Content uploaded by Mariya Polyakova
Author content
All content in this area was uploaded by Mariya Polyakova on Aug 07, 2015
Content may be subject to copyright.
Tuexenia 34: 431–446. Göttingen 2014.
doi: 10.14471/2014.34.019, available online at www.tuexenia.de
Diversity and spatial structure of cryophytic steppes of the
Minusinskaya intermountain basin in Southern Siberia
(Russia)
Diversität und kleinräumliche Verbreitung von Kryophyten-Steppen im
Minusinskaya-Gebirgsbecken in Südsibirien (Russland)
Nikolai Ermakov1,*, Alexey Larionov1, Mariya Polyakova1, Igor Pestunov2 &
Yakiv P. Didukh3
1Lab. Ecology and Geobotany, Central Siberian Botanical Garden, Zolotodolinskaya, 101,
630090 Novosibirsk, Russia;
2Institute of Computational Technologies SB RAS, Acad. Lavrentyeva str.,
6630090 Novosibirsk, Russia;
3Institute of Botany of NAN Ukraine, Tereshchenkivska str.,2 MSP – 1, 01601 Kiev, Ukraine;
*Corresponding author: brunnera@mail.ru
Abstract
Cryophytic steppes in the Minusinskaya intermountain basin containing plant species that are pre-
dominantly distributed in the alpine zone such as Androsace dasyphylla, Dryas oxyodonta, Festuca
sphagnicola, Kobresia myosuroides, K. filifolia, Minuartia verna, Oxytropis bracteata, Sagina sagi-
noides, Papaver nudicaule, Patrinia sibirica, Pedicularis lasiostachys, Pulsatilla ambigua, Saussurea
schanginiana, which are considered remnants of the Pleistocene vegetation. Based on 89 relevés, we
classified cryophytic steppes using the Braun-Blanquet method within two phytosociological classes:
Central Asian steppes of the Cleistogenetea squarrosae and West Palearctic steppes of the Festuco-
Brometea. Three associations (Androsaco dasyphyllae-Caricetum pediformis, Pulsatillo patentis-
Caricetum pediformis and Bupleuro multinervi-Helictotrichetum desertori) with three subassociations
and three variants were described with respect to their phytosociological affinities and ecology. DCA
ordination showed floristic differences between syntaxa, while correlations of DCA axes and floristic
and environmental variables detected substrate type and temperature regime as presumably main driv-
ers for vegetation differentiation. Another driver for vegetation differentiation seems to be continentali-
ty of the climate. Small scale distribution of cryophytic steppes were mapped using satellite images
with resolution of 1.8 m. Cryophytic steppes always occupy only small areas in landscapes, on convex
parts of undulated micro-relief of mountain slopes and summits characterised by drought in summer
and deep soil freezing in winter. These special micro-ecological conditions play an essential role for the
existence of alpine flora in the Minusinskaya intermountain basin.
Keywords: Cleistogenetea, dry grassland, Festuco-Brometea, glacial relicts, plant ecology, syntaxon-
omy, vegetation mapping
Erweiterte deutsche Zusammenfassung am Ende des Manuskripts
Manuscript received 17 January 2014, accepted 23 June 2014
Co-ordinating Editor: Thomas Becker
431
1. Introduction
Cryophytic steppes occurring at local sites of the Minusinskaya intermountain basin
(South Siberia) represent an ecologically outstanding vegetation type. They contain a re-
markable combination of relic alpine plants and widespread moderately thermophilous and
drought-resistant steppe species. At present there are few data available on this vegetation
type. Occurrences of relic alpine species in steppes were first reported and interpreted as
glacial relicts by REVERDATTO (1934, 1940) and SOBOLEVSKAYA (1941). KUMINOVA et al.
(1976) provided a general characterisation of steppe formations with alpine species, and
NAMZALOV (1994) named them “cryophytic steppes”. However, the peculiarities of ecology
and geographic distribution of cryophytic steppes as well as their position in the syntaxo-
nomic system have been unclear so far. Until now there is only one paper (KOROLYUK &
MAKUNINA 1998) that describes one association of cryophytic steppes from the Minusin-
skaya intermountain basin, although a number of papers on syntaxonomy of South Siberian
steppes have been published during the last 15 years (KOROLYUK & MAKUNINA 2001,
KOROLYUK 2002, MAKUNINA 2006, ERMAKOV et al. 2009, ERMAKOV 2012, ERMAKOV et al.
2012).
The main aim of the current study is to present new data on diversity, ecology and distri-
bution of cryophytic steppes of the Minusinskaya intermountain basin in South Siberia.
2. Study area
The study area (Fig. 1) is located in the Minusinskaya basin (South Siberia, Russia)
placed between large mountain systems of the Kuznetskij Alatau in the West, Western Sayan
in the South and Eastern Sayan in the East (53° 03′ – 55° 19′ N; 90° 13′ – 92° 27′ E). The
area represents flat or gently undulating landforms on Quaternary deposits at altitudes of
400–900 m. The dominant geological substrate of the area is metamorphic Devonian bed-
rock most often represented by limestones and base-rich chloride slates. The Minusinskaya
intermountain basin is located in the rain shadow of the Kuznetskij Alatau mountain ridge.
The climate of the area is ultracontinental with cold winters and hot summers (GAVLINA
1954, PROKOFIEV 2005). The average temperature in January varies from -19 °C to -25 °C
between years. The mean July temperature is about 20 °C. The mean annual precipitation is
only 250–360 mm, of which 80% falls during summer (GIDROMETEOIZDAT 1966–1970). In
winter the snow cover is unevenly distributed, reaching a maximal depth of 10–20 cm. Due
to wind, snow can be removed from open areas and hilltops leading to exposed soil surface
and thus contributing to its deep freezing. During summer the wind causes rapid evaporation
of moisture from the unsheltered surfaces leading to extreme desiccation. The altitudinal
zonation of the vegetation is represented by a steppe belt in the lower central part of the
intermountain basin and a forest-steppe belt related to the elevated foothills of surrounding
mountain ridges. Zonal steppes dominated by Stipa krylovii, Artemisia frigida and Caragana
pygmaea on well-developed black loamy soils occupy wide flat areas between low mountain
ridges and hillocks, while mountain slopes with active erosion processes are covered by
various types of petrophytic steppes. In the forest-steppe landscapes, steppe regularly occurs
on south-facing slopes, and forest occurs on north-facing slopes. Mountain steppes in the
forest-steppe zone are often dominated by Stipa capillata, Carex pediformis and Spiraea
media. Some of the mountain steppes occurring on mesic soils form dense and species-rich
tall-grass stands called meadow steppes.
432
Fig. 1. Geographical position of the Minusinskaya intermountain basin (small figure) and distribution
of altitudinal vegetation belts in this region (1 – forest-steppe, 2 – steppe, 3 – alpine, 4 – forest). Relevé
locations (5) are indicated by circles.
