar, M. Metspalu, Y. Baran, N. M. Kopelman, B. Yunusbayev, A.
Gladstein, S. Tzur, H. Sahakyan, A. Bahmanimehr, L. Yepiskoposyan, K.
Tambets, E. K. Khusnutdinova, A. Kushniarevich, O. Balanovsky, E. Balanovsky,
L. Kovacevic, D. Marjanovic, E. Mihailov, A. Kouvatsi, C. Triantaphyllidis, R. J.
King, O. Semino, A. Torroni, M. F. Hammer, E. Metspalu, K. Skorecki, S. Rosset, E.
Halperin, R. Villems, N. A. Rosenberg, No evidence from genome-wide data of a
Khazar origin for the Ashkenazi Jews. Hum. Biol.
85
, 859900 (2013). Medline
doi:10.3378/027.085.0604
101. S. A. Fedorova, M. Reidla, E. Metspalu, M. Metspalu, S. Rootsi, K. Tambets, N.
Trofimova, S. I. Zhadanov, B. Hooshiar Kashani, A. Olivieri, M. I. Voevoda, L. P.
Osipova, F. A. Platonov, M. I. Tomsky, E. K. Khusnutdinova, A. Torroni, R. Villems,
Autosomal and uniparental portraits of the native populations of Sakha
(Yakutia): Implications for the peopling of Northeast Eurasia. BMC Evol. Biol.
13
,
127 (2013). Medline doi:10.1186/1471-2148-13-127
102. E. E. Kenny, N. J. Timpson, M. Sikora, M. C. Yee, A. Moreno-Estrada, C. Eng, S.
Huntsman, E. G. Burchard, M. Stoneking, C. D. Bustamante, S. Myles, Melanesian
blond hair is caused by an amino acid change in TYRP1. Science
336
, 554 (2012).
Medline doi:10.1126/science.1217849
103. A. B. Migliano, I. G. Romero, M. Metspalu, M. Leavesley, L. Pagani, T. Antao, D.
W. Huang, B. T. Sherman, K. Siddle, C. Scholes, G. Hudjashov, E. Kaitokai, A.
Babalu, M. Belatti, A. Cagan, B. Hopkinshaw, C. Shaw, M. Nelis, E. Metspalu, R.
Mägi, R. A. Lempicki, R. Villems, M. M. Lahr, T. Kivisild, Evolution of the pygmy
phenotype: Evidence of positive selection fro genome-wide scans in African,
Asian, and Melanesian pygmies. Hum. Biol.
85
, 251284 (2013). Medline
doi:10.3378/027.085.0313
104. D. Pierron, H. Razafindrazaka, L. Pagani, F. X. Ricaut, T. Antao, M. Capredon, C.
Sambo, C. Radimilahy, J. A. Rakotoarisoa, R. M. Blench, T. Letellier, T. Kivisild,
Genome-wide evidence of Austronesian-Bantu admixture and cultural reversion
in a hunter-gatherer group of Madagascar. Proc. Natl. Acad. Sci. U.S.A.
111
, 936
941 (2014). Medline doi:10.1073/pnas.1321860111
105. M. Rasmussen, X. Guo, Y. Wang, K. E. Lohmueller, S. Rasmussen, A.
Albrechtsen, L. Skotte, S. Lindgreen, M. Metspalu, T. Jombart, T. Kivisild, W.
Zhai, A. Eriksson, A. Manica, L. Orlando, F. M. De La Vega, S. Tridico, E. Metspalu,
K. Nielsen, M. C. Ávila-Arcos, J. V. Moreno-Mayar, C. Muller, J. Dortch, M. T.
Gilbert, O. Lund, A. Wesolowska, M. Karmin, L. A. Weinert, B. Wang, J. Li, S. Tai,
F. Xiao, T. Hanihara, G. van Driem, A. R. Jha, F. X. Ricaut, P. de Knijff, A. B.
Migliano, I. Gallego Romero, K. Kristiansen, D. M. Lambert, S. Brunak, P. Forster,
B. Brinkmann, O. Nehlich, M. Bunce, M. Richards, R. Gupta, C. D. Bustamante, A.
Krogh, R. A. Foley, M. M. Lahr, F. Balloux, T. Sicheritz-Pontén, R. Villems, R.
Nielsen, J. Wang, E. Willerslev, An Aboriginal Australian genome reveals separate
human dispersals into Asia. Science
334
, 9498 (2011). Medline
doi:10.1126/science.1211177
106. D. Reich, K. Thangaraj, N. Patterson, A. L. Price, L. Singh, Reconstructing Indian
population history. Nature
461
, 489494 (2009). Medline
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 9 / 10.1126/science.aab3884
doi:10.1038/nature08365
107. P. Verdu, T. J. Pemberton, R. Laurent, B. M. Kemp, A. Gonzalez-Oliver, C.
Gorodezky, C. E. Hughes, M. R. Shattuck, B. Petzelt, J. Mitchell, H. Harry, T.
William, R. Worl, J. S. Cybulski, N. A. Rosenberg, R. S. Malhi, Patterns of
admixture and population structure in native populations of Northwest North
America. PLOS Genet.
10
, e1004530 (2014). Medline
108. B. Yunusbayev, M. Metspalu, M. Järve, I. Kutuev, S. Rootsi, E. Metspalu, D. M.
Behar, K. Varendi, H. Sahakyan, R. Khusainova, L. Yepiskoposyan, E. K.
Khusnutdinova, P. A. Underhill, T. Kivisild, R. Villems, The Caucasus as an
asymmetric semipermeable barrier to ancient human migrations. Mol. Biol. Evol.
29
, 359365 (2012). Medline doi:10.1093/molbev/msr221
109. D. M. Altshuler, R. A. Gibbs, L. Peltonen, D. M. Altshuler, R. A. Gibbs, L. Peltonen,
E. Dermitzakis, S. F. Schaffner, F. Yu, L. Peltonen, E. Dermitzakis, P. E. Bonnen,
D. M. Altshuler, R. A. Gibbs, P. I. de Bakker, P. Deloukas, S. B. Gabriel, R.
Gwilliam, S. Hunt, M. Inouye, X. Jia, A. Palotie, M. Parkin, P. Whittaker, F. Yu, K.
Chang, A. Hawes, L. R. Lewis, Y. Ren, D. Wheeler, R. A. Gibbs, D. M. Muzny, C.
Barnes, K. Darvishi, M. Hurles, J. M. Korn, K. Kristiansson, C. Lee, S. A. McCarrol,
J. Nemesh, E. Dermitzakis, A. Keinan, S. B. Montgomery, S. Pollack, A. L. Price,
N. Soranzo, P. E. Bonnen, R. A. Gibbs, C. Gonzaga-Jauregui, A. Keinan, A. L.
Price, F. Yu, V. Anttila, W. Brodeur, M. J. Daly, S. Leslie, G. McVean, L.
Moutsianas, H. Nguyen, S. F. Schaffner, Q. Zhang, M. J. Ghori, R. McGinnis, W.
McLaren, S. Pollack, A. L. Price, S. F. Schaffner, F. Takeuchi, S. R. Grossman, I.
Shlyakhter, E. B. Hostetter, P. C. Sabeti, C. A. Adebamowo, M. W. Foster, D. R.
Gordon, J. Licinio, M. C. Manca, P. A. Marshall, I. Matsuda, D. Ngare, V. O. Wang,
D. Reddy, C. N. Rotimi, C. D. Royal, R. R. Sharp, C. Zeng, L. D. Brooks, J. E.
McEwen; International HapMap 3 Consortium, Integrating common and rare
genetic variation in diverse human populations. Nature
467
, 5258 (2010).
Medline
110. W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, D.
Haussler, The human genome browser at UCSC. Genome Res.
12
, 9961006
(2002). Medline doi:10.1101/gr.229102. Article published online before print in
May 2002
111. A. D. Johnson, R. E. Handsaker, S. L. Pulit, M. M. Nizzari, C. J. O’Donnell, P. I. de
Bakker, SNAP: A web-based tool for identification and annotation of proxy SNPs
using HapMap. Bioinformatics
24
, 29382939 (2008). Medline
doi:10.1093/bioinformatics/btn564
112. A. Manichaikul, J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale, W. M. Chen, Robust
relationship inference in genome-wide association studies. Bioinformatics
26
,
28672873 (2010). Medline doi:10.1093/bioinformatics/btq559
113. P. Moorjani, K. Thangaraj, N. Patterson, M. Lipson, P. R. Loh, P. Govindaraj, B.
Berger, D. Reich, L. Singh, Genetic evidence for recent population mixture in
India. Am. J. Hum. Genet.
93
, 422438 (2013). Medline
doi:10.1016/j.ajhg.2013.07.006
114. T. Thornton, H. Tang, T. J. Hoffmann, H. M. Ochs-Balcom, B. J. Caan, N. Risch,
Estimating kinship in admixed populations. Am. J. Hum. Genet.
91
, 122138
(2012). Medline doi:10.1016/j.ajhg.2012.05.024
115. P. Skoglund, H. Malmström, M. Raghavan, J. Storå, P. Hall, E. Willerslev, M. T.
Gilbert, A. Götherström, M. Jakobsson, Origins and genetic legacy of Neolithic
farmers and hunter-gatherers in Europe. Science
336
, 466469 (2012). Medline
116. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G.
