ArticlePDF Available

Antioxidants, Chemical Composition and Minerals in Freeze-Dried Camu-Camu (Myrciaria dubia (H.B.K.) Mc Vaugh) Pulp

Authors:

Abstract and Figures

Camu-camu (Myrciaria dubia (H.B.K.) Mc Vaugh) is a fruit native to the Amazon region and is considered the greatest natural source of vitamin C worldwide. It is also a promising source of many phenolic compounds, including flavonoids and anthocyanins. Given the growing rates of chronic non-communicable diseases such as dyslipidemia, obesity and diabetesworldwide, freeze-dried camu-camu can be used for its functional properties, which can reduce the incidence of these diseases. Hence, the objective of this study was to produce freeze-dried camu-camu pulp and present it as an alternative functional food because of its high production and use potential, adding value to this fruit in particular, not very demanded by the food industry. Freeze-dried camu-camu pulp is a pink, homogeneous powder with great antioxidant capacity, 52,000 µmol TE/g, six times greater than freeze-dried acai powder. It is also very rich in vitamin C (20.31 g/100g), potassium (796.99 mg/100g), carbohydrates (47.00 g/100g), dietary fiber (19.23 g/100 g), many amino acids, other vitamins, and anthocyanins (0.739 mg/g). The camu-camu freeze-drying process is an effective alternative way to preserve the fruit, preserving its macronutrient and vitamin C contents. Camu-camu is also an excellent source of other bioactive compounds, such as minerals and other phenolic compounds. In conclusion, camu-camu can be used to introduce bioactive compounds into food products and to delay or prevent many human diseases.
Content may be subject to copyright.
Food and Nutrition Sciences, 2015, 6, 869-874
Published Online July 2015 in SciRes. http://www.scirp.org/journal/fns
http://dx.doi.org/10.4236/fns.2015.610091
How to cite this paper: Aguiar, J.P.L. and Souza, F.C.A. (2015) Antioxidants, Chemical Composition and Minerals in
Freeze-Dried Camu-Camu (Myrciaria dubia (H.B.K.) Mc Vaugh) Pulp. Food and Nutrition Sciences, 6, 869-874.
http://dx.doi.org/10.4236/fns.2015.610091
Antioxidants, Chemical Composition
and Minerals in Freeze-Dried Camu-Camu
(Myrciaria dubia (H.B.K.) Mc Vaugh) Pulp
Jaime Paiva Lopes Aguiar*, Francisca das Chagas do Amaral Souza
Coordination Society Environment and HealthCSAS, National Institute for Amazonian Research—INPA,
Manaus, Brazil
Email: *jaguiar@inpa.gov.br
Received 3 June 2015; accepted 19 July 2015; published 22 July 2015
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Abstract
Camu-camu (Myrciaria dubia (H.B.K.) Mc Vaugh) is a fruit native to the Amazon region and is con-
sidered the greatest natural source of vitamin C worldwide. It is also a promising source of many
phenolic compounds, including flavonoids and anthocyanins. Given the growing rates of chronic
non-communicable diseases such as dyslipidemia, obesity and diabetesworldwide, freeze-dried
camu-camu can be used for its functional properties, which can reduce the incidence of these dis-
eases. Hence, the objective of this study was to produce freeze-dried camu-camu pulp and present
it as an alternative functional food because of its high production and use potential, adding value
to this fruit in particular, not very demanded by the food industry. Freeze-dried camu-camu pulp
is a pink, homogeneous powder with great antioxidant capacity, 52,000 µmol TE/g, six times
greater than freeze-dried acai powder. It is also very rich in vitamin C (20.31 g/100g), potassium
(796.99 mg/100g), carbohydrates (47.00 g/100g), dietary fiber (19.23 g/100 g), many amino acids,
other vitamins, and anthocyanins (0.739 mg/g). The camu-camu freeze-drying process is an effec-
tive alternative way to preserve the fruit, preserving its macronutrient and vitamin C contents.
Camu-camu is also an excellent source of other bioactive compounds, such as minerals and other
phenolic compounds. In conclusion, camu-camu can be used to introduce bioactive compounds
into food products and to delay or prevent many human diseases.
Keywords
Functional Foods, Ascorbic Acid, Freeze Drying, Antioxidant Capacity
*
Corresponding author.
J. P. L. Aguiar, F. C. A. Souza
870
1. Introduction
The Amazon has numerous potentially lucrative plant species, and camu-camu (Myrciaria dubia (H.B.K.) Mc
Vaugh) stands out among them. Camu-camu is a wild fruit from the family Myrtaceae. It occurs in the margins
of Amazonian rivers and lakes, but it is not well known in the rest of Brazil [1]. However, great volumes of ca-
mu-camu have been exported to Japan and the United States of America (USA). Camu-camu is a round fruit
with a diameter of 2 to 4 centimeters, and smooth and shiny skin. Its mean weight is 8.4 grams. The color varies
from dark red to purplish-black when ripe. Each fruit has one to four, more commonly two to three, kidney-
shaped, ellipsoid seeds covered with fibril filaments [2]. Interest in camu-camu has grown because of its notable
vitamin C content, varying from 1600 to 2994 mg/100g of pulp [3] Even higher concentrations were found by in
three camu-camu batches from east Roraima, 3571 to 6112 mg/100g of pulp, making it the fruit with the highest
vitamin C content in the world [4].
Despite the discovery and dissemination of the high ascorbic acid content of camu-camu and its adaptability
to solid ground, this fruit is not yet widely consumed by the general population, and its demand by the food in-
dustry is low. One of the factors that hinder its consumption is the extreme acidity of the pulp and bitterness of
the skin, so studies are necessary to increase camu-camu use. It is important to develop new products that pre-
serve camu-camu’s nutritional quality and simultaneously have a reasonable shelflife without the need of adding
considerable amounts of preservatives. Thus, the present study produced freeze-dried camu-camu pulp and
presents it as a new functional food with high production and use potentials, adding value to a fruit that is lowly
demanded by the food industry.