Abb. 1. Geographische Lage des Minusinskaya-Beckens (kleine Abbildung) und Verbreitung der
Vegetations-Höhenstufen in dieser Region: 1 – Waldsteppe, 2 – Steppe, 3 – alpine Vegetation, 4 –
Wald). Die Kreise (5) zeigen die Aufnahmeorte.
3. Material and methods
For our analysis we used a subset of 89 relevés of cryophytic steppes from our large data set of
steppe vegetation from the Minusinskaya intermountain basin assembled 2005–2012. Cryophytic
steppes were defined as steppes containing at least one alpine species with a cover ≥ 1%. Plot size was
100 m2. The distribution of sampling locations in the study area is shown in Figure 1. In each plot we
measured the set of environmental variables: Altitude was measured with a GPS. Climatic variables
(mean temperature of the warmest (July) and coldest month (January) and mean annual amplitude of
temperatures (July–January) were estimated from a climatic model prepared with ArcGIS 10.0
(http://www.esri.com). This model was based on a combination of Russian climate station data and
altitudes from a digitised 1 : 200,000 topographic map. Temperature values for different altitudes were
computed based on the adiabatic lapse rate of 6.5 K/km. Mean precipitation of the vegetation period
(April to October) and of winter (November to March) was computed from precipitation-altitude charts
compiled for each of the aridity-humidity sectors of the Altai-Sayan region (POLIKARPOV et al. 1986).
Slope inclination was measured with a clinometer and slope aspect with a compass. Cover of stones
was estimated in the field as the percent proportion of superficially visible stones and rocks. The num-
ber of glacial relic species was counted for each plot.
The classification of plant communities was carried out using the Braun-Blanquet approach
(WESTHOFF & VAN DER MAAREL 1973). The records were organised in TURBOVEG (HENNEKENS &
SCHAMINÉE 2001). For characterisation of the syntaxa, the Braun-Blanquet cover-abundance scale
(r, +, 1, 2, 3, 4, 5) was used. All relevés were standardised before quantitative analysis: Occurrences of
species in shrub and herb layer were combined, and old Braun-Blanquet cover scale values were
changed to the allowed values: r and + – for 1; 1 – for 2; 2 – for 3; 3 – for 4 and 4 for 5. Classification
was performed by cluster analysis using Ward’s method and Euclidean distances in SPSS 14 (SPSS
Inc., Chicago, USA). To achieve floristically and ecologically homogeneous units, the cluster analysis
433
results were manually modified by subsequent shifting of 5 relevés from one cluster to another. Syntax-
onomic affiliation of each defined low-rank group of relevés was conducted using the steppe syntaxa
diagnoses from the existing phytosociological literature (HILBIG 1990, 1996, 2000, KOROLYUK 2002,
MAKUNINA 2006, ERMAKOV et al. 2009, ERMAKOV et al. 2012).
Detrended correspondence analysis (DCA) ordination was applied in order to check the position of
the classified vegetation types along main floristic gradients. 89 relevés with log-transformed percent
cover values were analysed by DCA in CANOCO 4.5 with down-weighting of rare species (TER
BRAAK & ŠMILAUER 2002). For interpreting the ordination pattern, we correlated ordination axes with
floristic and environmental variables in SPSS 14. Significant Pearson correlation coefficients (P < 0.05)
were then projected onto the ordination plot and displayed by vectors.
In our field studies, we used World View – 2 multispectral satellite images (with 2.0 m resolution)
acquired from SOVZOND Company (Moscow, Russia) as an aid to locate the cryophytic steppes with-
in the steppe belt vegetation. Vegetation types and their combinations were identified in the correspond-
ing satellite images by visual analysis of natural contours of plant communities and landscape features
using a GPS to locate the position of control points. The analysis of the multispectral satellite images
was carried out with computationally efficient segmentation algorithms described in PESTUNOV et al.
(2011), PESTUNOV & RYLOV (2012).
Nomenclature of syntaxa follows the International Code of Phytosociological nomenclature (WE-
BER et al. 2000). Vascular plant nomenclature follows that of the former USSR (CHEREPANOV 1995),
bryophyte nomenclature IGNATOV & AFONINA (1992) and lichen nomenclature ANDREEV et al. (1996).
4. Results
4.1 Classification
The cryophytic steppes of the Minusinskaya intermountain basin do not belong to just
one syntaxonomic unit. They occupy a wide spectrum of habitats and show essential differ-
ences in ecology and floristic composition.
Cluster analysis resulted in six low-rank groups of relevés assigned to subassociations
and variants, each of which shows a distinctive floristic composition and clear ecological
characteristics (Fig. 2). The six communities were assigned three associations within three
alliances and two orders within the Central Asian steppes of the Cleistogenetea squarrosae
and the West Palearctic steppes of the Festuco-Brometea (Table 1 in the supplement).
The proposed syntaxonomical scheme of cryophytic steppes is summarised as follows:
Class: Cleistogenetea squarrosae Mirkin et al. 1992
Order: Festucetalia lenensis Mirkin in Gogoleva et al. 1987
– Suborder: Festuco valesiacae-Caricenalia pediformis Ermakov, Larionov et Polyakova
2012
Alliance: Eritrichio pectinati-Selaginellion sanguinolentae Ermakov, Chytrý et Vala-
chovič 2006
Association: Androsaco dasyphyllae-Caricetum pediformis Korolyuk et Makunina
1998
– Subassociation: typicum
– Subassociation: typicum var. Pulsatilla turczaninovii
– Subassociation: helictotrichetosum desertori Korolyuk et Makunina 1998
– Subassociation: dryadetosum oxyodontae nova prov.