Abecasis, R. Durbin; 1000 Genome Project Data Processing Subgroup, The
Sequence Alignment/Map format and SAMtools. Bioinformatics
25
, 20782079
(2009). Medline doi:10.1093/bioinformatics/btp352
117. S. Lindgreen, AdapterRemoval: Easy cleaning of next-generation sequencing
reads. BMC Res. Notes
5
, 337 (2012). Medline doi:10.1186/1756-0500-5-337
118. A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of utilities for comparing
genomic features. Bioinformatics
26
, 841842 (2010). Medline
doi:10.1093/bioinformatics/btq033
119. M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, M. J. Daly, A
framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nat. Genet.
43
, 491498 (2011). Medline doi:10.1038/ng.806
120. O. Delaneau, J. Marchini, J.-F. Zagury, A linear complexity phasing method for
thousands of genomes. Nat. Methods
9
, 179181 (2012). Medline
doi:10.1038/nmeth.1785
121. J. E. Wigginton, D. J. Cutler, G. R. Abecasis, A note on exact tests of Hardy-
Weinberg equilibrium. Am. J. Hum. Genet.
76
, 887893 (2005). Medline
doi:10.1086/429864
122. I. Gronau, M. J. Hubisz, B. Gulko, C. G. Danko, A. Siepel, Bayesian inference of
ancient human demography from individual genome sequences. Nat. Genet.
43
,
10311034 (2011). Medline doi:10.1038/ng.937
123. R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull, N.
Howell, Reanalysis and revision of the Cambridge reference sequence for human
mitochondrial DNA. Nat. Genet.
23
, 147 (1999). Medline doi:10.1038/13779
124. M. Schubert, A. Ginolhac, S. Lindgreen, J. F. Thompson, K. A. Al-Rasheid, E.
Willerslev, A. Krogh, L. Orlando, Improving ancient DNA read mapping against
modern reference genomes. BMC Genomics
13
, 178 (2012). Medline
doi:10.1186/1471-2164-13-178
125. T. Daley, A. D. Smith, Predicting the molecular complexity of sequencing
libraries. Nat. Methods
10
, 325327 (2013). Medline doi:10.1038/nmeth.2375
126. A. W. Briggs, U. Stenzel, P. L. Johnson, R. E. Green, J. Kelso, K. Prüfer, M. Meyer,
J. Krause, M. T. Ronan, M. Lachmann, S. Pääbo, Patterns of damage in genomic
DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U.S.A.
104
, 14616
14621 (2007). Medline doi:10.1073/pnas.0704665104
127. S. Sawyer, J. Krause, K. Guschanski, V. Savolainen, S. Pääbo, Temporal patterns
of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLOS
ONE
7
, e34131 (2012). Medline doi:10.1371/journal.pone.0034131
128. M. E. Allentoft et al., The half-life of DNA in bone: measuring decay kinetics in
158 dated fossils. Proc. R. Soc. B Biol. Sci., doi:10.1098/rspb.2012.1745 (2012).
129. J. S. Pedersen, E. Valen, A. M. Velazquez, B. J. Parker, M. Rasmussen, S.
Lindgreen, B. Lilje, D. J. Tobin, T. K. Kelly, S. Vang, R. Andersson, P. A. Jones, C.
A. Hoover, A. Tikhonov, E. Prokhortchouk, E. M. Rubin, A. Sandelin, M. T. Gilbert,
A. Krogh, E. Willerslev, L. Orlando, Genome-wide nucleosome map and cytosine
methylation levels of an ancient human genome. Genome Res.
24
, 454466
(2014). Medline doi:10.1101/gr.163592.113
130. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of Next
Generation Sequencing Data. BMC Bioinformatics
15
, 356 (2014). Medline
doi:10.1186/s12859-014-0356-4
131. G. R. Abecasis, A. Auton, L. D. Brooks, M. A. DePristo, R. M. Durbin, R. E.
Handsaker, H. M. Kang, G. T. Marth, G. A. McVean; 1000 Genomes Project
Consortium, An integrated map of genetic variation from 1,092 human genomes.
Nature
491
, 5665 (2012). Medline
132. Q. Fu, A. Mittnik, P. L. Johnson, K. Bos, M. Lari, R. Bollongino, C. Sun, L.
Giemsch, R. Schmitz, J. Burger, A. M. Ronchitelli, F. Martini, R. G. Cremonesi, J.
Svoboda, P. Bauer, D. Caramelli, S. Castellano, D. Reich, S. Pääbo, J. Krause, A
revised timescale for human evolution based on ancient mitochondrial genomes.
Curr. Biol.
23
, 553559 (2013). Medline doi:10.1016/j.cub.2013.02.044
133. A. Gelman, D. B. Rubin, Inference from Iterative Simulation Using Multiple
Sequences. Stat. Sci.
7
, 457472 (1992). doi:10.1214/ss/1177011136
134. M. Plummer, N. Best, K. Cowles, K. Vines, CODA: Convergence diagnosis and
output analysis for MCMC. R. News
6
, 711 (2006).
135. P. Skoglund, J. Storå, A. Götherström, M. Jakobsson, Accurate sex identification
of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci.
40
,
44774482 (2013). doi:10.1016/j.jas.2013.07.004
136. A. Kloss-Brandstätter, D. Pacher, S. Schönherr, H. Weissensteiner, R. Binna, G.
Specht, F. Kronenberg, HaploGrep: A fast and reliable algorithm for automatic
classification of mitochondrial DNA haplogroups. Hum. Mutat.
32
, 2532 (2011).
Medline doi:10.1002/humu.21382
137. M. van Oven, M. Kayser, Updated comprehensive phylogenetic tree of global
human mitochondrial DNA variation. Hum. Mutat.
30
, E386E394 (2009).
Medline doi:10.1002/humu.20921
138. D. M. Behar, M. van Oven, S. Rosset, M. Metspalu, E. L. Loogväli, N. M. Silva, T.
Kivisild, A. Torroni, R. Villems, A “Copernican” reassessment of the human
mitochondrial DNA tree from its root. Am. J. Hum. Genet.
90
, 675684 (2012).
Medline doi:10.1016/j.ajhg.2012.03.002
139. M. V. Derenko, B. A. Malyarchuk, I. K. Dambueva, G. O. Shaikhaev, C. M. Dorzhu,
D. D. Nimaev, I. A. Zakharov, Mitochondrial DNA variation in two South Siberian
Aboriginal populations: Implications for the genetic history of North Asia. Hum.
Biol.
72
, 945973 (2000). Medline
140. M. Derenko, B. Malyarchuk, T. Grzybowski, G. Denisova, I. Dambueva, M.
Perkova, C. Dorzhu, F. Luzina, H. K. Lee, T. Vanecek, R. Villems, I. Zakharov,
Phylogeographic analysis of mitochondrial DNA in northern Asian populations.
Am. J. Hum. Genet.
81
, 10251041 (2007). Medline doi:10.1086/522933
141. V. N. Pimenoff, D. Comas, J. U. Palo, G. Vershubsky, A. Kozlov, A. Sajantila,
Northwest Siberian Khanty and Mansi in the junction of West and East Eurasian
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 10 / 10.1126/science.aab3884
gene pools as revealed by uniparental markers. Eur. J. Hum. Genet.
16
, 1254
1264 (2008). Medline doi:10.1038/ejhg.2008.101
142. O. A. Derbeneva, E. B. Starikovskaya, D. C. Wallace, R. I. Sukernik, Traces of
early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA
analysis. Am. J. Hum. Genet.
70
, 10091014 (2002). Medline
doi:10.1086/339524
143. O. A. Derbeneva, E. B. Starikovskaia, N. V. Volod’ko, D. C. Wallace, R. I. Sukernik,
[Mitochondrial DNA variation in Kets and Nganasans and the early peoples of
Northern Eurasia]. Genetika
38
, 15541560 (2002). Medline
144. M. Karmin, L. Saag, M. Vicente, M. A. Wilson Sayres, M. Järve, U. G. Talas, S.
Rootsi, A. M. Ilumäe, R. Mägi, M. Mitt, L. Pagani, T. Puurand, Z. Faltyskova, F.
Clemente, A. Cardona, E. Metspalu, H. Sahakyan, B. Yunusbayev, G. Hudjashov,
M. DeGiorgio, E. L. Loogväli, C. Eichstaedt, M. Eelmets, G. Chaubey, K. Tambets,
S. Litvinov, M. Mormina, Y. Xue, Q. Ayub, G. Zoraqi, T. S. Korneliussen, F.
Akhatova, J. Lachance, S. Tishkoff, K. Momynaliev, F. X. Ricaut, P. Kusuma, H.
Razafindrazaka, D. Pierron, M. P. Cox, G. N. Sultana, R. Willerslev, C. Muller, M.
Westaway, D. Lambert, V. Skaro, L. Kovačevic, S. Turdikulova, D. Dalimova, R.
Khusainova, N. Trofimova, V. Akhmetova, I. Khidiyatova, D. V. Lichman, J.
Isakova, E. Pocheshkhova, Z. Sabitov, N. A. Barashkov, P. Nymadawa, E.
Mihailov, J. W. Seng, I. Evseeva, A. B. Migliano, S. Abdullah, G. Andriadze, D.
Primorac, L. Atramentova, O. Utevska, L. Yepiskoposyan, D. Marjanovic, A.
