Heat diffusion processes in various one-dimensional total-momentum-conserving nonlinear lattices with symmetric interaction and asymmetric interaction are systematically studied. It is revealed that the asymmetry of interaction largely enhances the heat diffusion; while according to our existing studies for heat conduction in the same lattices, it slows the divergence of heat conductivity in a wide regime of system size. These findings violate the proposed relations that connect anomalous heat conduction and super heat diffusion. The generality of those expectations is thus questioned.