Alliance: Festuco valesiacae-Caricion pediformis Ermakov, Larionov et Polyakova
2012
434
Association: Pulsatillo patentis-Caricetum pediformis Makunina, Maltseva et
Parshutina 2007 Variant Kobresia filifolia
Class: Festuco-Brometea Br.-Bl. et Tx. ex Soó 1947
Order: Stipetalia sibiricae Arbuzova et Zhitlukhina ex Korolyuk et Makunina 2001
Alliance: Aconito barbati-Poion transbaicalicae Korolyuk et Makunina 2001
Association: Bupleuro multinervi-Helictotrichetum desertori Makunina in Koroly-
uk et Makunina 2001 Variant Festuca sibirica
Androsaco dasyphyllae-Caricetum pediformis (Table 1 in the supplement, rel. 1–64)
The association includes typical cryo-petrophytic steppes widespread in the Minusin-
skaya intermountain basin on shallow rubble soils forming on calcareous bedrocks at alti-
tudes of 550–620 m. They occur only on convex parts of micro-relief (summits of low
mountain ridges and hillocks). A peculiarity of these sites is strong local variations of lead-
ing ecological factors (temperature and humidity) both in summer and winter, which are
typical for ultracontinental climate. The typical feature of the association is the predomi-
nance of drought-adapted species widespread in Central Asian steppes (Artemisia frigida,
Bupleurum bicaule, B. scorzonerifolium, Caragana pygmaea, Cleistogenes squarrosa, Ephedra
monosperma, Goniolimon speciosum, Heteropappus altaicus, Poa botryoides, Polygala
tenuifolia, Potentilla acaulis, P. bifurca, P. sericea, Stipa krylovii) as well as of obligate
petrophytic plants (Adenophora rupestris, Alyssum obovatum, Arctogeron gramineum, Ely-
trigia geniculata, Eritrichium jenisseense, Orostachys spinosa, Silene graminifolia, Thymus
serpyllum), which form a layer with a cover of 25–50%, an average height of 8–14 cm,
a maximal height of 18–20 cm and a species richness varying between 31 and 47 species per
relevé. It includes eight alpine species. Five of them show high constancies (constancy clas-
ses III–V), and three species are dominant. The association includes three subassociations
and one variant.
A.d.-C.p. typicum (Table 1 in the supplement, rel. 1–25) represents the most cryophytic
communities of the association occurring at altitudes of 600–750 m. A cold thermal regime
and stony soils are indicated by high constancy values (III–V) of alpine species (Androsace
dasyphylla, Festuca sphagnicola, Kobresia filifolia, Minuartia verna, Patrinia sibirica) and
petrophilous species (Adenophora rupestris, Alyssum obovatum, Arctogeron gramineum,
Elytrigia geniculata, Orostachys spinosa, Silene graminifolia, Thymus serpyllum).
A.d.-C.p. typicum var. Pulsatilla turczaninovii (Table 1 in the supplement, rel. 26–59) in-
cludes communities occurring in less cold sites with more developed soil at altitudes of 500–
650 m. Here the number and constancy values of alpine and petrophilous species decrease,
while the role of typical thermophilous steppe species increases.
A.d.-C.p. helictotrichetosum desertori (Table 1 in the supplement, rel. 60–64)
The community occurs at the periphery of the intermountain basin where it occupies
more humid upper parts of northern mountain slopes at altitudes of 550–700 m. The herb
layer covers 50–60% and is subdivided into two sub-layers. In the first sub-layer (up to
30 cm high), the two alpine species Festuca sibirica and F. sphagnicola predominate, while
in the second sub-layer (up to 8–9 cm high), petrophilous species like Alyssum obovatum,
Androsace dasyphylla, Arctogeron gramineum, Dendranthema zawadskii, Hedysarum se-
tigerum and Thymus serpyllum prevail. Most alpine species show high values of constancy
and cover there. Moreover, one alpine species, Papaver nudicaule, occurred only in this
subassociation.
435
Fig. 2. Results of the cluster analysis of
89 relevés based on Ward’s method and
Euclidean distance. Relevé numbers in
the dendrogram correspond to the relevé
numbers in Table 1 in the supplement.
Abb. 2. Ergebnisse einer Clusteranalyse
von 89 Aufnahmen auf Grundlage der
Ward-Methode und euklidischer Distan-
zen. Die Aufnahmenummern entspre-
chen Tabelle 1 als Beilage.
436
A.d.-C.p. dryadetosum oxyodontae (Table 1 in the supplement, rel. 65–75)
This cryophytic steppe occurs locally in the steppe belt of the Abakanskij and Kuznetskij
Alatau mountain ridges. It was found at summits of low mountains with exposed calcareous
bedrocks at altitudes of 900–1100 m. The herb layer cover is 45–60%, average height 10 cm,
maximal height up to 30 cm and species richness 20–37 species per plot. The characteristic
feature of this subassociation is the fact that the largest number of alpine species was found
here in comparison with all steppe associations of the Minusinskaya intermountain basin.
Alpine species (Dryas oxyodonta, Kobresia myosuroides, Pulsatilla ambigua, Saussurea
schanginiana) are dominant or subdominant in the herb layer on a par with typical steppe
xerophilous species (Carex humilis, Festuca valesiaca) and obligate petrophytes (Adenopho-
ra rupestris, Thymus serpyllum). At the same time, one can observe an essential decrease in
the number of drought-adapted characteristic steppe species of the classes Cleistogenetea
squarrosae and Festuco-Brometea. These peculiarities bring together the subassociation
Androsaco-Caricetum pediformis dryadetosum oxyodontae and high mountain dry grass-
lands of the Carici rupestris-Kobresietea bellardii.
Pulsatillo patentis-Caricetum pediformis variant Kobresia filifolia (Table 1 in the supple-
ment, rel. 76–82)
This association represents a moderately xerophilous type of zonal Central Asian steppes
(Central Tuvinian and Minusinskaya intermountain basins) occurring on well-developed
tschernozem soils. It is widespread in the steppe belt where it occupies gentle northern
mountain slopes at altitudes of 500–550 m. This is the only type of cryophytic steppes not
related to petrophytic sites. It occupies slightly elevated (5–20 cm) sites in undulations of
gentle mountain slopes with well-developed soils. The occurrence of a high number of al-
pine plants in these habitats is conditioned by regional ultracontinental climate peculiarities,
namely low winter temperatures and extremely low winter precipitation resulting in the
absence of a snow layer on the convex elements of the micro-relief and the increase in local
cryogenic processes. The variant Kobresia filifolia is characterised by a well-developed herb
layer with a 70% cover and an average species richness of 30–48 species per plot. The
steppe grasses Helictotrichon altaicum and Stipa capillata predominate in the first sub-layer
(35–40 cm high). The second (main) sub-layer (10–20 cm in height) is dominated by Carex
pediformis, C. humilis, Festuca pseudovina, Hedysarum gmelinii and Iris ruthenica. The
community contains few alpine species; however, Kobresia filifolia and Festuca sibirica are
dominant or subdominant.
Bupleuro multinervi-Helictotrichetum desertori variant Festuca sibirica (Table 1 in the
supplement, rel. 83–89)
This is the only association containing alpine species that is included into the West Pale-
arctic class Festuco-Brometea. Unlike the Central Asian cryophytic steppes that have devel-
oped under the ultracontinental climate of the central part of the Munusinskaya intermoun-
tain basin, this association occurs in the forest-steppe belt of the Krasnoyarskaya forest-
steppe and the Kuznetskij Alatau mountain ridge with distinct features of cyclonic climate.