Kushniarevich, D. M. Behar, C. Gilissen, L. Vissers, J. A. Veltman, E. Balanovska,
M. Derenko, B. Malyarchuk, A. Metspalu, S. Fedorova, A. Eriksson, A. Manica, F.
L. Mendez, T. M. Karafet, K. R. Veeramah, N. Bradman, M. F. Hammer, L. P.
Osipova, O. Balanovsky, E. K. Khusnutdinova, K. Johnsen, M. Remm, M. G.
Thomas, C. Tyler-Smith, P. A. Underhill, E. Willerslev, R. Nielsen, M. Metspalu, R.
Villems, T. Kivisild, A recent bottleneck of Y chromosome diversity coincides with
a global change in culture. Genome Res.
25
, 459466 (2015).
10.1101/gr.186684.114 Medline doi:10.1101/gr.186684.114
145. M. van Oven, A. Van Geystelen, M. Kayser, R. Decorte, M. H. Larmuseau, Seeing
the wood for the trees: A minimal reference phylogeny for the human Y
chromosome. Hum. Mutat.
35
, 187191 (2014). Medline
doi:10.1002/humu.22468
146. ISOGG (http://www.isogg.org)
147. T. M. Karafet, F. L. Mendez, M. B. Meilerman, P. A. Underhill, S. L. Zegura, M. F.
Hammer, New binary polymorphisms reshape and increase resolution of the
human Y chromosomal haplogroup tree. Genome Res.
18
, 830838 (2008).
Medline doi:10.1101/gr.7172008
148. T. M. Karafet, L. P. Osipova, M. A. Gubina, O. L. Posukh, S. L. Zegura, M. F.
Hammer, High levels of Y-chromosome differentiation among native Siberian
populations and the genetic signature of a boreal hunter-gatherer way of life.
Hum. Biol.
74
, 761789 (2002). Medline doi:10.1353/hub.2003.0006
149. M. C. Dulik, S. I. Zhadanov, L. P. Osipova, A. Askapuli, L. Gau, O. Gokcumen, S.
Rubinstein, T. G. Schurr, Mitochondrial DNA and Y chromosome variation
provides evidence for a recent common ancestry between Native Americans and
Indigenous Altaians. Am. J. Hum. Genet.
90
, 229246 (2012). Medline
doi:10.1016/j.ajhg.2011.12.014
150. S. Rootsi, T. Kivisild, G. Benuzzi, H. Help, M. Bermisheva, I. Kutuev, L. Barać, M.
Peričić, O. Balanovsky, A. Pshenichnov, D. Dion, M. Grobei, L. A. Zhivotovsky, V.
Battaglia, A. Achilli, N. Al-Zahery, J. Parik, R. King, C. Cinnioğlu, E.
Khusnutdinova, P. Rudan, E. Balanovska, W. Scheffrahn, M. Simonescu, A.
Brehm, R. Goncalves, A. Rosa, J.-P. Moisan, A. Chaventre, V. Ferak, S. Füredi, P.
J. Oefner, P. Shen, L. Beckman, I. Mikerezi, R. Terzić, D. Primorac, A. Cambon-
Thomsen, A. Krumina, A. Torroni, P. A. Underhill, A. S. Santachiara-Benerecetti,
R. Villems, C. Magri, O. Semino, Phylogeography of Y-chromosome haplogroup I
reveals distinct domains of prehistoric gene flow in europe. Am. J. Hum. Genet.
75
, 128137 (2004). Medline doi:10.1086/422196
151. J. K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using
multilocus genotype data. Genetics
155
, 945959 (2000). Medline
152. M. Jakobsson, N. A. Rosenberg, CLUMPP: A cluster matching and permutation
program for dealing with label switching and multimodality in analysis of
population structure. Bioinformatics
23
, 18011806 (2007). Medline
doi:10.1093/bioinformatics/btm233
153. B. K. Maples, S. Gravel, E. E. Kenny, C. D. Bustamante, RFMix: A discriminative
modeling approach for rapid and robust local-ancestry inference. Am. J. Hum.
Genet.
93
, 278288 (2013). Medline doi:10.1016/j.ajhg.2013.06.020
154. K. A. Frazer, D. G. Ballinger, D. R. Cox, D. A. Hinds, L. L. Stuve, R. A. Gibbs, J. W.
Belmont, A. Boudreau, P. Hardenbol, S. M. Leal, S. Pasternak, D. A. Wheeler, T. D.
Willis, F. Yu, H. Yang, C. Zeng, Y. Gao, H. Hu, W. Hu, C. Li, W. Lin, S. Liu, H. Pan, X.
Tang, J. Wang, W. Wang, J. Yu, B. Zhang, Q. Zhang, H. Zhao, H. Zhao, J. Zhou, S.
B. Gabriel, R. Barry, B. Blumenstiel, A. Camargo, M. Defelice, M. Faggart, M.
Goyette, S. Gupta, J. Moore, H. Nguyen, R. C. Onofrio, M. Parkin, J. Roy, E. Stahl,
E. Winchester, L. Ziaugra, D. Altshuler, Y. Shen, Z. Yao, W. Huang, X. Chu, Y. He,
L. Jin, Y. Liu, Y. Shen, W. Sun, H. Wang, Y. Wang, Y. Wang, X. Xiong, L. Xu, M. M.
Waye, S. K. Tsui, H. Xue, J. T. Wong, L. M. Galver, J. B. Fan, K. Gunderson, S. S.
Murray, A. R. Oliphant, M. S. Chee, A. Montpetit, F. Chagnon, V. Ferretti, M.
Leboeuf, J. F. Olivier, M. S. Phillips, S. Roumy, C. Sallée, A. Verner, T. J. Hudson,
P. Y. Kwok, D. Cai, D. C. Koboldt, R. D. Miller, L. Pawlikowska, P. Taillon-Miller, M.
Xiao, L. C. Tsui, W. Mak, Y. Q. Song, P. K. Tam, Y. Nakamura, T. Kawaguchi, T.
Kitamoto, T. Morizono, A. Nagashima, Y. Ohnishi, A. Sekine, T. Tanaka, T.
Tsunoda, P. Deloukas, C. P. Bird, M. Delgado, E. T. Dermitzakis, R. Gwilliam, S.
Hunt, J. Morrison, D. Powell, B. E. Stranger, P. Whittaker, D. R. Bentley, M. J.
Daly, P. I. de Bakker, J. Barrett, Y. R. Chretien, J. Maller, S. McCarroll, N.
Patterson, I. Pe’er, A. Price, S. Purcell, D. J. Richter, P. Sabeti, R. Saxena, S. F.
Schaffner, P. C. Sham, P. Varilly, D. Altshuler, L. D. Stein, L. Krishnan, A. V.
Smith, M. K. Tello-Ruiz, G. A. Thorisson, A. Chakravarti, P. E. Chen, D. J. Cutler, C.
S. Kashuk, S. Lin, G. R. Abecasis, W. Guan, Y. Li, H. M. Munro, Z. S. Qin, D. J.
Thomas, G. McVean, A. Auton, L. Bottolo, N. Cardin, S. Eyheramendy, C.
Freeman, J. Marchini, S. Myers, C. Spencer, M. Stephens, P. Donnelly, L. R.
Cardon, G. Clarke, D. M. Evans, A. P. Morris, B. S. Weir, T. Tsunoda, J. C. Mullikin,
S. T. Sherry, M. Feolo, A. Skol, H. Zhang, C. Zeng, H. Zhao, I. Matsuda, Y.
Fukushima, D. R. Macer, E. Suda, C. N. Rotimi, C. A. Adebamowo, I. Ajayi, T.
Aniagwu, P. A. Marshall, C. Nkwodimmah, C. D. Royal, M. F. Leppert, M. Dixon, A.
Peiffer, R. Qiu, A. Kent, K. Kato, N. Niikawa, I. F. Adewole, B. M. Knoppers, M. W.
Foster, E. W. Clayton, J. Watkin, R. A. Gibbs, J. W. Belmont, D. Muzny, L.
Nazareth, E. Sodergren, G. M. Weinstock, D. A. Wheeler, I. Yakub, S. B. Gabriel, R.
C. Onofrio, D. J. Richter, L. Ziaugra, B. W. Birren, M. J. Daly, D. Altshuler, R. K.
Wilson, L. L. Fulton, J. Rogers, J. Burton, N. P. Carter, C. M. Clee, M. Griffiths, M.
C. Jones, K. McLay, R. W. Plumb, M. T. Ross, S. K. Sims, D. L. Willey, Z. Chen, H.
Han, L. Kang, M. Godbout, J. C. Wallenburg, P. L’Archevêque, G. Bellemare, K.
Saeki, H. Wang, D. An, H. Fu, Q. Li, Z. Wang, R. Wang, A. L. Holden, L. D. Brooks, J.
E. McEwen, M. S. Guyer, V. O. Wang, J. L. Peterson, M. Shi, J. Spiegel, L. M. Sung,
L. F. Zacharia, F. S. Collins, K. Kennedy, R. Jamieson, J. Stewart; International
HapMap Consortium, A second generation human haplotype map of over 3.1
million SNPs. Nature
449
, 851861 (2007). Medline doi:10.1038/nature06258
155. D. Reich, R. E. Green, M. Kircher, J. Krause, N. Patterson, E. Y. Durand, B. Viola,
A. W. Briggs, U. Stenzel, P. L. Johnson, T. Maricic, J. M. Good, T. Marques-Bonet,
C. Alkan, Q. Fu, S. Mallick, H. Li, M. Meyer, E. E. Eichler, M. Stoneking, M.
Richards, S. Talamo, M. V. Shunkov, A. P. Derevianko, J. J. Hublin, J. Kelso, M.