2. Material and Methods
2.1. Samples
The study camu-camu was collected manually during the commercial ripening stage in Rio Branco, Roraima
(RR), in a region called Santa Izabel de Boiaçú, municipality of Rorainópolis, RR, with the following geograph-
ic coordinates: 0˚23'27.3"S to 61˚48'22.5"W. The fruits were placed in sterile plastic bags and transported to the
Physical and Chemical Food Laboratory (LFQA) of the Society, Environment, and Health Coordination (CSAS)
of the National Research Institute of Amazônia (INPA).
The excessively ripe fruits and those with sanitary or mechanical injuries were discarded. The remainder were
rinsed with running water, immersed in 10% sodium hypochlorite for 30 minutes, and then rinsed again with
potable water. The pulps were extracted by an automatic pulp ejector (Itametal, mesh of 1.5 mm). The extracted
pulps were immediately placed on stainless steel trays, frozen to 80˚C, and dried by the lyophilizer SP Scien-
tific model 25 L GENESIS, at a working temperature of 70˚C to produce freeze-dried camu-camu pulp powder
(Figure 1). All freeze-dried samples were homogenized in a blender before the physical and chemical analyses
to quantify minerals, amino acids, lipids, some vitamins, and antioxidants.
2.2. Sample Preparation
The moisture, ash, protein, lipid, and carbohydrate contents of the freeze-dried powder were analyzed three
times as recommended by Instituto Adolfo Lutz [5], and amino acids also three times as recommended by
Schuster [6]. Moisture was determined by drying the sample in an incubator at 105˚C until the weight of the
sample became constant; ash content was determined by incineration; lipids were analyzed by Soxhlet extraction;
protein content was determined by the Kjeldahl’s method; soluble and insoluble fiber contents were determined
by the method proposed by Asp et al. [7] and carbohydrate content was given by subtracting all other weights
from the total weight. Energy content was calculating by multiplying the carbohydrate, protein, and lipid con-
tents in grams by 4, 4, and 9 kcal/g, respectively [8]. Ph was measured by a digital potentiometer (Micronal,
model B474). Vitamin C content was measured three times by high-performance liquid chromatography (HPLC)
following the method proposed by Maeda et al. [3]. Anthocyanins and vitamin B12 were determined as recom-
mended by the American Organization of Analytical Chemists [9]. Calcium, sodium, potassium, magnesium,
manganese, iron, zinc, and copper contents were determined by digesting the sample (CEM Coorporation, mod-
el MD-2591) and reading the solution with an atomic absorption spectrometer (Variam Spectra AA, model 220
FS).
J. P. L. Aguiar, F. C. A. Souza
871
(a) (b)
(c)
Figure 1. Camu-camu fruits on the plant for processing (a); extracted pulp for freeze-drying (b); and freeze-dried camu-camu
powder (c).
2.3. Antioxidant Capacity
Antioxidant capacity was determined as recommended by Brand-Williams, Cubelier, and Berset [10] using
2,2-dyphenyl-picrylhydrazil (DPPH). Ten grams were extracted with 100 ml of 60% ethanol under constant stir-
ring at 30˚C for 24 hours. The extracts were filted by filter paper number one and the fluid portions were ana-
lyzed for antioxidant content. The absorbance was read three times at 515 nm, and the antioxidant capacity was
calculated as µmol of Trolox equivalents (TE) per gram. The results were described descriptively and the con-
tents were expressed as mean ± standard deviation (SD).
3. Results and Discussion
Table 1 shows that freeze-dried camu-camu has a high concentration of vitamin C, approximately 20.31 g/100g,
naturally much higher than that in fresh pulp (between 2.0 and 6.5 g/100g). Vitamin C content in camu-camu
was also higher than in other traditional Brazilian fruits, such as acerola (1357.0 ± 9.5 mg/100g of fresh fruit)
and acai (84.0 ± 10 mg/100g of fresh fruit) [11]. Soluble and insoluble fiber contents are also very high, making
camu-camu a good natural source of these nutrients. Studies have shown that high-fiber diets have great thera-
peutic potential against dyslipidemia, cardiovascular diseases, and some types of cancer [12]. Fibers also de-
crease intestinal transit time and glucose absorption, with consequent lowering of glycemia and blood cholester-
ol. Potassium was the most abundant mineral in freeze-dried camu-camu, with a concentration of 796.99
mg/100g. Calcium is usually low in Amazonian diets. Freeze-dried camu-camu can help Amazonians to achieve
their recommended calcium intake.
In addition to these components, camu-camu has high levels of phenolic compounds, such as flavonoids and
anthocyanins. Freeze-dried camu-camu has an anthocyanin content of 0.739 mg/g and flavonoids of 16.93
mg/100g. However, Reynertoson et al. [13] found that the total anthocyanin content of freeze-dried camu-camu
powder was very low (0.01 mg/g of dry weight), varying greatly. This variation may be attributed to the fact that
J. P. L. Aguiar, F. C. A. Souza
872
Table 1. Nutritional composition of freeze-dried camu-camu pulp.