The community occupies convex parts of northern slopes with exposed outcrops in the upper
parts of small mountains at altitudes of 650–800 m. Ecological peculiarities of these extra-
zonal sites similar to habitats of all other cryophytic steppes are large seasonal changes of
temperature and precipitation as well as the absence of a snow cover during winter. The herb
layer cover is 30–40%, average height 18–25 cm, maximal height 35–40 cm and species
437
richness 35–50 species per plot. The characteristic feature of the floristic composition is the
predominance of moderately xerophylous meadow-steppe species of the European-Siberian
class Festuco-Brometea (Artemisia sericea, Campanula sibirica, Galium boreale, Polygala
comosa, Scabiosa ochroleuca, Stipa pennata) indicating the reduced continentality and
moderate deficit of soil humidity. An important ecological peculiarity of the community are
the high constancy values of obligate petrophytes (Adenophora rupestris, Elytrigia genicula-
ta, Eritrichium jenisseense, Silene graminifolia, Thymus serpyllum). Four alpine species
(Festuca sibirica, Kobresia filifolia, Minuartia verna, Patrinia sibirica) were found in the
community. All of them show high values of constancy. Two species (Kobresia filifolia and
Festuca sibirica) are subdominant in the herb layer.
4.2 Detrended Correspondence Analysis
The low-rank units of cryophytic steppes (subassociations and variants) were clearly
separated along the two main axes of a DCA ordination (Fig. 3). Correlations of the main
axes with environmental and floristic variables are given in Table 2. The main complex
environmental gradient associated with DCA axis 1 is that of increasing cover of stones and
decreasing mean temperature of the warmest month (July). The number of alpine species in
plant communities also strongly correlates to axis 1. All three variables correlate to altitude.
The thermal factor appears on axis 1, due to the fact that the extreme right position is occu-
pied by cryophyte steppes of the Androsaco-Caricetum pediformis dryadetosum oxyodontae
(with the highest number of alpine species) occupying the highest altitudes (900–1100 m),
and the extreme left position is occupied by cryophyte steppes of the Pulsatillo patentis-
Caricetum pediformis var. Kobresia filifolia (with the lowest number of alpine species)
common at lower altitudes (500–550 m). However, the clarity of the syntaxa sequence on
axis 1 matching this factor is violated by the position of the Bupleuro multinervi-
Helictotrichetum desertori var. Festuca sibirica, which is geographically distributed in
a relatively warm forest-steppe but contains an increased number of alpine species. Obvious-
ly certain habitat micro-conditions (absence of a snow layer during the cold season) have
a stronger environmental compensatory effect on the vegetation than the baseline climate
conditions. A high correlation of rock cover values with axis 1 is explained by a successive
substitution of communities related to different types of substrates along this axis: non-
petrophytic steppes – values 0–1 (Pulsatillo patentis-Caricetum pediformis var. Kobresia
filifolia), moderately petrophytic steppes – values 1–2.8 (Androsaco dasyphyllae-Caricetum
pediformis typicum, A.d.-C.p. helictotrichetosum desertori and Bupleuro multinervi-
Helictotrichetum desertori var. Festuca sibirica) and steppes that are common at rock out-
crops – values 2.8–4 (Androsaco-Caricetum pediformis dryadetosum oxyodontae). The high
correlation of stone cover and altitude is explained by more intensive denudation processes
in the upper parts of mountain ridges. At the same time, a low correlation of slope inclina-
tion with altitude is explained by the occurrence of cryophytic steppes in eroded landforms
of different steepness (flat summits, plateaus and slopes of various inclinations). Axis 1 also
shows high positive correlations with mean precipitation of the cold period (November–
March) and mean precipitation of the warm period (April–October). Generally this indicates
the predominance of mesophilous steppe types at higher altitudes. However, the parameters
of mean precipitation of the cold period (November–March) do not correspond to increasing
snow layer thickness in cryophytic steppe habitats because of the disappearance of snow on
elevated parts of the micro-relief after strong winds and snow sublimation.
438
Fig. 3. DCA ordination diagram with axis 1 and 2 of relevés of cryophytic steppes in the Minusinskaya
basin and passive projection of environmental and floristic variables. Values of individual variables
increase in the directions of the arrows. Syntaxa: 1 – Bupleuro multinervi-Helictotrichetum desertori
var. Festuca sibirica, 2 – Pulsatillo patentis-Caricetum pediformis var. Kobresia filifolia, 3 – Androsa-
co dasyphyllae-Caricetum pediformis helictotrichetosum desertori, 4 – A.d.-C.p. dryadetosum oxyodon-
tae, 5 – A.d.-C.p. typicum, 6 – A.d.-C.p. typicum var. Pulsatilla turczaninovii. Ecological and floristic
variables: Asp – Aspect, Slope – Slope inclination, Alt – Altitude, Tjul – Mean temperature of the
warmest month (July), Tjan – Mean temperature of the coldest month (January), Tdif – Mean annual
amplitude of temperatures (July–January), Pwm – Mean precipitation of the warm period (April–
October), Pcd – Mean precipitation of the cold period (November–March), Cov_stn – Cover of stones,
Nr_alp – Number of alpine species.
Abb. 3. DCA-Ordinationsdiagram der kryophytischen Steppenvegetation im Minusinskaya-Becken mit
eingeblendeten Umwelt- und floristischen Variablen. Zur Bedeutung der Symbole der Syntaxa 1–5
siehe die englische Abbildungsunterschrift. Asp – Hanglage, Slope – Hangneigung, Alt – Meereshöhe,
Tjul – Mitteltemperatur wärmster Monat (Juli), Tjan – Mitteltemperatur kältester Monat (Januar), Tdif
– Amplitude der Monatsmitteltemperatur von Juli bis Januar, Pwm – Mittlere Niederschlagssumme der
Vegetationsperiode (April–Oktober), Pcd – Mittlere Niederschlagssumme des Winters (November–
März), Cov_stn – Anteil Skelett an der Oberfläche, Nr_alp – Anzahl alpine Pflanzenarten.
The main complex environmental gradient associated with DCA axis 2 is that of increas-
ing Mean temperature of the coldest month (January) and decreasing mean annual amplitude
of temperatures (July–January). Both factors negatively correlate to each other and deter-
mine the manifestation of an integral climatic factor – continentality – clearly observed in
the transition from the periphery to the center of the intermountain basin. In accordance with
this factor, the extreme high position on the axis 2 is occupied by the Bupleuro multinervi-
Helictotrichetum desertori var. Festuca sibirica (class Festuco-Brometea), which is widely
distributed in the Minusinskaya basin periphery with its moderate continental climate. Fur-
ther along axis 2, one can observe replacements in the units of the class Cleistogenetea
squarrosae, corresponding to an increase in continentality: from the Androsaco dasyphyllae-
Caricetum pediformis helictotrichetosum desertori common in the continental climate sector
to the Androsaco dasyphyllae-Caricetum pediformis typicum var. Pulsatilla turczaninovii
formed in ultracontinental conditions. The number of alpine species in plant communities
demonstrates a considerably weaker correlation with axis 2 than with axis 1.