Slatkin, S. Pääbo, Genetic history of an archaic hominin group from Denisova
Cave in Siberia. Nature
468
, 10531060 (2010). Medline
doi:10.1038/nature09710
156. E. Y. Durand, N. Patterson, D. Reich, M. Slatkin, Testing for ancient admixture
between closely related populations. Mol. Biol. Evol.
28
, 22392252 (2011).
Medline doi:10.1093/molbev/msr048
157. F. M. T. A. Busing, E. Meijer, R. van der Leeden, Delete-m Jackknife for Unequal
m. Stat. Comput.
9
, 38 (1999). doi:10.1023/A:1008800423698
158. J. S. Paul, Y. S. Song, A principled approach to deriving approximate conditional
sampling distributions in population genetics models with recombination.
Genetics
186
, 321338 (2010). Medline doi:10.1534/genetics.110.117986
159. J. S. Paul, M. Steinrücken, Y. S. Song, An accurate sequentially Markov
conditional sampling distribution for the coalescent with recombination.
Genetics
187
, 11151128 (2011). Medline doi:10.1534/genetics.110.125534
160. C. Wiuf, J. Hein, Recombination as a point process along sequences. Theor.
Popul. Biol.
55
, 248259 (1999). Medline doi:10.1006/tpbi.1998.1403
161. G. A. McVean, N. J. Cardin, Approximating the coalescent with recombination.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
360
, 13871393 (2005). Medline
doi:10.1098/rstb.2005.1673
162. P. Marjoram, J. D. Wall, Fast “coalescent” simulation. BMC Genet.
7
, 16 (2006).
Medline doi:10.1186/1471-2156-7-16
163. S. Liu, E. D. Lorenzen, M. Fumagalli, B. Li, K. Harris, Z. Xiong, L. Zhou, T. S.
Korneliussen, M. Somel, C. Babbitt, G. Wray, J. Li, W. He, Z. Wang, W. Fu, X.
Xiang, C. C. Morgan, A. Doherty, M. J. O’Connell, J. O. McInerney, E. W. Born, L.
Dalén, R. Dietz, L. Orlando, C. Sonne, G. Zhang, R. Nielsen, E. Willerslev, J. Wang,
Population genomics reveal recent speciation and rapid evolutionary adaptation
in polar bears. Cell
157
, 785794 (2014). Medline doi:10.1016/j.cell.2014.03.054
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 11 / 10.1126/science.aab3884
164. K. Harris, R. Nielsen, Error-prone polymerase activity causes multinucleotide
mutations in humans. Genome Res.
24
, 14451454 (2014). Medline
doi:10.1101/gr.170696.113
165. P. R. Staab, S. Zhu, D. Metzler, G. Lunter, scrm: Efficiently simulating long
sequences using the approximated coalescent with recombination.
Bioinformatics
31
, 16801682 (2015). 10.1093/bioinformatics/btu861 Medline
doi:10.1093/bioinformatics/btu861
166. R. K. Harritt, Paleo-Eskimo beginnings in North America: A new discovery at
Kuzitrin Lake, Alaska. Etud. Inuit
22
, 6181 (1998).
167. A. Kong, G. Thorleifsson, D. F. Gudbjartsson, G. Masson, A. Sigurdsson, A.
Jonasdottir, G. B. Walters, A. Jonasdottir, A. Gylfason, K. T. Kristinsson, S. A.
Gudjonsson, M. L. Frigge, A. Helgason, U. Thorsteinsdottir, K. Stefansson, Fine-
scale recombination rate differences between sexes, populations and
individuals. Nature
467
, 10991103 (2010). Medline doi:10.1038/nature09525
168. A. S. Dyke, A. Moore, L. Robertson, Deglaciation of North America, Geological
Survey of Canada Open File 1574 (2003).
169. D. Wegmann, C. Leuenberger, S. Neuenschwander, L. Excoffier, ABCtoolbox: A
versatile toolkit for approximate Bayesian computations. BMC Bioinformatics
11
,
116 (2010). Medline doi:10.1186/1471-2105-11-116
170. H. Liu, F. Prugnolle, A. Manica, F. Balloux, A geographically explicit genetic
model of worldwide human-settlement history. Am. J. Hum. Genet.
79
, 230237
(2006). Medline doi:10.1086/505436
171. N. A. Rosenberg, S. Mahajan, S. Ramachandran, C. Zhao, J. K. Pritchard, M. W.
Feldman, Clines, clusters, and the effect of study design on the inference of
human population structure. PLOS Genet.
1
, e70 (2005). Medline
doi:10.1371/journal.pgen.0010070
172. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, D. Reich,
Principal components analysis corrects for stratification in genome-wide
association studies. Nat. Genet.
38
, 904909 (2006). Medline
doi:10.1038/ng1847
173. N. Patterson, A. L. Price, D. Reich, Population structure and eigenanalysis. PLOS
Genet.
2
, e190 (2006). Medline
174. J. Oksanen et al., vegan: Community Ecology Package (2013; http://cran.r-
project.org/web/packages/vegan/index.html).
175. Home. RStudio, (available at http://www.rstudio.com/).
176. M. Sikora, M. L. Carpenter, A. Moreno-Estrada, B. M. Henn, P. A. Underhill, F.
Sánchez-Quinto, I. Zara, M. Pitzalis, C. Sidore, F. Busonero, A. Maschio, A.
Angius, C. Jones, J. Mendoza-Revilla, G. Nekhrizov, D. Dimitrova, N. T heodossiev,
T. T. Harkins, A. Keller, F. Maixner, A. Zink, G. Abecasis, S. Sanna, F. Cucca, C. D.
Bustamante, Population genomic analysis of ancient and modern genomes
yields new insights into the genetic ancestry of the Tyrolean Iceman and the
genetic structure of Europe. PLOS Genet.
10
, e1004353 (2014). Medline
doi:10.1371/journal.pgen.1004353
177. W. Neves, The origin of the first Americans: An analysis based on the cranial
morphology of early South American human remains. Am. J. Phys. Anthropol.
81
,
274 (1990).
178. W. Neves, M. Blum, “Luzia” is not alone: Further evidence of a non-mongoloid
settlement of the new world. Curr. Res. P leistocene
18
, 7377 (2001).
179. R. González-José, W. Neves, M. M. Lahr, S. González, H. Pucciarelli, M.
Hernández Martínez, G. Correal, Late Pleistocene/Holocene craniofacial
morphology in Mesoamerican Paleoindians: Implications for the peopling of the
New World. Am. J. Phys. Anthropol.
128
, 772780 (2005). Medline
doi:10.1002/ajpa.20165
180. W. A. Neves, M. Hubbe, G. Correal, Human skeletal remains from Sabana de
Bogotá, Colombia: A case of Paleoamerican morphology late survival in South
America? Am. J. Phys. Anthropol.
133
, 10801098 (2007). Medline
doi:10.1002/ajpa.20637
181. S. I. Perez, V. Bernal, P. N. Gonzalez, M. Sardi, G. G. Politis, Discrepancy between
cranial and DNA data of early Americans: Implications for American peopling.
PLOS ONE
4
, e5746 (2009). Medline doi:10.1371/journal.pone.0005746
182. H. M. Pucciarelli, S. I. Perez, G. G. Politis, Early Holocene human remains from
the Argentinean Pampas: Additional evidence for distinctive cranial morphology
of early South Americans. Am. J. Phys. Anthropol.
143
, 298305 (2010). Medline
doi:10.1002/ajpa.21347
183. W. Neves, H. Pucciarelli, The Zhoukoudian Upper Cave skull 101 as seen from
the Americans. J. Hum. Evol.
34
, 219222 (1998). Medline
doi:10.1006/jhev.1997.0183
184. J. F. Powell, W. A. Neves, Craniofacial morphology of the first Americans:
Pattern and process in the peopling of the New World. Am. J. Phys. Anthropol.
110
(Suppl 29), 153188 (1999). Medline doi:10.1002/(SICI)1096-
8644(1999)110:29+<153::AID-AJPA6>3.0.CO;2-L
185. D. G. Steele, J. F. Powell, Paleobiology of the first Americans. Evol. Anthropol.
Issues News Rev.
2
, 138146 (1993). doi:10.1002/evan.1360020409
186. J. F. Powell, The first Americans: race, evolution and the origin of native
Americans (Cambridge University Press, Cambridge, 2005).
187. V. F. Gonçalves, J. Stenderup, C. Rodrigues-Carvalho, H. P. Silva, H. Gonçalves-
Dornelas, A. Líryo, T. Kivisild, A. S. Malaspinas, P. F. Campos, M. Rasmussen, E.
Willerslev, S. D. Pena, Identification of Polynesian mtDNA haplogroups in
remains of Botocudo Amerindians from Brazil. Proc. Natl. Acad. Sci. U.S.A.
110
,
64656469 (2013). Medline doi:10.1073/pnas.1217905110
188. W. Neves, H. Pucciarelli, Morphological affinities of the first Americans: An
exploratory analysis based on early South American human remains. J. Hum.
Evol.
21
, 261273 (1991). doi:10.1016/0047-2484(91)90107-7
189. T. D. Dillehay, Probing deeper into first American studies. Proc. Natl. Acad. Sci.
U.S.A.