Moisture (g/100g) 94.1 ± 0.1
Protein (g/100g) 6.65 ± 0.14
Ash (g/100g) 3.67 ± 0.21
Crude fiber (g/100g) 19.23 ± 0.00
Soluble fiber (g/100g) 11.11 ± 0.00
Insoluble fiber (g/100g) 8.12 ± 0.00
Lipids (g/100g) 0.98 ± 0.07
Carbohydrates (g/100g) 47.00 ± 0.00
Vitamin C (g/100g) 20.31 ±0.04
Sodium (mg/100g) Tr*
Potassium (mg/100g) 796.99 ± 43.94
Calcium (mg/100g) 22.12 ± 2.54
Magnesium (mg/100g) 33.47 ± 1.30
Iron (mg/100g) 2.23 ± 0.12
Manganese (mg/100g) 1.29 ± 0.08
Zinc (mg/100g) 1.26 ± 0.07
Copper (mg/100g) 0.84 ± 0.03
pH 2.61 ± 0.02
Antioxidant capacity (µmol TE/g) 52.000
Vitamin B 12 (µg/g) 0.0034
Anthocyanins (µg/g) 0.739
Flavonoids (mg/100g) 16.93
*Traces.
camu-camu is a deciduous fruit, that is, the pigments are predominantly found in the skin, hence removing the
skin results in smaller extractions. The degree of ripeness is another variable that affects anthocyanin levels.
Macheix et al. [14] found a higher concentration of phenolic compounds in the skin than in the pulp.
Table 1 shows that freeze-dried camu-camu has extremely high antioxidant activity, 52,000 µmol TE/g, six
times more than freeze-dried acai. The ripening process is a critical variable in camu-camu bioactive properties,
especially with respect to its reduction potential. These results agree with the antioxidant activity measured dur-
ing ripening. The antioxidant potential may be related to the phenolic composition of the extracts, but other
components may also make an important contribution.
4. Amino Acid Profile
Table 2 shows the amino acid contents of freeze-dried camu-camu expressed as g/100g of sample. Table 2 lists
some essential amino acids. The most abundant amino acids in camu-camu are arginine (0.692 g/100g) and glu-
tamic acid (0.619 g/100g). The lysine content (0.196 g/100g) in camu-camu is similar to that of wheat flour
(0.11%), one of the most important plant sources of this amino acid. Despite the great variety of amino acids
found in camu-camu, it is not possible to consider it a good protein source because its total protein content of
3.86% is similar to that of other dried fruits amendoim (3.1%), nozes (2.3%).
5. Conclusion
Camu-camu fruits are excellent sources of different bioactive compounds, such as vitamin C, fibers, minerals,
J. P. L. Aguiar, F. C. A. Souza
873
Table 2. Amino acids present in freeze-dried camu-camu expressed as g/100g of sample.
Amino acid Content Amino acid Content
Aspartic acid 0.375 Leucine 0.219
Threonine 0.124 Tyrosine 0.141
Serine 0.228 Phenylalanine 0.128
Glutamic 0.619 Lysine 0.196
Proline 0.168 Histidine 0.110
Glycine 0.229 Arginine 0.692
Alanine 0.180 Cystine 0.101
Valine 0.176 Methionine 0.058
Isoleucine 0.124 Total 3.868
and phenolic compounds. Camu-camu fruits show high antioxidant capacity as compared to other fruits. In con-
clusion, camu-camu fruits can be used to increase the amount of bioactive compounds in food products and to
delay or prevent many human diseases.
Acknowledgements
The authors thank the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM, Brazil) processo
062.01725/2014/PAPAC.
References
[1] Yuyama, K., Yuyama, L.K.O., Valente, J.P., Silva, A.C.D., Aguiar, J.P.L., Flores, W.B.C., et al. (2010) Camu-Camu,
Série Frutas Nativas. Funep, São Paulo, v.1. 50 p.
[2] Villachica, H. (1996) El cultivo del camu-camu en la Amazonia Peruana. Secretaria Pro Tempore del Tratado de
Cooperación Amazónica, Lima, 85 p.
[3] Maeda, Y., Yamamoto, M., Owada, K., Sato, S. and Masui, T. (1989) Simultaneous Liquid Chromatographic Deter-
mination of Water-Soluble Vitamins, Caffeine, and Preservative in Oral Liquid Tonics. Journal of Association of Offi-
cial Analytical Chemistry, Província de Shizuoka Instituto de Saúde Pública e Ciências Ambientais, Japão, 72, 244-
247.
[4] Yuyama, K., Aguiar, J.P.L. and Yuyama, L.K.O. (2002) Camu-Camu: Um fruto fantástico como fonte de vitamina C.
Acta Amaz., Manaus, 32, 169-174.
[5] IALInstituto Adolfo LUTZ (2008) Métodos físico-químicos para análise de alimentos. 4ª edição, 1ª edição digital.
Instituto Adolfo Lutz, São Paulo.
[6] Schuster, R. (1988) Determination of Amino Acids in Biological, Pharmaceutical, Plant and Food Samples by Auto-
mated Precolumn Derivatization and High-Performance Liquid Chromatography. Journal of Chromatography, 431,
271-284.
[7] Asp, N.G., Johansson, C.G., Hallmer, H. and Siljestrom, S. (1983) Rapid Enzymatic Assay of Insoluble Dietary Fiber.
Journal of Agricultural and Food Chemistry, 31, 43-53.
[8] Shills, M.E., Shike, M., Ross, A.C., Caballero, B. and Cousins, R.J. (2009) Nutrição Moderna na saúde e na doença.
10ª edição, Manole, São Paulo.
[9] AOAC (Association of Official Analytical Chemists) (2005) Official Methods of Analyses.18th Edition, Arlington.
[10] Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity
using the DPPH free radical method. Lebensmittel Wissenchaft und Technologie Food Science and Technology, 28 p.
[11] Rufino, M.S.M., Alves, R.E., Brito, E.S., Pérz-Jiménez, J., Sauracalixto, F. and Mancini-Filho, J. (2010) Bioactive
Compounds and Antioxidant Capacities of 8 Non-Traditional Tropical Fruits from Brazil. Food Chemistry, 121, 996-
1002.
[12] World Health Organization (2003) Diet, Nutrition and the Prevention of Chronic Diseases. Report of a Joint WHO/
FAO Expert Consultation, World Health Organization, Geneva.