439
Table 2. Correlations between DCA ordination axis and environmental variables. Significant correlati-
ons are shown in bold.
Tabelle 2. Korrelationen der DCA-Achsen mit Umweltvariablen. Signifikante Korrelationen sind fett
dargestellt.
Axis 1 Axis 2 Axis 3
Eigenvalue
0.363
0.238
0.101
r p r p r p
Aspect
0.34
0.001
-0.04
0.722
-0.28
0.007
Slope
0.17
0.105
0.08
0.443
-0.10
0.371
Altitude
0.65
<0.001
0.17
0.109
-0.11
0.301
Temp. warmest month
-0.66
<0.001
-0.18
0.097
0.10
0.349
Temp. coldest month
-0.24
0.024
0.32
0.002
-0.06
0.575
Temp. amplitude July–January
-0.40
<0.001
-0.36
0.001
0.12
0.251
Precipitation warm period
0.62
<0.001
0.18
0.089
-0.11
0.315
Precipitation cold period
0.65
<0.001
0.19
0.082
-0.11
0.301
Cover of stones
0.47
<0.001
0.11
0.323
-0.12
0.248
Number of alpine species
0.85
<0.001
0.34
0.001
0.05
0.638
4.3 Vegetation steppe mapping
The analysis results on the position of cryophytic steppes within the steppe belt vegeta-
tion of the Minisinskaya intermountain basin provide important information about peculiari-
ties of their ecology and geography. In the study region, cryophytic steppes do not represent
a rare vegetation type; however, they occupy only small areas of the landscape, on convex
parts of undulated micro-relief of mountain slopes and summits characterised by special
temperature and moisture regimes. Low winter temperatures and very shallow or even ab-
sence of snow cover in these sites result in deep soil freezing and a long period of seasonally
frozen soils melting in spring. The small sizes of cryophytic steppe communities make them
invisible in satellite images of medium resolution (Lansat-7) and sometimes even in direct
field observations. That is why cryophytic steppes as a specific vegetation type have never
been depicted on small- and middle-scale vegetation maps. The application of high resolu-
tion satellite images (2.0 m) allowed the study of the vegetation mosaic (micro-combinations
of cryophytic and moderately thermophilous steppes) of the steppe belt at the level of certain
phytocoenoses. Large-scale vegetation maps of the key area located in the central part of the
Minusinskaya intermountain basin show the position of cryophytic steppes in two typical
steppe micro-combinations related to low mountain ridges and hillocks (Fig. 4 and 5). The
first micro-combination is related to active erosion processes on steep mountain slopes re-
sulting in the formation of a petrophytic vegetation set oriented from the top to the bottom of
the mountain (Fig. 4). Cryophytic steppes of the Androsaco dasyphyllae-Caricetum pedi-
formis typicum occupy convex eroded tops and summits of mountains with shallow soil and
exposed calcareous bedrock. During the winter season, winds blow off the snow cover and
intensify erosion. Long periods of severe frost (about 5 months) favour the formation of
a (up to 2.5 m) deep layer of frozen earth with distinct cryogenic processes. The thinness or
even absence of snow cover on these sites during the cold season plays a major role in the
440
Fig. 4. Large-scale vegetation map demonstrating the position of cryophytic steppes in a vegetation
micro-combination related to steep mountain slopes in low mountain ridges of the Minusinskaya inter-
mountain basin. 1 – cryophytic steppes of the Androsaco dasyphyllae-Caricetum pediformis typicum
occupying the convex eroded tops and summits of mountains, 2 – petrophilous steppes of the Youngio
tenuifoliae-Agropyretum cristati occupying the eroded upper and middle parts of steep mountain slopes,
3 – moderately petrophilous steppes of the Pulsatillo turczaninovii-Caricetum pediformis occupying
more gentle pediments, 4 – zonal steppes of the Thalictro foetidi-Festucetum valesiacae occupying the
flat areas between mountains with well-developed soils.
Abb. 4. Vegetationskarte mit Lage der kryophytischen Steppen an Hängen und Graten im Minus-
inskaya-Gebirgsbecken. 1 – kryophytische Steppen des Androsaco dasyphyllae-Caricetum pediformis
typicum an konvex geformten Berggipfeln, 2 – petrophile Steppes des Youngio tenuifoliae-Agropyretum
cristati an den erodierten Ober- und Mittelhängen, 3 – moderat-petrophile Steppen des Pulsatillo tur-
czaninovii-Caricetum pediformis an den sanft geneigten Bergfüßen, 4 – zonale Steppen des Thalictro
foetidi-Festucetum valesiacae auf den ebenen Flächen mit gut entwickelten Böden zwischen den Ber-
gen.
distribution of cryophytic steppes. Thermophilous steppes occupy southern, eastern and
western mountain slopes as well as areas between mountains. They form a petrophytic set
ranging from communities of eroded upper and middle parts of steep mountain slopes
(Youngio tenuifoliae-Agropyretum cristati Makunina 2006) towards communities of more
gentle pediments (Pulsatillo turczaninovii-Caricetum pediformis Makunina et al. 2007) and
zonal steppes of flat areas between mountains with well-developed soils (Thalictro foetidi-
Festucetum valesiacae Makunina 2006) (Fig. 5).
The second peculiar micro-combination of plant communities with the participation of
cryophytic steppes occurs in upper parts of gentle (3–5°) terraced northern slopes of hillocks
(Fig. 5). The terraced micro-relief of mountain slopes results in an uneven distribution of
snow cover between shallow depressions (where it forms a layer of 5–7 cm) and knoll tops
(where it is absent) and thus in the formation of a combination of two ecologically different
associations occupying special positions in the uneven micro-relief of terraced slopes. Cryo-
441
Fig. 5. Large-scale vegetation map demonstrating the position of cryophytic steppes in a vegetation
micro-combination related to upper parts of gentle (3–5°) terraced northern slopes of hillocks in the
Minusinskaya intermountain basin. 1 – cryophytic steppes of the Androsaco dasyphyllae-Caricetum
pediformis typicum var. Pulsatilla turczaninovii occupying slightly convex knolls (size 2–30 m² and
height 7–10 cm), 2 – thermophilous steppes of the Youngio tenuifoliae-Agropyretum cristati occupying
narrow (40–280 cm) depressions.