106
, 971978 (2009). Medline doi:10.1073/pnas.0808424106
190. G. N. van Vark, D. Kuizenga, F. L. Williams, Kennewick and Luzia: Lessons from
the European Upper Paleolithic. Am. J. Phys. Anthropol.
121
, 181184, discussion
185188 (2003). Medline doi:10.1002/ajpa.10176
191. R. L. Jantz, D. W. Owsley, Reply to Van Vark et al.: Is European Upper Paleolithic
cranial morphology a useful analogy for early Americans? Am. J. Phys.
Anthropol.
121
, 185188 (2003). doi:10.1002/ajpa.10188
192. F. L. Bookstein, Morphometric Tools for Landmark Data (Cambridge University
Press, Cambridge, 1991).
193. C. C. Roseman, T. D. Weaver, Multivariate apportionment of global human
craniometric diversity. Am. J. Phys. Anthropol.
125
, 257263 (2004). Medline
doi:10.1002/ajpa.10424
194. L. Betti, F. Balloux, W. Amos, T. Hanihara, A. Manica, Distance from Africa, not
climate, explains within-population phenotypic diversity in humans. Proc. R. Soc.
B-Biol. Sci. 276, 809-814 (2009).
195. M. Hubbe, T. Hanihara, K. Harvati, Climate signatures in the morphological
differentiation of worldwide modern human populations. Anat. Rec.
292
, 1720
1733 (2009). Medline doi:10.1002/ar.20976
196. L. Betti, F. Balloux, T. Hanihara, A. Manica, The relative role of drift and selection
in shaping the human skull. Am. J. Phys. Anthropol.
141
, 7682 (2010). Medline
197. W. W. Howells, Skull Shapes and the Map: Craniometric Analyses in the
Dispersion of Modern Homo. (Harvard University Press, Cambridge, 1989),
Peabody Museum of Archaeology and Ethnology.
198. W. W. Howells, Cranial Variation in Man: A Study by Multivariate Analysis of
Patterns of Difference Among Recent Human Populations (Harvard University
Press, 1973).
199. N. Morimoto, M. S. Ponce de León, C. P. Zollikofer, Phenotypic variation in
infants, not adults, reflects genotypic variation among chimpanzees and
bonobos. PLOS ONE
9
, e102074 (2014). Medline
doi:10.1371/journal.pone.0102074
200. W. W. Howells, Howells’ craniometric data on the Internet. Am. J. Phys.
Anthropol.
101
, 441442 (1996). Medline doi:10.1002/ajpa.1331010302
201. W. A. Neves, M. Hubbe, M. M. Okumura, R. González-José, L. Figuti, S. Eggers, P.
A. De Blasis, A new early Holocene human skeleton from Brazil: Implications for
the settlement of the New World. J. Hum. Evol.
48
, 403414 (2005). Medline
doi:10.1016/j.jhevol.2004.12.001
202. W. A. Neves, M. Hubbe, L. B. Piló, Early Holocene human skeletal remains from
Sumidouro Cave, Lagoa Santa, Brazil: History of discoveries, geological and
chronological context, and comparative cranial morphology. J. Hum. Evol.
52
,
1630 (2007). Medline doi:10.1016/j.jhevol.2006.07.012
203. C. C. Roseman, Detecting interregionally diversifying natural selection on
modern human cranial form by using matched molecular and morphometric
data. Proc. Natl. Acad. Sci. U.S.A.
101
, 1282412829 (2004). Medline
doi:10.1073/pnas.0402637101
204. K. Prüfer, F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer, A.
Heinze, G. Renaud, P. H. Sudmant, C. de Filippo, H. Li, S. Mallick, M. Dannemann,
Q. Fu, M. Kircher, M. Kuhlwilm, M. Lachmann, M. Meyer, M. Ongyerth, M.
Siebauer, C. Theunert, A. Tandon, P. Moorjani, J. Pickrell, J. C. Mullikin, S. H.
Vohr, R. E. Green, I. Hellmann, P. L. Johnson, H. Blanche, H. Cann, J. O. Kitzman,
J. Shendure, E. E. Eichler, E. S. Lein, T. E. Bakken, L. V. Golovanova, V. B.
Doronichev, M. V. Shunkov, A. P. Derevianko, B. Viola, M. Slatkin, D. Reich, J.
Kelso, S. Pääbo, The complete genome sequence of a Neanderthal from the Altai
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 12 / 10.1126/science.aab3884
Mountains. Nature
505
, 4349 (2014). Medline doi:10.1038/nature12886
205. J. H. Greenberg, C. G. Turner, S. L. Zegura, The settlement of the Americas: A
comparison of the linguistic, dental, and genetic evidence. Curr. Anthropol.
27
,
477497 (1986). doi:10.1086/203472
ACKNOWLEDGMENTS
We thank J. Valdés for providing craniometric measurements of the Pericúes at the
National Museum of Anthropology in México; A. Monteverde from CINAH-Baja
California Sur and V. Laborde at the Musée de l´Homme in Paris for providing
documentation on Pericú and Fuego-Patagonian samples, respectively; T.
Gilbert, M. McCoy, C. Sarkissian, M. Sikora, L. Orlando for helpful discussions
and input; D. Yao and C. Barbieri for helping with the collection of the Aymara
population sample; B. Henn and J. Kidd for providing early access to the Mayan
sequencing data; Canadian Museum of History; Metlakatla and Lax Kw'alaams
First Nations; Listuguj Mi’gmaq Band Council; A. Pye of TERRA Facility, Core
Research Equipment & Instrument Training (CREAIT) Network at Memorial
University; the Danish National High-throughput DNA Sequencing Centre
(Copenhagen) for help with sequencing; and, Fondation Jean Dausset-Centre
de'Etude du Polymorphism Humain (CEPH) for providing DNA for the Human
Genome Diversity Project (HGDP) samples that were genome-sequenced in this
study. This study was supported by several funding bodies; Lundbeck
Foundation and the Danish National Research (Centre for GeoGenetics
members), Wellcome Trust grant 098051 (S.S., A.B., Y.X., C.T.-S., M.S.S., R.D.),
Marie Curie Intra-European Fellowship-FP7- People-PIEF-GA-2009-255503 and
the Transforming Human Societies Research Focus Areas Fellowship from La
Trobe University (C.V.), George Rosenkranz Prize for Health Care Research in
Developing Countries and National Science Foundation award DMS-1201234
(M.C.A.A), Swiss National Science Foundation (PBSKP3_143529) (A.-S.M.),
Ministerio de Ciencia e Innovación (MICINN) Project CGL2009-12703-C03-03
and MICINN (BES-2010-030127) (R.R.-V.), Consejo Nacional de Ciencia y
Tecnología (Mexico) (J.V.M.M.), Biotechnology and Biological Sciences Research
Council BB/H005854/1 (V.W., F.B., A.M.), European Research Council and Marie
Curie Actions Grant 300554 (M.E.A.), Wenner-Gren Foundations and the
Australian Research Council Future Fellowship FT0992258 (C.I.S.), European
Research Council ERC-2011-AdG 295733 grant (Langelin) (D.P. and D.L.),
Bernice Peltier Huber Charitable Trust (C.H., L.G.D.), Russian Foundation for
Basic Research grant 13-06-00670 (E.B.), Russian Foundation for Basic
Research grant 14-0400725 (E.K.), European Union European Regional
Development Fund through the Centre of Excellence in Genomics to Estonian
Biocentre and Estonian Institutional Research grant IUT24-1 (E.M., K.T., M.M.,
M.K., R.V.), Estonian Science Foundation grant 8973 (M.M.), Stanford Graduate
Fellowship (J.R.H.), Washington State University (B.M.K.), French National
Research Agency grant ANR-14-CE31-0013-01 (F-X.R), European Research
Council grant 261213 (T.K.), National Science Foundation BCS- 1025139
(R.S.M.), Social Science Research Council of Canada (K.-A.P., V.G.), National
Institutes of Health grants R01-GM094402 (M.S., Y.S.S.); R01 - AI17892 (P.J.N.,
P.P.); 2R01HG003229-09 (R.N., C.D.B.), Packard Fellowship for Science and
Engineering (Y.S.S.), Russian Science Fund grant 14-04-00827 and Presidium of
Russian Academy of Sciences Molecular and Cell Biology Programme (O.B.), and
Russian Foundation for Basic Research grant 14-06-00384 (Y.B.). Informed
consent was obtained for the sequencing of the modern individuals, with ethical
approval from The National Committee on Health Research Ethics, Denmark (H-
3-2012-FSP21). SNP chip genotype data and whole genome data for select
present-day individuals are available only for demographic research under data
access agreement with E.W. (see Tables S1 and S4 for a list of these samples).
Raw reads from the ancient and the remainder of the present-day genomes are
available for download through European Nucleotide Archive (ENA) accession
no. PRJEB9733, and the corresponding alignment files are available at
http://www.cbs.dtu.dk/suppl/NativeAmerican/. The remainder of the SNP chip
genotype data can be accessed through Gene Expression Omnibus (GEO) series
accession no. GSE70987 and at www.ebc.ee/free_data. The authors declare no
competing financial interests. C.D.B. is on the advisory board of Personalis, Inc.;
Identify Genomics; Etalon DX; and Ancestry.com.