J. P. L. Aguiar, F. C. A. Souza
874
[13] Reynertson, K.A., Yang, H., Jiang, B., Basile, M.-J. and Kennelly, E. (2008) Quantitative Analysis of Antiradical
Phenolic Constituents from Fourteen Edible Myrtaceae Fruits. Food Chemistry, 109, 883-890.
http://dx.doi.org/10.1016/j.foodchem.2008.01.021
[14] Macheix, J.J., Fleuriet, A. and Billot, J. (1990) Fruit Phenolics. CRC Press, Boca Raton, 378 p.
... (12) Su fruto es esférico, con un diámetro y longitud de 1,0-3,2 cm y 1,2-2,5 cm, respectivamente; (13) además, de una piel delgada, brillante, con una pulpa jugosa y extremadamente ácida, de color rosa, que alberga de una a cuatro semillas. (14) Contenido y propiedades de los fitoquímicos de la M. dubia Sus frutos son fuentes de polifenoles (15) (flavonoides: quercetina, (16) taninos: proantocianidinas y C-elagitaninos glucosídicos (17) y ácidos fenólicos), carotenoides (luteína, β-caroteno y zeaxantina), (18) ácido ascórbico (19) y componentes nutricionales (sodio, potasio, calcio, zinc, magnesio y manganeso). (20) Su cáscara posee mayor cantidad de fenoles totales, fenol, (21) ácido ascórbico, (22) con potente actividad antioxidante (23) y también posee flavonoides y carotenoides. ...
... La actividad antioxidante de este fruto se demostró, mediante el ensayo con el radical 2,2-difenil-1-picrilhidrazil (DPPH), en las hojas y pericarpio (DPPH: 641,9 y 440,9 µg TE/mg, respectivamente y fue positivamente correlacionado con el contenido fenólico); (56) en la pulpa liofilizada comercial en estadio maduro (extremadamente alta, DPPH: 52,000 µmol TE/g, seis veces más que el açaí liofilizado y puede estar relacionado a la composición fenólica); (18) en toda la fruta en dos estadios de maduración (siendo mayor en el estadio maduro, DPPH: 2671 µmol TE/g peso fresco); (57) y en la cáscara y pulpa a 88 DAA (DAA= days after antesis), maduración intermedia, la máxima actividad antioxidante fue en la cáscara, DPPH: 5848,90 Trolox Eq/100 muestra d.b). (21) En un estudio experimental en animales, se comparó el efecto de una crema a base del extracto etanólico al 5 % de M. dubia con el efecto antibiótico de la crema de sulfadiazina argéntica, aplicadas tópicamente en tres quemaduras térmicas (segundo grado) producidas en ratas hembras Holtzman de 9-10 semanas de edad; se observaron, microscópicamente, similar infiltración leucocitaria en dermis y en el estrato seroso de ambos grupos, siendo menores que el grupo control; y la cantidad de fibroblastos en el grupo M. dubia fue ligeramente mayor que en la de sulfadiazina argéntica (p≥ 0,05); señalaron que la presencia de epidermis en el grupo de M. dubia, a diferencia de los demás grupos, se puede deber a una detención de los procesos oxidativos debido a la propiedad antioxidante de M. dubia. ...
... Neves y otros , (21) Aguiar y otros , (18) Tauchen y otros , (56) y Aguiar y otros , (57) determinaron in vitro que la cáscara, (21) pulpa (18,21) (semimadura), (21) hojas, pericarpio, (56) y el fruto verde y maduro (57) presentaron capacidad antioxidante, evaluada con el mismo método DPPH, pero con diferentes unidades de medida (µg TE/mg, µmol TE/g y Trolox Eq/100). ...
Article
Full-text available
Objetivos. Evaluar la actividad antimicrobiana de la Myrciaria dubia sobre microorganismos orales. Materiales y métodos. Se realizó una revisión sistemática de la literatura siguiendo las recomendaciones PRISMA mediante búsquedas en Pubmed, LILACS, SciELO, ProQuest, EBSCO y Google Scholar, de estudios publicados durante 2008 y 2018. Resultados. Se recopilaron 11 estudios, in vitro, todos los estudios evidenciaron actividad antimicrobiana positiva, principalmente por cada una de las partes de sus frutos, sobre grampositivos. Sin embargo, dicha actividad fue comparada con clorhexidina en solo dos estudios y en otro resultó ser mejor que un antibiótico. Se detectó un alto riesgo de sesgo en la mayoría de estudios. Los compuestos fenólicos incluidos polifenoles y acilfloroglucinoles fueron señalados como los responsables de su actividad. Conclusiones. Existe evidencia sobre la actividad antimicrobiana de M. dubia. Su estudio como antimicrobiano contra microorganismos orales es aún incipiente, pero se advierte un gran potencial debido a los fitoquímicos potentes que posee. Además, se necesita más estudios de calidad, que comparen su actividad versus antisépticos orales y sobre más microorganismos asociados a caries dental y enfermedad periodontal.
... (12) Su fruto es esférico, con un diámetro y longitud de 1,0-3,2 cm y 1,2-2,5 cm, respectivamente; (13) además, de una piel delgada, brillante, con una pulpa jugosa y extremadamente ácida, de color rosa, que alberga de una a cuatro semillas. (14) Contenido y propiedades de los fitoquímicos de la M. dubia Sus frutos son fuentes de polifenoles (15) (flavonoides: quercetina, (16) taninos: proantocianidinas y C-elagitaninos glucosídicos (17) y ácidos fenólicos), carotenoides (luteína, β-caroteno y zeaxantina), (18) ácido ascórbico (19) y componentes nutricionales (sodio, potasio, calcio, zinc, magnesio y manganeso). (20) Su cáscara posee mayor cantidad de fenoles totales, fenol, (21) ácido ascórbico, (22) con potente actividad antioxidante (23) y también posee flavonoides y carotenoides. ...