Abb. 5. Vegetationskarte mit Lage der kryophytischen Steppen an oberen, sanft geneigten, terrassierten
Nordhängen im Minusinskaya-Gebirgsbecken. 1 – kryophytische Steppen des Androsaco dasyphyllae-
Caricetum pediformis typicum in der Variante von Pulsatilla turczaninovii an schwach konvexen,
2–30 m² großen und 7–10 cm hohen Kuppen, 2 – thermophile Steppen des Youngio tenuifoliae-
Agropyretum cristati in 40–280 cm tiefen Senken.
phytic steppes of the Androsaco dasyphyllae-Caricetum pediformis var. Pulsatilla turczani-
novii occur in slightly convex knolls (size 2–30 m2 and height 7–10 cm). In satellite images
they have strip-like or polygonal shapes where flat summits of knolls are separated by very
shallow and narrow (40–280 cm) depressions occupied by moderately thermophilous steppes
of the Youngio tenuifoliae-Agropyretum cristati Makunina 2006. Communities of the An-
drosaco dasyphyllae-Caricetum pediformis var. Pulsatilla turczaninovii and Youngio tenui-
foliae-Agropyretum cristati are fundamentally different in species composition despite their
very close locations and similar positions in relief (the difference in elevation between knoll
tops and bottoms of micro-depressions is only a few centimetres). Nevertheless, the presence
of even a very shallow snow layer in small depressions plays a crucial role in the formation
of moderately thermophilous steppes, while snowless higher elements of the micro-relief are
occupied by cryophytic steppes with alpine plants. The morphology of this micro-
combination is defined by variations of bedrocks, talus transit and seasonal cryogenic pro-
cesses. Vegetation slows the rate of the slope erosion. That is why the landforms with these
micro-sites are very gentle and relatively stable. New opportunities for identification and
monitoring of these unique Red Data Book vegetation types are possible using high resolu-
tion satellite images.
442
5. Discussion
The above-described units of cryophytic steppes are considered as relic communities
preserved in the Minusinskaya intermountain basin after the last glacial period in Pleistocene
(REVERDATTO 1934, 1940, KUMINOVA et al. 1976). Actually, cryophytic steppes are wide-
spread in mountains of Southern Siberia and Mongolia; there, however, they occur in the
high mountain area at altitudes of 2000–2500 m where alpine dry grasslands of the Carici
rupestris-Kobsietea bellardi are in contact with Central Asian steppes of the Cleistogenetea
squarrosae (KOROLYUK & NAMZALOV 1994, NAMZALOV 1994). Communities of the Mi-
nusinskaya intermountain basin occur within the steppe belt at altitudes of 450–600 m, and
they are isolated from the alpine belt of the Altai and Western Sayan. Described associations
and variants of cryophytic steppes are diverse in floristic composition and belong to different
higher syntaxonomic units; nevertheless, they show some important ecological similarities.
The main ecological reason for the existence of cryophytic steppes in lower altitudes is the
particular combination of local meso-climate and topography. Semiarid and ultracontinental
climate in the Minusinskaya intermountain basin is expected to have been stable since the
last glacial period because of the “rain shadow” effect of the Kuznetskij Alatau mountain
ridge in the west (GAVLINA 1954). A high seasonal variation with very low winter tempera-
tures and little precipitation results in deep soil freezing and a long period of seasonally
frozen soils melting in the beginning of the growth period (PROKOFIEV 2005). Very shallow
snow cover or its absence plays an important role among other ecological factors of all cryo-
phytic steppe micro-sites for the preservation of alpine flora. The presence of even a very
shallow snow layer (5–7 cm) is favorable for the formation of moderately thermophilous
steppes (NAMZALOV 1994). The majority of described units of cryophytic steppes of the
Minusinskaya intermountain basin belong to the Central Asian geographical type (class
Cleistogenetea squarrosae), which has developed under the colder ultracontinental climate
of Mongolia and Eastern Siberia. However, one community belongs to the West Palearctic
geographical steppes (class Festuco-Brometea). This is an important plant-geographical
example demonstrating evolutionary relations of Eurasian steppes and alpine vegetation
during the Pleistocene.
Erweiterte deutsche Zusammenfassung
Einleitung – Die kleinräumig verbreiteten Kryophyten-Steppen (= Steppen mit Pflanzenarten, die
auf Frostböden wachsen) des Minusinskaya-Gebirgsbeckens in Südsibirien (Russland) enthalten eine
bemerkenswerte Kombination alpiner Pflanzenarten, zu denen Androsace dasyphylla, Dryas oxyodonta,
Festuca sphagnicola, Kobresia filifolia, K. myosuroides, Minuartia verna, Oxytropis bracteata, Papa-
ver nudicaule, Patrinia sibirica, Pedicularis lasiostachys, Pulsatilla ambigua, Sagina saginoides und
Saussurea schanginiana zählen. Als Eiszeitrelikte haben diese Arten in den im Gebiet großflächig
entwickelten moderat-xerothermophilen Steppen mutmaßlich seit dem Pleistozän überdauert (REVER-
DATTO 1934, 1940, SOBOLEVSKAYA 1941, KUMINOVA et al. 1976). Das Hauptziel dieser Untersu-
chung ist die Präsentation aktueller Daten zur Diversität, Ökologie und Verbreitung der Kryophyten-
Steppen des Minusinskaya-Beckens in Südsibirien.
Untersuchungsgebiet – Das Untersuchungsgebiet ist das südsibirische Minusinskaya-
Gebirgsbecken in Russland (53°03'–55°19' N, 90°13'–92°27' E). Dieses bildet eine flache bis leicht
hügelige Landschaft in Höhenlagen von 400–900 m (Abb. 1). Mit kalten Wintern und heißen Sommern
ist das Großklima des Gebiets als arid-ultrakontinental zu bezeichnen. Die Januarmittel liegen zwischen
-19 °C und -25 °C und die Julimittel um +20 °C. Der mittlere Jahresniederschlag beträgt 250–360 mm.
80 % der Niederschläge fallen im Sommer.
443
Material und Methoden – In den Kryophyten-Steppen des Minusinskaya-Gebirgsbeckens wurden
insgesamt 89 Vegetationsaufnahmen auf 100 m²-Flächen erstellt. Für jede Fläche wurden die Meeres-
höhe, Hangneigung, Hanglage, und der oberflächliche Anteil an Steinen gemessen oder geschätzt. Als
Klimavariablen wurden die Mitteltemperaturen des wärmsten (Juli) und kältesten Monats (Januar), die
mittlere Juli-Januar-Temperaturamplitude, das Niederschlagsmittel des Sommers (April–Oktober) und
Winters (November–März) nach einem Klimamodell generiert. Die Klassifikation der Pflanzengesell-
schaften folgt grundsätzlich dem Ansatz von Braun-Blanquet (WESTHOFF & VAN DER MAAREL 1973).