SUPPLEMENTARY MATERIALS
www.sciencemag.org/cgi/content/full/science.aab3884/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S41
Tables S1 to S15
References (65205)
4 May 2015; accepted 15 July 2015
Published online 23 July 2015
10.1126/science.aab3884
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 13 / 10.1126/science.aab3884
1Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 57, 1350 Copenhagen, Denmark. 2Computer Science Division,
University of California, Berkeley, CA 94720, USA. 3Department of Statistics, University of California, Berkeley, CA 94720, USA. 4Department of Biostatistics and
Epidemiology, University of Massachusetts, Amherst, MA 01003, USA. 5Department of Mathematics, University of California, Berkeley, CA 94720, USA. 6Wellcome Tr ust
Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. 7Center for Biological Sequence Analysis, Department of Systems Biology, Technical University
of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark. 8Departments of Biology and Statistics, Pennsylvania State University, 502 Wartik Laboratory,
University Park, PA 16802, USA. 9The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
10Department of Archaeology and History, La Trobe University, Melbourne, Victoria 3086, Australia. 11Department of Genetics, School of Medicine, Stanford University,
300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA. 12Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
13Integrative Systems Biology Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. 14Estonian
Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. 15Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia. 16Institute for Human
Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA. 17School of Biological Sciences, Washington State University, PO
Box 644236, Heald 429, Pullman, Washington 99164, USA. 18CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos
Bragas 289, 4050-123 Porto, Portugal. 19Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave, Urbana, IL 61801, USA. 20Centro
Mixto, Universidad Complutense de MadridInstituto de Salud Carlos III de Evolución y Comportamiento Humano, Madrid, Spain. 21Instituto Nacional de Antropología e
Historia, Moneda 13, Centro, Cuauhtémoc, 06060 Mexico Mexico City, Mexico. 22University of Utah, Department of Anthropology, 270 S 1400 E, Salt Lake City, Utah
84112, USA. 23Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. 24 AMS 14C Dating
Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark. 25Laboratorio Nacional de Genómica para la Biodiversidad
(LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico. 26UCL Genetics Institute, Gower Street, London WC1E 6BT, UK. 27Evolutionsbiologiskt Centrum,
Norbyvägen 18D, 75236 Uppsala, Sweden. 28Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK. 29Centre for Past Climate
Change and Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading, UK. 30School of Geographical Sciences, University Road, Clifton, Bristol
BS8 1SS, UK. 31Escuela Nacional de AntropologÍa e Historia, Periférico Sur y Zapote s/n. Colonia Isidro Fabela, Tlalpan, Isidro Fabela, 14030 Mexico City, Mexico. 32Instituto
de Investigación en Genética Molecular, Universidad d e Guadalajara, Ocotlán, Mexico. 33Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di
Bologna, Via Selmi 3, 40126 Bologna, Italy. 34Department of Anthropology, Oregon State University, 238 Waldo Hall, Corvallis, OR, 97331 USA. 35Museum National
d'Histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie et Ethnobiologie (UMR7206), Paris, France.
36Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland. 37Department of Archaeology, Memorial University,
Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada. 38Department of Human Evolution, Max Planck Institute for Evolutionary
Anthropology, Deutscher Platz 6, Leipzig 04103, Germany. 39Department of Earth System Science, University of California, Irvine, Keck CCAMS Group, B321 Croul Hall,
Irvine, California, 92697, USA. 40Instituto de Alta Investigación, Universidad de Tarapacá, 18 de Septiembre 2222, Carsilla 6-D Arica, Chile. 41Departamento de
Antropologia, Universidad de Tarapacá, 18 de Septiembre 2222. Casilla 6-D Arica, Chile. 42Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta,
Campestre, 64770-000 Sao Raimundo Nonato, Brazil. 43Laboratoire d’Anthropologie Moléculaire et Imagérie de Synthèse UMR-5288, CNRS, Université de Toulouse,
31073 Toulouse, France. 44Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.
45Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia. 46Institute of Internal Medicine, Siberian Branch of RAS, 175/1 ul. B. Bogatkova, Novosibirsk
630089, Russia. 47Novosibirsk State University, Laboratory of Molecular Epidemiology and Bioinformatics, 630090 Novosibirsk, Russia. 48Vavilov Institute of General
Genetics, Gubkina 3, 119333 Moscow, Russia. 49Research Centre for Medical Genetics, Moskvorechie 1, 115478 Moscow, Russia. 50Kemerovo State University, Krasnaya 3,
650000 Kemerovo, Russia. 51Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia. 52Department of Genetics
and Fundamental Medicine, Bashkir State University, Zaki Validi 32, 450076 Ufa, Russia. 53Department of Molecular Genetics, Yakut Scientific Centre of Complex Medical
Problems, Sergelyahskoe Shosse 4, 677010 Yakutsk, Russia. 54Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal
University, 677000 Yakutsk, Russia. 55Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia.
56Department of Anthropology, Western Washington University, Bellingham Washington 98225, USA. 57Department of Anthropology, Northwest Community College, 353
Fifth Street, Prince Rupert, British Columbia V8J 3L6, Canada. 58Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec K1A 0M8, Canada. 59University of
Western Ontario, London, Ontario N6A 3K7, Canada. 60Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada. 61Metlakatla Treaty Office, PO Box 224,
Prince Rupert, BC, Canada V8J 3P6. 62Sealaska Heritage Institute, 105 S. Seward Street, Juneau, Alaska 99801, USA. 63Department of Structural Biology, Stanford
University School of Medicine, D100 Fairchild Science Building, Stanford, California 94305-5126, USA. 64Department of Anthropology, Washington State University,
Pullman Washington 99163, USA. 65Division of Biological Anthropology, University of Cambridge, Henry Wellcome Building, Fitzwilliam Street, CB2 1QH, Cambridge, UK.
66Dept of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
67Laboratory of Biological Anthropology, University of Kansas, 1415 Jayhawk Blvd., 622 Fraser Hall, Lawrence, Kansas 66045, USA. 68Molecular Anthropology Laboratory,
209 Young Hall, Department of Anthropology, University of California, One Shields Avenue, Davis, California 95616, USA. 69Center for the Study of the First Americans,
Texas A&M University, College Station, Texas 77843-4352, USA. 70Department of Anthropology, Texas A&M University, College Station, Texas 77843-4352, USA.
71Department of Geography, Texas A&M University, College Station, Texas 77843-4352, USA. 72Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa
Barbara, CA 93105, USA. 73Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA. 74Department of Anthropology,
Southern Methodist University, Dallas, Texas 75275, USA. 75Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg #3140, Berkeley,
CA 94720, USA.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 14 / 10.1126/science.aab3884
day Native Americans, including Amerindians and Athabascans, derived from a single migration wave into the
Americas (purple), separate from the Inuit (green). This migration from East Asia occurred no later than 23 KYA and is
in agreement with archaeological evidence from sites such as Monte Verde (50). A split between the northern and
southern branches of Native Americans occurred ca. 13 KYA, with the former comprising Athabascans and northern
Amerindians and the latter consisting of Amerindians in northern North America and Central and South America
including the Anzick-1 individual (5). There is an admixture signal between Inuit and Athabascans and some northern
Amerindians (yellow line); however, the gene flow direction is unresolved due to the complexity of the admixture
events (28). Additionally, we see a weak signal related to Australo-Melanesians in some Native Americans, which may
have been mediated through East Asians and Aleutian Islanders (yellow arrows). Also shown is the Mal’ta gene flow
into Native American ancestors some 23 KYA (yellow arrow) (4). It is currently not possible for us to ascertain the
exact geographical locations of the depicted events; hence, the positioning of the arrows should not be considered a
reflection of these. B. Admixture plot created on the basis of TreeMix results (fig. S5) shows that all Native Americans
form a clade, separate from the Inuit, with gene flow between some Native Americans and the North American Arctic.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 15 / 10.1126/science.aab3884
Fig. 2. Divergence estimates between Native Americans and Siberian Koryak. (A) The
demographic model used allows for continuous gene flow between populations 1 and 2, starting from
the time TDIV of divergence and ending at TM. The backward probability of migration per individual per
generation is denoted by m. The bottleneck at TB captures the out-of-Africa event. (
B
) The red and
black solid curves depict empirical distributions of IBS tracts shared between Karitiana-Koryak and
Athabascan-Koryak, respectively. The orange, pink, dashed blue and dashed green curves depict IBS
tracts shared between the two population pairs, simulated under two demographic models based on
results from diCal2.0. Overall, for Karitiana-Koryak and Athabascan-Koryak, the migration scenarios
(orange and pink, respectively) match the empirical curves (red and black, respectively) better than
the clean split scenarios (dashed blue and dashed green, respectively), with more long IBS tracts
showing evidence of recent common ancestry between Koryaks and Native Americans. (
C
and
D
)
Relative cross coalescence rates (CCR) for the Karitiana-Koryak and Athabascan-Koryak divergence
(red), respectively, including data simulated under the two demographic models in panel B. In both
cases, the model with gene flow (orange) fits the data (red) better than the clean split model (blue).
The migration model explains a broader CCR tail in the case of Karitiana-Koryak and the relatively late
onset of the CCR decay for Athabascan-Koryak.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 16 / 10.1126/science.aab3884
Fig. 3. Testing migrations into the Americas using a climate-informed model. Estimates of difference in
genetic divergence between Amerindians (from southern North America and Central and South America) or
Koryak versus Athabascan and Greenlandic Inuit and the ancient Saqqaq and Anzick-1 genomes (black vertical
lines), compared to posterior probability distribution predicted from a climate-informed spatial genetic model
reconstructing a single wave into the Americas (curves, the colored part represents the 95% credibility interval).