... La actividad antioxidante de este fruto se demostró, mediante el ensayo con el radical 2,2-difenil-1-picrilhidrazil (DPPH), en las hojas y pericarpio (DPPH: 641,9 y 440,9 µg TE/mg, respectivamente y fue positivamente correlacionado con el contenido fenólico); (56) en la pulpa liofilizada comercial en estadio maduro (extremadamente alta, DPPH: 52,000 µmol TE/g, seis veces más que el açaí liofilizado y puede estar relacionado a la composición fenólica); (18) en toda la fruta en dos estadios de maduración (siendo mayor en el estadio maduro, DPPH: 2671 µmol TE/g peso fresco); (57) y en la cáscara y pulpa a 88 DAA (DAA= days after antesis), maduración intermedia, la máxima actividad antioxidante fue en la cáscara, DPPH: 5848,90 Trolox Eq/100 muestra d.b). (21) En un estudio experimental en animales, se comparó el efecto de una crema a base del extracto etanólico al 5 % de M. dubia con el efecto antibiótico de la crema de sulfadiazina argéntica, aplicadas tópicamente en tres quemaduras térmicas (segundo grado) producidas en ratas hembras Holtzman de 9-10 semanas de edad; se observaron, microscópicamente, similar infiltración leucocitaria en dermis y en el estrato seroso de ambos grupos, siendo menores que el grupo control; y la cantidad de fibroblastos en el grupo M. dubia fue ligeramente mayor que en la de sulfadiazina argéntica (p≥ 0,05); señalaron que la presencia de epidermis en el grupo de M. dubia, a diferencia de los demás grupos, se puede deber a una detención de los procesos oxidativos debido a la propiedad antioxidante de M. dubia. ...
... Neves y otros , (21) Aguiar y otros , (18) Tauchen y otros , (56) y Aguiar y otros , (57) determinaron in vitro que la cáscara, (21) pulpa (18,21) (semimadura), (21) hojas, pericarpio, (56) y el fruto verde y maduro (57) presentaron capacidad antioxidante, evaluada con el mismo método DPPH, pero con diferentes unidades de medida (µg TE/mg, µmol TE/g y Trolox Eq/100). ...
Article
Full-text available
Introducción: El tratamiento de la enfermedad periodontal incluye la terapia mecánica, el cual se complementa con el uso de antibióticos/antisépticos, lo que podría plantear efectos adversos a largo plazo. Objetivo: Describir el potencial farmacológico del fruto de la M. dubia, y su aplicación como complemento en la terapia periodontal. Métodos: Se revisaron revistas internacionales de impacto de la Web of Science relacionadas con el tema (58 revistas). Se consultaron las bases de datos Google Académico, SciELO, PubMed y EBSCO, utilizando los descriptores: “review”; “phytotherapy”; “Myrtaceae”; “gingivitis”; “periodontitis”; “periodontal diseases”; “anti-bacterial agents”; “anti-inflammatory agents”; “dental plaque”; “antioxidants”; “plants, toxic”; “adverse effects”. Se obtuvo 517 artículos de los cuales 60 fueron incluidos en el estudio. El 91,7 % de los artículos fueron de los últimos tres años. Integración de la información: Se expuso las propiedades y seguridad en humanos del uso de la M. dubia. Conclusiones: La M. dubia tiene actividad antimicrobiana in vitro frente a microorganismos de la biopelícula dental, siendo más sensibles el S. mutans, S. mitis y P. gingivalis al extracto hidroalcohólico de la semilla, y el S. aureus al extracto hidroalcohólico de las hojas y corteza. También se evidencia su actividad antiinflamatoria. Los hallazgos sugieren que el extracto etanólico de la M. dubia podría incorporarse en antisépticos de uso bucal, dado su potencial antibiopelícula y antiinflamatoria. Palabras clave: revisión; fitoterapia; Myrtaceae; gingivitis; periodontitis.
... mg/100g). Also Aguiar and Souza (2015), observed the following concentrations expressed in mg/100g in freeze dried camu camu pulp: K 796.99; Ca 22.12; Mg 33.47; Fe 2.23; Mn 1.29; Zn 1.26; Cu 0.84, beyond its high antioxidant capacity. ...
... Ca 22.12; Mg 33.47; Fe 2.23; Mn 1.29; Zn 1.26; Cu 0.84, beyond its high antioxidant capacity. Despite the large variation in the mineral levels observed by different authors our results partially agree with those referred by Aguiar and Souza (2015), Ribeiro et al. (2016) and Castro et al. (2018) although our samples contained As which is a reason of concern. Yuyama et al. (2003), using neutron activation analysis, also detected a wide range of As concentrations in fruits collected along the river Uatumã in Brazil with concentrations ranging between 0.095 and 0.239 μg/100 g edible part (on a dry weight basis) although far from our average value of 13 μg/g which is obtained taking into account the recommended daily intake dose by the manufacturer, corresponding to 9.2 μg and 9.0 μg of inorganic As, for Premium and Certified samples, respectively ( Table 2). ...
Article
Full-text available
The aim of this study is to evaluate the elemental composition of six food supplements of plant origin, commonly sold in the Portuguese market, by energy dispersive X-ray fluorescence. The presence of arsenic in all the Maca, Ashwagandha, Camu-Camu and Hemp protein samples (except the generic form) is a reason of concern due to the long-term effects of As mainly in its inorganic form. Thus, great caution must be taken on some food supplements, particularly the cases of Moringa from Egypt and Yellow/Xpresso Maca, whose inorganic As concentrations are in line with the upper bound concentration for the 95th dietary exposure according to the European Food Safety Authority which is 0.64 μg/kg bw/day. In what regards Hemp protein, if the supplier’s daily intake recommendation (30 g) is followed, values as high as 1.75 μg/kg bw/day of inorganic As will be consumed, which are dangerously above the upper bound. In this case this specific supplement lot should be removed from the market. Also the consumption of Hemp protein leads to a daily intake of Mn above the Daily Reference Intake (DRI) and Adequate Intakes (AIs) for adults. The contamination of Goji berries by Pb is a reason for concern—organic berries contained 11.3 μg/g while berries derived from conventional agriculture 11.6 μg/g, leading to daily intake doses of 315.3 μg and 324.8 μg, respectively, if the recommended daily intake of 28 g is followed. Our findings point out to an inadequacy of the recommended intakes by the supplier vis a vis the concentrations observed, greatly increasing the risk for public health.