Die syntaxonomische Zuordnung der Bestände erfolgte durch Zuordnung zu Syntaxa nach Sichtung der
pflanzensoziologischen Literatur (HILBIG 1990, 1996, 2000, KOROLYUK 2002, ERMAKOV et al. 2009,
2012). Gradienten in der Vegetation wurden mit einer Detrended correspondence analysis (DCA)
untersucht. Zur Interpretation der DCA-Gradienten wurden diese mit floristischen und Umweltvariab-
len korreliert. Die kleinräumige Verbreitung der Kryophyten-Steppen innerhalb der vorherrschenden
zonalen Steppen wurde mit Hilfe von Satellitenbildern und Geländebegehungen untersucht.
Ergebnisse – Sechs Aufnahmegruppen wurden mit Hilfe einer Clusteranalyse unterschieden
(Abb. 2). Die Kryophyten-Steppen wurden zwei pflanzensoziologischen Klassen, den zentralasiatischen
Steppen der Cleistogenetea squarrosae und den westpaläarktischen Steppen der Festuco-Brometea,
zugeordnet. Der Hauptteil der Bestände wurde den petrophytischen Verbänden Eritrichio pectinati-
Selaginellion sanguinolentae (Cleistogenetea) und Aconito barbati-Poion transbaicalicae (Festuco-
Brometea) angeschlossen. Nur ein Verband, das Festuco valesiacae-Caricion pediformis, repräsentiert
zonale Cleistogenetea-Steppen. Auf unterer syntaxonomischer Ebene wurden die Kryophyten-Steppen
als vier Subassoziationen des Androsaco dasyphyllae-Caricetum pediformis und zwei Varianten des
Pulsatillo patentis-Caricetum pediformis und Bupleuro multinervi-Helictotrichetum desertori klassifi-
ziert. Alle untersuchten Syntaxa werden in einer geordneten Aufnahmetabelle präsentiert (Tab. 1 als
Beilage).
In der DCA-Ordination wurden die sechs syntaxonomischen Einheiten klar voneinander getrennt
(Abb. 5). Der floristische Hauptgradient in der Vegetation war eng positiv korreliert mit der Meereshö-
he, Anzahl alpiner Arten und Deckung an Steinen und negativ mit der Mitteltemperatur des wärmsten
Monats (Juli) (Tabelle 2). DCA-Achse 1 war außerdem mit dem Niederschlag positiv korreliert. Der
Niederschlag im Winter war wohl wegen Verblasens des Schnees auf den Kuppen nicht mit der Dicke
der Schneedecke korreliert. Als wichtigster zugrundeliegender Faktor des zweiten DCA-Gradienten
wurde die Temperatur des kältesten Monats (Januar) und die Temperaturdifferenz zwischen Juli und
Januar festgestellt. An dieser Stelle sei die Bedeutung der Kontinentalität hervorgehoben, die ein gradu-
elles Ablösen der Steppen der Festuco-Brometea, die im Gebiet nur an den Rändern des Minusinskaya-
Beckens unter moderat-kontinentalem Klima wachsen, durch die Steppen der Cleistogenetea im Zent-
rum des Minusinskaya-Beckens unter einem ultrakontinentalen Klima bewirkt.
Kryophyten-Steppen siedeln kleinflächig an konvexen Hängen sowie an Kuppen und Gipfeln und
weisen ein spezielles Temperatur- und Feuchtigkeitsregime auf. Auf Satellitenaufnahmen mit mittlerer
Auflösung sind sie praktisch nicht zu erkennen was ihr Fehlen in mittel-skalierten Vegetationskarten
erklärt. Hochauflösende Satellitenaufnahmen zeigen jedoch die kleinräumigen Vegetationsmosaike aus
kryophytischen und moderat-thermophilen Steppen deutlich. Vegetationskarten aus dem Kerngebiet des
zentralen Minusinskaya-Gebirgsbeckens zeigen zwei typische Fälle der Verteilung der Kryophyten-
Steppen an Bergrücken und -graten (Abb. 6 und 7).
Diskussion – Der wichtigste Grund für das Auftreten von Kryophyten-Steppen in tieferen Lagen
von 450–600 m im Minusinskaya-Gebirgsbecken dürfte die spezielle Kombination aus Mesoklima und
Topographie an ihren Wuchsorten darstellen. Das seit Ende des Pleistozäns im Gebiet herrschende
semiarid-ultrakontinentale Klima ist durch hohe jahreszeitliche Klimaschwankungen mit kalten Win-
tern und geringen Niederschlägen charakterisiert. Dies führt zu tief und lang anhaltend gefroren Böden,
die erst zu Beginn der Vegetationsperiode auftauen. Die dünne oder gar fehlende Schneedecke bildet in
den Kryophyten-Steppen den wichtigsten ökologischen Faktor für das Vorkommen alpiner Pflanzenar-
ten (NAMZALOV 1994). Die Mehrzahl der hier beschriebenen syntaxonomischen Einheiten der Kryo-
phyten-Steppen des Minusinskaya-Gebirgsbecken gehört zu den zentralasiatisch verbreiteten Klasse der
444
Cleistogenetea squarrosae, die mutmaßlich unter dem kalten und ultrakontinentalen Klima der Mongo-
lei und Ostsibiriens entstanden ist. Eine unserer Gesellschaften gehört zu den westpaläarktischen Step-
pen der Festuco-Brometea. Unsere Studie ist ein pflanzengeographisches Beispiel für die genetischen
Beziehungen zwischen eurasischen Steppen und Alpinvegetation im Pleistozän.
Acknowledgements
Authors are very grateful to Ute Becker and Goffredo Filibeck for valuable remarks and comments
on a former manuscript version, to Thomas Becker for translation of the German text parts, and to Aiko
Huckauf for English language editing. This study was funded by the Russian Foundation for Basic
Research (Grant Nr. 13-04-90446) and Russian Scientific Foundation (Grant Nr. 14-14-00453).
Supplements and Appendices
Supplement 1. Table 1. Syntaxonomic interpretation of cryophytic steppes containing alpine relic
species in South Siberia.
Beilage 1. Tabelle 1. Syntaxonomische Gliederung kryophytischer Steppen mit alpinen Reliktarten in
Süd-Sibirien.
References
ANDREEV, M., KOTLOV, Yu. & MAKAROVA, I. (1996): Checklist of lichens and lichenicolous fungi of
the Russian Arctic. – Bryologist 99: 137–169.
CHEREPANOV, S.K. (1995): Vascular plants of Russia and adjacent states (the former USSR). – Camb.
Univ. Press, Cambridge England and New York: 516 pp.
ERMAKOV, N.B. (2012): Prodromus rastitelnosti Rossii (Prodromus of vegetation of Russia) [in Rus-
sian]. – In: MIRKIN, B.M. & NAUMOVA, L.G.: Sovrem. Sostoâ. Osn. Koncepcij Nauki Rastit.: 377–
483. Gilem, Ufa.
ERMAKOV, N.B., POLYAKOVA, M.A. & SMOGNOV, A.E. (2009): Associacii petrofitnykh stepnykh
soobshhestv iz Altae-Sayanskoj gornoj oblasti. 1. Soobshhestva Selaginella sanguinolenta Zapad-
nogo Sayana i Tuvy (Associations of petrophytic communities from the Altaj-Sayanian mountain
region. 1. Communities of Selaginella sanguinolenta in the Western Sayan and Tuva) [In Russian,
with English summary]. – Vestn. Novosib. Gos. Univ., Ser. Biol. Klin. Med. 7: 35–42.