ΔT for population X is defined as T(X,Koryak)-T(X,Central and South Amerindians) (28). Both Anzick-1 and the
Athabascans were part of the same wave into the Americas to which other Amerindian populations from southern
North America and Central and South America belonged, while the Inuit and Saqqaq are the descendants of
different waves (observed values outside the 95% credibility interval).
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 17 / 10.1126/science.aab3884
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 18 / 10.1126/science.aab3884
Fig. 4. Diversification within the Americas. SNP chip genotype data-based outgroup f
3
statistics (47) of the
form f3(X, Ancient; Yoruba) were used to estimate the shared ancestry between ancient samples from the
Americas and a large panel of worldwide present-day populations (X), including Athabascan and Amerindian
groups from North America (table S3), some of which were masked for non-Native ancestry prior to the
analysis (28). The outgroup f3 statistics are depicted as heat maps with the sampling location of the ancient
sample marked by the dotted lines, and corresponding ranked plots with error bars are shown in fig. S14. BP
refers to time before present. We find the Anzick-1 sample to share most ancestry with the ‘southern’ branch
of Native Americans when using multiple northern Native Americans sequenced in this study, consistent with
(5). The seven Holocene aged samples share most ancestry with Native Americans, with a general tendency to
be genetically closer to present-day Native American populations from the same geographical region.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 19 / 10.1126/science.aab3884
Fig. 5. The Paleoamerican model. (A) Principal Component Analysis plot of 19 ancient samples combined
with a worldwide reference panel, including 1,823 individuals from (6). Our samples plot exclusively with
American samples. For plots with other reference panels consisting of Native American populations, see fig.
S32. (
B
) Population structure in the ancient Pericú, Mexican mummy and Fuego-Patagonian individuals from
this study. Ancestry proportions are shown when assuming six ancestral populations (K = 6). The top bar
shows the ancestry proportions of the 19 ancient individuals, Anzick-1 (5), and two present-day Native
American genomes from this study (Huichol and Aymara). The plot at the bottom illustrates the ancestry
proportions for 1,823 individuals from (6). Our samples show primarily Native American (ivory, >92%) and
Siberian (red, ca. 5%) ancestry. For the plot with K=13, see fig. S33.
/ sciencemag.org/content/early/recent / 23 July 2015 / Page 20 / 10.1126/science.aab3884
... For this study, the dataset was filtered to a subset of 50,557,893 highquality autosomal SNPs in 1477 unrelated individuals [see supplementary text S3 and S4 (30)]. To further explore the genetic history of North America, the GA100K:NENA dataset was combined with an open-source genotyping data from modern (31,32) and ancient Native North Americans (11,25,28,(33)(34)(35)(36)(37)(38). These data provide a valuable resource for understanding the population structure and ancient history of North Eurasia and South America as well as the adaptation of these populations to diverse environments [see supplementary text S5 (30)]. ...
... Our estimates of population split times suggest that a deep divergence occurred between North Eurasians and Native Americans between 26,800 and 19,300 ya during the Last Glacial Maximum (Fig. 2D), confirming previous estimates (3,9,14,18,31). After the split, gene flow from the Americas back to Beringia is detected in Koryaks and Inuit, with estimates of 5 and 28% Native American ancestry, respectively, according to qpGraph (Fig. 2E) [see supplementary text S5.6 and S7.3 (30)]. ...
... Our analysis of whole-genome datasets also allowed us to infer the split time between North Eurasians and Native Americans, which occurred between 26,800 and 19,300 ya (Fig. 2, D and E). This finding is consistent with estimates based on the recently published paleontological discovery of human footprints in North America (south-central New Mexico) dating back to 23,000 and 21,000 ya (14), as well as with other genetic studies, despite differences in the cohorts that were investigated (3,9,18,31). A previous study of ancient genomes suggests limited genetic continuity in Beringia, as the most recent Arctic colonization occurred 6000 ya (10). ...
Article
Full-text available
Genome sequencing of 1537 individuals from 139 ethnic groups reveals the genetic characteristics of understudied populations in North Asia and South America. Our analysis demonstrates that West Siberian ancestry, represented by the Kets and Nenets, contributed to the genetic ancestry of most Siberian populations. West Beringians, including the Koryaks, Inuit, and Luoravetlans, exhibit genetic adaptation to Arctic climate, including medically relevant variants. In South America, early migrants split into four groups—Amazonians, Andeans, Chaco Amerindians, and Patagonians—~13,900 years ago. Their longest migration led to population decline, whereas settlement in South America’s diverse environments caused instant spatial isolation, reducing genetic and immunogenic diversity. These findings highlight how population history and environmental pressures shaped the genetic architecture of human populations across North Asia and South America.
... Other exceptions are several contemporary Indigenous groups in the Amazon (Karitiana and Suruí), as well as the Xavante from the Brazilian central plateau, along with an ancient individual from the Lagoa Santa site in Minas Gerais dating back to 10,000 years ago, which display an increased genetic affinity with Australasian populations (Figs. 18.1 and 18.3) (Raghavan et al. 2015;Skoglund et al. 2015;Moreno-Mayar et al. 2018b;Campelo dos Santos et al. 2022). Recent findings have expanded this connection to include two additional modern-day groups from the Central-West Brazilian region (Guaraní Kaiowá) and the northern Peruvian Pacific coast (Chotuna), indicating a wider distribution of this ancestry contribution (e Silva et al. 2021). ...
... The lineage originating from the Center-Southern region of Chile represents a group of ancestors to contemporaneous Mapuche population, while the Patagonian lineage corresponds to ancestors of present-day peoples in the Patagonia region (Nakatsuka et al. 2020). Notably, present-day populations from the Southern Cone exhibit elevated genetic affinities among themselves and with contemporary indigenous communities in Central-Southern Chile (Raghavan et al. 2015;la Fuente et al. 2018). ...
Chapter
The Neotropics, encompassing Central and South America, stand out for their extraordinary biodiversity and cultural richness. Indigenous Americans exhibit remarkable cultural and linguistic diversity, but their genetic diversity is among the lowest among human populations. Environmental factors, including altitude, temperature, and biodiversity, have influenced the genetic makeup of Indigenous Americans since the earliest peopling of the America. Additionally, human impact, such as hunting, harvesting, and wildlife management, has significantly affected neotropical biodiversity. Niche construction, driven by plant and animal domestication and landscape modification, has played a crucial role in agriculture and has heavily influenced the genetic diversity of the region. The interplay between humans and their environment has shaped human genetic adaptations concerning diet and susceptibility to infectious diseases, affecting contemporary indigenous and admixed populations. Furthermore, migrations have played a significant role in shaping the genetic structure of neotropical human populations. Over time, multiple migration waves have contributed to the genetic diversity observed in present-day populations. The peopling of the America involved successive migrations dating back at least 15,000 years, followed by later post-contact migrations from various world regions. The study of genetic variation in neotropical populations has provided insights into their evolutionary history, demographic changes, and the impact of historical events like colonization and the transatlantic slave trade. Understanding the complex interplay of genetic, environmental, and historical factors is vital for conserving the biodiversity of humans and ecosystems. This chapter discusses the importance of migrations, demographic changes and natural selection in shaping the genetic diversity of neotropical human populations.
... Over 500 years of intermixing between Native Americans, European conquerors (primarily Spaniards), and Africans led to the formation of most of the contemporary Mexican population (~93%), commonly known as Mestizo [1,2]. The remainder of the Mexican population consists of Native American groups, who arrived at least 23,000 years ago and are descendants of the first settlers of the Americas [3]. ...
Article
Full-text available
Background: Analyzing Y-chromosome short tandem repeats (Y-STRs) is essential in forensic genetics and population studies. The Yfiler™ Plus kit, which includes 27 Y-STR markers, enhances the discrimination power for forensic and kinship applications. However, this genetic system has not been analyzed in Mexican populations, which limits its application and representativeness in international databases. Objectives: We wished to examine the genetic diversity and forensic parameters of the 27 Y-STRs included in the YFiler™ Plus kit in two populations from Western Mexico (Jalisco and Michoacán). Methods: Male DNA samples were amplified using the Yfiler™ Plus kit, followed by a fragment analysis via capillary electrophoresis (CE). The haplotype frequencies and forensic parameters were calculated. The haplogroups of all samples were predicted, and the distribution and percentages of ancestries were determined. The Rst genetic distances, including reference populations, were calculated and graphically represented in a multidimensional scaling (MDS) plot. Results: A total of 224 haplotypes were identified in all of the samples, of which 98.66% corresponded to unique haplotypes. Bi- and tri-allelic patterns were observed in both populations. The observed discriminatory capacity was 98.4% for Jalisco and 98.9% for Michoacán, while the haplotype diversity values were 0.9998 and 0.9997, respectively. The most frequent haplogroup was R1b, followed by Q, representing the European and Native American ancestries, in both populations. Conclusions: This study is the first to report the haplotype diversity and forensic parameters of the 27 Y-STRs included in the Yfiler™ Plus kit in Mexican populations. These findings confirm the forensic utility of these markers for human identification, biological relationship testing, and criminal investigations, reinforcing their applicability in forensic casework.
Chapter
This chapter examines the origins of sun and moon worship among early Paleoindian South American cultures, in comparison with the rock art and archaeological findings at Monte Alegre. Disruptions in contact-period records reveal imprecise references to local populations, while missionary accounts suggest a continuity of artistic traditions. The rock art analysis in the previous chapters connects radiocarbon dating to climate changes, theorizing how these conditions may have motivated early human migration. Additionally, it explores motifs in rock art that likely signify solar observations and seasonal changes. This evidence positions rock art as a critical tool for understanding environmental interactions and cultural practices at the beginning of the Younger Dryas period, providing new insights about the comet-impact hypothesis.