... Diversos estudios han demostrado que este fruto contiene componentes bioactivos, como carotenoides, antioxidantes, vitaminas, antocianinas, flavonoides y actividad antiinflamatoria y antimicrobiana, así como la capacidad de contrarrestar la obesidad, diabetes, enfermedades cardiovasculares y proteger la mucosa del tracto gastrointestinal de la acción del entorno ácido y de las enzimas digestivas (Nascimento et al., 2013;Paiva y do Amaral, 2015;Guija et al., 2005;Chang, 2013). ...
Article
Full-text available
El rápido incremento en la obesidad, la hipertensión y otras enfermedades crónicas no transmisibles, debido al consumo de alimentos ultraprocesados como grasas y azúcares, y a la situación de inseguridad alimentaria en muchos países de América Latina, ha promovido el desarrollo de alimentos mínimamente procesados, seguros y saludables de fuentes no tradicionales, como los frutos amazónicos, que además de nutrir, tienen un efecto benéfico en la salud. El objetivo de esta revisión bibliográfica fue analizar los principales compuestos biológicos de interés, para evaluar las oportunidades actuales del camu-camu en el desarrollo de alimentos funcionales, teniendo en cuenta la producción científica anual. Entre los frutos amazónicos estudiados en los últimos años, se destaca el camu-camu, un fruto amazónico pequeño, que se caracteriza por su alto valor nutricional, especialmente por su contenido de vitamina C, carotenoides, polifenoles (flavonoides, taninos, antocianinas, etc.) y otros compuestos reconocidos como antioxidantes, cuyo consumo está asociado a la disminución del envejecimiento celular y el estrés oxidativo. Debido a que tiene una vida útil relativamente corta, se han desarrollado diversos productos para garantizar su conservación por más tiempo, además de asegurar sus propiedades nutricionales y funcionales. Este fruto se aprovecha para obtener jugos, yogures, helados, mermeladas y refrescos, entre otros productos. Sin embargo, uno de los mayores potenciales actuales es el uso como ingrediente y/o materia prima en la producción de alimentos convencionales, para otorgarles características de “alimentos funcionales”, para generar un beneficio a la salud, más allá de suplir las necesidades nutricionales.
Article
Full-text available
Ph.D. Student Post-Doctorate in Biotechnology-PPGBIOTEC-UFAM and participates in the Research Group and Study Nucleus in Molecular Biotechnology researching antioxidants of natural origin and products derived from Amazonian plants with curative or preventive effects in metabolic diseases. ABSTRACT The Amazon rainforest is rich in a diversity of species with various bioactive properties that have been widely used to treat a variety of diseases. Many of these diseases the process of infection, an environment of oxidative stress is created that leads to cellular damage causing a decline in the immune system. In this sense, the camu-camu fruit (Myrciaria dubia (HBK) McVaugh), native to the Amazon region, has in its nutritional composition several bioactive compounds and the highest level of vitamin C among Brazilian tropical fruits. It is also known for its antioxidant and anti-inflammatory properties. Therefore, the objective of this review is to analyze the evidence collected in the literature on camu-camu and its vitamin C content and other nutrients can be considered a functional food acting among other benefits the strengthening of the immune system, fighting diseases that can caused by oxidative and inflammatory stress.
Chapter
Fruit by-products and the importance of their valorization to reduce their negative environmental impacts have gained attention as a form of sustainable management that can generate profits for the producing areas. These materials constitute an unexplored and underexploited source of health benefits. This chapter focuses on tropical fruits consumed worldwide; the utilization of these fruits produces large amounts of waste generated from their processing, including waste from pulp, peels, and seeds. The novel approach of converting tropical fruit waste into products with beneficial human health activities (for example, as a source of bioactive molecule implies the isolation and extraction of phytochemicals. The preparation of a sample includes drying, centrifugation, or filtration. Subsequently, phytochemicals are extracted using conventional processes such as water infusion, maceration, Soxhlet, or solid microphase extraction, or nonconventional methods like microwave, ultrasound, and supercritical fluid extraction, among others. Details of each method's effect on the extraction of bioactive compounds and their valorization from tropical fruit by-products are discussed in this chapter. Using recovered bioactive molecules represents a sustainable alternative for tropical fruit by-products and waste exploitation, as a low-priced source of valuable compounds with health-promoting benefits for developing food products as well as contributing to efficient waste management.
Article
Full-text available
Objetivo: Evaluar la actividad antimicrobiana, mediante el método de difusión en agar con pocillos, de camu camu (CC) contra microorganismos bucales. Métodos: Cepas de S. aureus, S. mutans, C. albicans y P. gingivalis fueron inoculadas en placas Petri. Extractos etanólicos (EEs) de cáscara, pulpa y semilla de CC y controles (clorhexidina 0,12%, antiséptico bucal, alcohol 70° y agua destilada) fueron cargados dentro de pocillos de 6 mm de diámetro. Todas las placas fueron incubadas por 24-48 horas y 11 días (P. gingivalis) a 35°C y la actividad antimicrobiana fue determinada por la formación de una zona de inhibición del crecimiento microbiano (ZICM), alrededor de los pocillos y medida mediante una regla Vernier, por un investigador, calibrado interexaminador. Se determinó el promedio de tres áreas diferentes de las ZICM (mm). El experimento fue ejecutado entre 3 y 14 réplicas. Se aplicó la estadística descriptiva e inferencial (p<0,05). Resultados: El EEs de semilla inhibió a los cuatro microorganismos. Por cada microorganismo, se evidenció diferencia significativa en la actividad antimicrobiana según grupo experimental (p=0,0000) y entre pares de grupos (p<0,001). Conclusión: Las tres partes de CC ejercieron, diferentes valores de actividad antimicrobiana contra microorganismos bucales, siendo similares o superiores a los antisépticos bucales.