ERMAKOV, N.B., LARIONOV, A.V. & POLYAKOVA, M.A. (2012): Sintaksony lugovykh stepej
Helictotrichetalia schelliani iz Altaya i Khakasii (Meadow steppe syntaxa of the Helictotrichetalia
schelliani from the Altaj and Khakasia) [In Russian, with English summary]. – Vestn. Novosib.
Gos. Univ., Ser. Biol. Klin. Med. 10: 6–23.
GAVLINA, G.B. (1954): Klimat Khakasii (Klimate of Khakasia) [In Russian]. – In: Prirodnye usloviya i
selskoe khozyajstvo Khakasskoj avtonomnoj oblasti: 21–29. Nauka, Moskva.
GIDROMETEOIZDAT (1966–1970): Spravochnik po klimatu SSSR (Reference books on the climate of
the USSR) [In Russian]. Gidrometeoizdat, Leningrad: 460 pp.
HENNEKENS, S.M. & SCHAMINÉE, J.H.J. (2001): TURBOVEG, a comprehensive data base manage-
ment system for vegetation data. – J. Veg. Sci. 12: 589–591.
HILBIG, W. (1990): Pflanzengesellschaften der Mongolei. – Wiss. Z. Univ. Halle 39: 1–146.
HILBIG, W. (1995): The Vegetation of Mongolia. – SPB Academic Publishing, Amsterdam: 258 pp.
HILBIG, W (2000): Kommentierte Übersicht über die Pflanzengesellschaften und ihre höheren Syntaxa
in der Mongolei. – Feddes Repert. 111: 75–120.
IGNATOV, M.S. & AFONINA, O.M. (Eds.) (1992): Check-list of mosses of the former USSA. – Arctoa
1: 1–85.
KOROLYUK, A.Yu. (2002): Pastitelnost (Vegetation) [In Russian]. – In: KHMELYOV, V.A. (Ed.): Stepi
Centralnoj Azii: 45–94. Nauka, Novosibirsk.
445
KOROLYUK, A.Yu. & MAKUNINA, N.I. (1998): Nizkotravnye kamenistye stepi Severo-Minusinskoj
kotloviny (v predelakh Khakasii) (Low-grass petrophytic steppes of the North Minusinskaya
intermountain basin) [In Russian]. – Bot. Ž. 83: 119–126.
KOROLYUK, A.Y. & MAKUNINA, N.I. (2001): Lugovye stepi i ostepnyonnye luga Altae-Sayanskoj
gornoj oblasti. Poryadok Stipetalia sibiricae, soyuz Aconito barbati-Poion transbaicalicae
(Meadow-steppes and dry meadows of the Altaj-Sayanian mountain region. The order Stipetalia
sibiricae, alliance Aconito barbati-Poion transbaicalicae) [In Russian]. – Krylovia 3: 35–49.
KOROLYUK, A.Yu. & NAMZALOV, B.B. (1994): Kriofitnye stepi gor yuga Sibiri (Cryophylous steppes
of Southern Siberia) [In Russian]. – Sib. Ecol. Ž. 1: 475–481.
KUMINOVA, A.V., ZVEREVA, G.A. & LAMANOVA, T.G. (1976): Osnovnye cherty razvitiya i sov-
remennoj kharakteristiki stepej (The main features of development and modern characteristics of
steppes) [In Russian]. – In: Rasitelnyj pokrov Khakasii. – Nauka, Novosibirsk: 421 pp.
MAKUNINA, N.I. (2006): Stepi Minusinskikh kotlovin (Steppes of the Munusinskaya intermountain
basin) [In Russian, with English summary]. – Turczaninowia 9: 112–144.
NAMZALOV, B.B. (1994): Stepi Yuzhnoj Sibiri (Steppes of Southern Siberia) [In Russian]. – Olzon,
Novosibirsk – Ulan-Ude: 309 pp.
PESTUNOV, I.A., BERIKOV, V.B., KULIKOVA, E.A. & RYLOV, S.A. (2011): Ensemble of clustering
algorithms for large datasets. – Optoelectron. Instrum. Data Process. 47: 245–252.
PESTUNOV, I.A. & RYLOV, S.A. (2012): Algoritmy spektral’no-teksturnoj segmentacii sputnikovykh
izobrazhenij vysokogo prostranstvennogo razresheniya (Spectral-textural segmentation algorithms
for satellite images with high spatial resolution) [In Russian]. – Bull. Kemerovo State Univ.
4/2 (52): 104–110.
POLIKARPOV N.P., CHEBAKOVA N.M. & NAZIMOVA D.I. (1986): Klimat i gornye lesa Sibiri (Climate
and mountain forests of Siberia) [In Russian]. Nauka, Novosibirsk: 224 pp.
PROKOFIEV, S.M. (2005): Priroda Khakasii (Nature of Khakasia) [In Russian]. – Khakasskoe Kn. Izd.,
Abakan: 205 pp.
REVERDATTO, V.V. (1934): Lednikovye relikty vo flore Khakasskih stepey (Glacial relicts in flora of
Khakasian steppes) [In Russian]. – Tr. Tomskogo Univ. 86: 1–8.
REVERDATTO, V.V. (1940): Osnovnye momenty razvitiya posletretichnoj flory v Srednej Sibiri (The
main stages of post-glacial flora development in Middle Siberia) [In Russian]. – Sov. Bot. 2: 48-64.
SOBOLEVSKAYA, K.A. (1941): Reliktovye associacii lednikovoj epochi v Khakasii (Relic associations
of glacial period in Khakasia) [In Russian]. – Izv. Vses. Geograf. Obŝ. 73: 464–467.
TER BRAAK, C.J.F. & ŠMILAUER, P. (2002): CANOCO Reference Manual and CanoDraw for Win-
dows User’s Guide: Software for Canonical Community Ordination (version 4.5). – Microcomputer
Power, Ithaca.
WEBER, H.E., MORAVEC, J. & THEURILLAT J.-P. (2000): International Code of Phytosociological
Nomenclature. 3rd ed. – J. Veg. Sci. 11: 739–768.
WESTHOFF, V. & VAN DER MAAREL, E. (1973): The Braun-Blanquet approach. – In: WHITTEKER,
R.H. (Ed.): Handbook of Vegetation Science, part 5, Classification and Ordination of Communities:
617–726. Junk, The Hague.
446