Article
Full-text available
Genetic studies on Native American populations have transformed our understanding of the demographic history of the Americas. However, a region that has not been investigated through ancient genomics so far is Colombia, the entry point into South America. Here, we report genome-wide data of 21 individuals from the Bogotá Altiplano in Colombia between 6000 and 500 years ago. We reveal that preceramic hunter-gatherers represent a previously unknown basal lineage that derives from the initial South American radiation. These hunter-gatherers do not carry differential affinity to ancient North American groups nor contribute genetically to ancient or present-day South American populations. By 2000 years ago, the local genetic ancestry is replaced by populations from Central America associated with the Herrera ceramic complex and survives through the Muisca period despite major cultural changes. These ancient Altiplano individuals show higher affinities to Chibchan speakers from the Isthmus of Panama than to Indigenous Colombians, suggesting a dilution of the Chibchan-related ancestry through subsequent dispersal events.
Article
Full-text available
Background Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. Results We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. Conclusions This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Article
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi‐arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt‐tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth‐promoting (PGP) microbes have emerged as a key eco‐friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Article
Full-text available
Indigenous groups often encounter significant challenges when asserting ancestral claims and cultural affiliations based on oral histories, particularly in the USA where such narratives have historically been undervalued. Although ancient DNA offers a tool to complement traditional knowledge and address gaps in oral history, longstanding disregard for Indigenous sovereignty and beliefs has understandably led many Indigenous communities to distrust DNA studies1, 2, 3–4. Earlier research often focused on repatriation claims5, 6–7, whereas more recent work has increasingly moved towards enhancing Tribal histories8,9. Here we present a collaborative study initiated by a federally recognized Native American tribe, the sovereign nation of Picuris Pueblo in the Northern Rio Grande region of New Mexico, USA, to address gaps in traditional knowledge and further their understanding of their population history and ancestry. We generated genomes from 16 ancient Picuris individuals and 13 present-day members of Picuris Pueblo, providing genomic data spanning the last millennium. We show genetic continuity between ancient and present-day Picuris, and more broadly with Ancestral Puebloans from Pueblo Bonito in Chaco Canyon¹⁰, 275 km to the west. This suggests a firm spatiotemporal link among these Puebloan populations of the North American Southwest. Furthermore, we see no evidence of population decline before European arrival11, 12–13, and no Athabascan ancestry in individuals predating 1500 ce, challenging earlier migration hypotheses14, 15–16. This work prioritizes Indigenous control of genetic data and brings together oral tradition, archaeology, ethnography and genetics.
Article
Full-text available
Biological anthropologists have long engaged in qualitative data analysis (QDA), though such work is not always foregrounded. In this article, we discuss the role of rigorous and systematic QDA in biological anthropology and consider how it can be understood and advanced. We first establish what kinds of qualitative data and analysis are used in biological anthropology. We then review the ways QDA has been used in six subfields of biological anthropology: primatology, human biology, paleoanthropology, dental and skeletal biology, bioarchaeology, and anthropological genetics. We follow that with an overview of how to use QDA methods: three simple QDA methods (i.e., word‐based analysis, theme analysis, and coding) and three QDA approaches for model‐building and model‐testing (i.e., content analysis, semantic network analysis, and grounded theory). With this foundation in place, we discuss how QDA can support transformative research in biological anthropology—emphasizing the valuable role of QDA in inductive and community‐based research. We discuss how QDA supports transformative research using mixed‐methods research designs, participatory action research, and abolition and Black feminist research. Finally, we consider how to close a QDA project, reflecting on the logistics, ethics, and limitations of qualitative data sharing, including how researchers can use the CARE Principles (Collective Benefit, Authority to Control, Responsibility, and Ethics) to support Indigenous data sovereignty.
Article
We describe a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations. We assume a model in which there are K populations (where K may be unknown), each of which is characterized by a set of allele frequencies at each locus. Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more populations if their genotypes indicate that they are admixed. Our model does not assume a particular mutation process, and it can be applied to most of the commonly used genetic markers, provided that they are not closely linked. Applications of our method include demonstrating the presence of population structure, assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individuals. We show that the method can produce highly accurate assignments using modest numbers of loci—e.g., seven microsatellite loci in an example using genotype data from an endangered bird species. The software used for this article is available from http://www.stats.ox.ac.uk/~pritch/home.html.
Article
The mtDNAs of 76 individuals representing the aboriginal populations of South Siberia, the Tuvinians and Buryats, were subjected to restriction fragment length polymorphism (RFLP) analysis and control region hypervariable segment I (HVS-I) sequencing, and the resulting data were combined with those available for other Siberian and East Asian populations and subjected to statistical and phylogenetic analysis. This analysis showed that the majority of the Tuvinian and Buryat mtDNAs (94.4% and 92.5%, respectively) belong to haplogroups A, B, C, D, E, F, and M*, which are characteristic of Mongoloid populations. Furthermore, the Tuvinians and Buryats harbor four Asian- and Native American-specific haplogroups (A-D) with frequencies (72.2% and 55%, respectively) exceeding those reported previously for Mongolians, Chinese, and Tibetans. They represent, therefore, the populations that are most closely related to New World indigenous groups. Despite their geographical proximity, the Tuvinians and Buryats: shared no HVS-I sequences in common, although individually they shared such sequences with a variety of other Siberian and East Asian populations. Tn addition, phylogenetic and principal component analyses data of mtDNA sequences show that the Tuvinians clustered more closely with Turkie-speaking Yakuts, whereas the Mongolic-speaking Buryats clustered closer to Korean populations. Furthermore, HVS-I sequences, comprising one-fourth of the Buryat lineages and characterized by the only C-to-T transition at nucleotide position 16223, were identified as different RFLP haplotypes (B, C, D, E, M*, and H). This finding appears to indicate the putative ancestral state of the 16223T HVS-I sequences to Mongoloid macrohaplogroup M, at least. Finally, the results of nucleotide diversity analysis in East Asian and Siberian populations suggest that Central and East Asia were the source areas from which the genetically heterogeneous Tuvinians and Buryats first emerged.
Article
Predicting the molecular complexity of a genomic sequencing library is a critical but difficult problem in modern sequencing applications. Methods to determine how deeply to sequence to achieve complete coverage or to predict the benefits of additional sequencing are lacking. We introduce an empirical Bayesian method to accurately characterize the molecular complexity of a DNA sample for almost any sequencing application on the basis of limited preliminary sequencing.
Article
Almost from the day of its accidental discovery along the banks of the Columbia River in Washington State in July 1996, the ancient skeleton of Kennewick Man has garnered significant attention from scientific and Native American communities as well as public media outlets. This volume represents a collaboration among physical and forensic anthropologists, archaeologists, geologists, and geochemists, among others, and presents the results of the scientific study of this remarkable find. Scholars address a range of topics, from basic aspects of osteological analysis to advanced? research focused on Kennewick Man’s origins and his relationships to other populations. Interdisciplinary studies, comprehensive data collection and preservation, and applications of technology are all critical to telling Kennewick Man’s story. Kennewick Man: The Scientific Investigation of an Ancient American Skeletonis written for a discerning professional audience, yet the absorbing story of the remains, their discovery, their curation history, and the extensive amount of detail that skilled scientists have been able to glean from them will appeal to interested and informed general readers. These bones lay silent for nearly nine thousand years, but now, with the aid of dedicated researchers, they can speak about the life of one of the earliest human occupants of North America.
Article
In this chapter we introduce the Mammoth Steppe Hypothesis suggesting an Oxygen Isotope Stage 3 (OIS3), human movement into the Americas sometime between 40,000 and 30,000 years ago. OIS3 was characterized by a relatively mild climate that created a vast contiguous grassland, which was capable of supporting abundant fauna. Humans had adapted to this Mammoth Steppe biome during the latter part of OIS3 as demonstrated by material cultural evidence from the Yana Rhino Horn site and other northern Siberian sites. Ecological data from the Mammoth Steppe support the assertion that humans could have followed the Mammoth Steppe into the Americas during OIS3. We suggest that human populations from northern Siberia were able to disperse across Beringia and down the eastern edge of the Rocky Mountains when an interior corridor was open prior to 22,000 14C yr BP. Support for the hypothesis is based on evidence from multiple North American mid-continent archaeological sites dating to OIS3 and the Last Glacial Maximum (LGM). Evidence from 14 sites, 5 of which contain stone artifacts, is summarized. The dispersal of small pre- LGM populations left a sparse archaeological record in North America that warrants ongoing investigation through systematic research in geological deposits greater than ca. 20,000 14C yr BP. © 2014 by Kelly E. Graf, Caroline V. Ketron, and Michael R. Waters. All rights reserved.
Article
The recent discoveries of 9000-12000 year old skeletal remains in the Americas have begun to change our understanding of who originally entered the Americas at the end of the last Ice Age. Discoveries such as Washington state's ‘Kennewick Man’, Brazil's ‘Luzia’, and Alaska's ‘Prince of Wales Island Man’ have challenged the archaeological and geological status quo. The First Americans explores these new discoveries by using racial classifications and micro-evolutionary techniques to better understand the complex relationships between the first Americans and living Native Indian groups.