Article
Full-text available
Objetivo: Evaluar la actividad antimicrobiana, mediante el método de difusión en agar con pocillos, de camu camu (CC) contra microorganismos bucales. Métodos: Cepas de S. aureus, S. mutans, C. albicans y P. gingivalis fueron inoculadas en placas Petri. Extractos etanólicos (EEs) de cáscara, pulpa y semilla de CC y controles (clorhexidina 0,12%, antiséptico bucal, alcohol 70° y agua destilada) fueron cargados dentro de pocillos de 6 mm de diámetro. Todas las placas fueron incubadas por 24-48 horas y 11 días (P. gingivalis) a 35°C y la actividad antimicrobiana fue determinada por la formación de una zona de inhibición del crecimiento microbiano (ZICM), alrededor de los pocillos y medida mediante una regla Vernier, por un investigador, calibrado interexaminador. Se determinó el promedio de tres áreas diferentes de las ZICM (mm). El experimento fue ejecutado entre 3 y 14 réplicas. Se aplicó la estadística descriptiva e inferencial (p<0,05). Resultados: El EEs de semilla inhibió a los cuatro microorganismos. Por cada microorganismo, se evidenció diferencia significativa en la actividad antimicrobiana según grupo experimental (p=0,0000) y entre pares de grupos (p<0,001). Conclusión: Las tres partes de CC ejercieron, diferentes valores de actividad antimicrobiana contra microorganismos bucales, siendo similares o superiores a los antisépticos bucales.
Research
Full-text available
Onwasigwe, Ebubechukwu, Ph.D., Alabama A&M University, 2016. 179 pp. Dissertation Advisor: Dr. Martha Verghese, Ph.D. Allspice contains phytochemicals which may have antioxidative and chemopreventive potential. The objective of this study was to determine the antioxidant potential of allspice, possible different in vivo chemopreventive mechanisms of action and in vivo chemopreventive effects on colon cancer in Fisher 344 male rats. Total phenolic and flavonoid contents, and antioxidant activity of both aqueous and methanolic extracts of allspice was conducted using different colorimetric assays (DPPH, TEAC, and FRAP). In the animal study, rats in experimental groups were fed with different concentrations of allspice (0.5%, 1% and 2%) in an AIN-93G based diet. Rats received AOM injections at 7 and 8 weeks of age at 24mg/kg body weight. After 17 weeks, rats were asphyxiated with CO2, and liver, colon and cecum samples were collected. Colons stained with methylene blue and ACFs were enumerated and crypt multiplicity was determined. Total phenolic content in both methanol and water extracts were 728.4±137.5 GAE/g and 678.3±141.1 GAE/g. Total flavonoid content in methanol and water extracts were 595.31±51.77mgCE/100g and 255.99±9.89mgCE/100g. The IC50 (DPPH assay) concentration for water and methanol extracts was 21.5mg/ml and PREVIEW vi 22mg/ml. FRAP assay showed similar results for methanol and water extractions (4.5±0.03 and 5.07±0.1 mmol Fe/g). Results for ABTS scavenging ability for methanol and water extracts was 355.8±9.7mmolTE/100g and 362.4±7.2mmolTE/100g. Rats fed 0.5% allspice had the highest pH (7.64) compared to control (6.88). Rats in the treatment groups gained 251g (0.5%), 242g (1%), and 225g (2%) over the 13week period. There was a 29% reduction in total crypts in rats fed 0.5% compared to 2% allspice. Highest number of crypts was seen in control group (777), and the reduction of crypts compared to control in 0.5, 1, and 2% treatments were 30.8%, 30.75% and 78%, respectively. Rats fed 0.5% allspice had higher ACF counts compared to those fed 1% allspice. Total ACF and crypts in rats fed 2% allspice were lower compared to those fed 0.5% allspice. This study reveals that consumption of allspice in the diet reduced the number of ACF in Fisher 344 male rats. Allspice may show beneficial effects in the prevention of chronic diseases due to its antioxidant activity. Utilization of allspice in food products may provide additional functional properties.
Article
Full-text available
The vitamin C content of three samples of camu-camu collected in the east of Roraima State, Brazil, was analyzed. One sample was from the Maú river, the other two (an isolated plant and another population) were from the Urubu river, both of these, rivers being tributaries of the river Tacutu. Acid ascorbic was determined by HPLC. The fruits form an individual plant on the Urubu river presented the highest concentration of ascorbic acid, 6112±137.5 mg in 100g of pulp. The populations of camu-camu from the Urubu and Maú rivers presented ascorbic acid concentrations of 5737±236.1 mg (pulp + rind) and 3571±12.0 mg per 100g, respectively. This unprecedented finding shows the need for further studies, considering the genetic variability of camu-camu and its nutritional potential as a source of vitamin C.
Article
Full-text available
Many species of Myrtaceae are cultivated in home gardens throughout the tropics for their edible fruit, and have been used in traditional medicine to treat several inflammatory conditions. Fruit phenolics are important dietary antioxidant and anti-inflammatory constituents. We have investigated the antiradical activity, total phenolic content (TPC), and total anthocyanin content (TAC) of 14 underutilized Myrtaceae fruits, namely Eugenia aggregata, E. brasiliensis, E. luschnathiana, E. reinwardtiana, Myrciaria cauliflora, M. dubia, M. vexator, Syzygium cumini, S. curranii, S. jambos, S. javanicum, S. malaccense, S. samarangense, and S. samarangense var. Taiwan pink. An HPLC-PDA method was developed to quantify the amounts of cyanidin 3-glucoside (1), delphinidin 3-glucoside (2), ellagic acid (3), kaempferol (4), myricetin (5), quercetin (6), quercitrin (7), and rutin (8) present in MeOH extracts of the fruit. TPC ranged from 3.57 to 101 mg/g, TAC ranged from undetectable to 12.1 mg/g, and antiradical activity, measured as DPPH˙ IC(50), ranged from very active (19.4 μg/ml) to inactive (389 μg/ml).
Article
The bioactive compounds and antioxidant capacities of polyphenolic extracts of 18 fresh and dry native non-traditional fruits from Brazil were determined using ABTS, DDPH, FRAP and β-carotene bleaching methods. The study provides an adaptation of these methods, along with an evaluation of the compounds related to antioxidant potential. The results show promising perspectives for the exploitation of non-traditional tropical fruit species with considerable levels of nutrients and antioxidant capacity. Although evaluation methods and results reported have not yet been sufficiently standardised, making comparisons difficult, our data add valuable information to current knowledge of the nutritional properties of tropical fruits, such as the considerable antioxidant capacity found for acerola – Malpighia emarginata and camu-camu – Myrciaria dubia (ABTS, DPPH and FRAP) and for puçá-preto – Mouriri pusa (all methods).
Article
The antiradical activities of various antioxidants were determined using the free radical, 2,2-Diphenyl-1-picrylhydrazyl (DPPH*). In its radical form. DPPH* has an absorption band at 515 nm which dissappears upon reduction by an antiradical compound. Twenty compounds were reacted with the DPPH* and shown to follow one of three possible reaction kinetic types. Ascorbic acid, isoascorbic acid and isoeugenol reacted quickly with the DPPH* reaching a steady state immediately. Rosmarinic acid and δ-tocopherol reacted a little slower and reached a steady state within 30 min. The remaining compounds reacted more progressively with the DPPH* reaching a steady state from 1 to 6 h. Caffeic acid, gentisic acid and gallic acid showed the highest antiradical activities with a stoichiometry of 4 to 6 reduced DPPH* molecules per molecule of antioxidant. Vanillin, phenol, γ-resorcylic acid and vanillic acid were found to be poor antiradical compounds. The stoichiometry for the other 13 phenolic compounds varied from one to three reduced DPPH* molecules per molecule of antioxidant. Possible mechanisms are proposed to explain the experimental results.
A rapid, simple, and reliable liquid chromatographic method has been developed for the simultaneous determination of nicotinamide (niacinamide), thiamine, riboflavin, riboflavin sodium phosphate, pyridoxine, caffeine, and sodium benzoate in commercial oral liquid tonics. The 7 components are separated on a reverse phase C18 column using a mobile phase of acetonitrile-0.01M potassium dihydrogen phosphate-triethylamine (8 + 91.5 + 0.5 v/v/v) containing 5mM sodium octanesulfonate and adjusted to pH 2.8 with phosphoric acid. Components are detected at 254 nm with attenuation 0.02 AUFS. Acetanilide is used as an internal standard. In addition to the 7 components mentioned, nicotinic acid (niacin), cyanocobalamin, and folic acid are also separated under the same conditions. Sample preparation involves only addition to internal standard solution and dilution with mobile phase and then filtration. Recoveries of the 7 components and cyanocobalamin from spiked preparations ranged from 97 to 104% with coefficients of variation of 0.9-4.2%.
Article
An easy, rapid and sensitive method for the simultaneous determination of primary and secondary amino acids in different matrices, e.g. protein hydrolysates, pharmaceutical formulations, plant extracts, food samples and physiological fluids, is described. After minimum sample preparation amino acids were derivatized with two different reagents, o-phthalaldehyde-3-mercaptopropionic acid for primary and 9-fluorenylmethylchloroformate for secondary amino acids, by an automated precolumn derivatization technique. With minor adjustments of separation parameters this method can also be used to determine amino acids in different matrices. Analysis time including reaction, separation and reconditioning ranged from 20 min for hydrolysates to 60 min for physiological fluids. The separation was done on a reversed-phase column with a gradient of acetate buffer-acetonitrile as the mobile phase. The precision for peak areas of the individual amino acids was within a relative standard deviation of 2% for the hydrolysate assay and 2-5% for the physiological assay, and for retention times better than 0.7%. The detection limit with the diode array detector (ultraviolet-visible) was ca. 2-5 pmol, measured at 338 nm for primary and 266 nm for secondary amino acids; with the fluorescence detector 20-50 fmol were detectable at excitation and emission wavelengths of 230 and 455 nm for primary and 266 and 310 nm for secondary amino acids, respectively.
Article
A gravimetric, enzymatic method for the determination of both soluble and insoluble dietary fiber is presented. This method makes it possible to analyze 10-15 duplicate samples in 1 day. The procedure includes the following main steps: gelatinization by boiling 15 min in the presence of a heat-stable α-amylase, incubation with pepsin at acid pH for 1 h, and incubation with pancreatin at neutral pH for 1 h. Insoluble dietary fiber is filtered off with Celite 545 as the filter aid. Soluble dietary fiber is precipitated from the filtrate with 4 volumes of ethanol and recovered by filtration in the same way as insoluble dietary fiber. As an alternative the alcohol precipitation can be performed immediately after the enzyme incubations. Both soluble and insoluble components can then be recovered in one single filtration. All dietary fiber components seem to be determined. Practically all starch is solubilized, but some protein remains undigested. Microbial enzymes were also tested. When the materials used in the EEC/IARC collaborative study were analyzed, the two enzyme systems gave very similar results.