Conference PaperPDF Available

System Design of a Tethered Robotic Explorer (TReX) for 3D Mapping of Steep Terrain and Harsh Environments

Authors:
Conference Paper

System Design of a Tethered Robotic Explorer (TReX) for 3D Mapping of Steep Terrain and Harsh Environments

Abstract and Figures

The use of a tether in mobile robotics provides a method to safely explore steep terrain and harsh environments considered too dangerous for humans and beyond the capability of standard ground rovers. However, there are significant challenges yet to be addressed concerning mobility while under tension, autonomous tether management, and the methods by which an environment is assessed. As an incremental step towards solving these problems, this paper outlines the design and testing of a center-pivoting tether management payload enabling a four-wheeled rover to access and map steep terrain. The chosen design permits a tether to attach and rotate passively near the rover's center-of-mass in the direction of applied tension. Prior design approaches in tethered climbing robotics are presented for comparison. Tests of our integrated payload and rover, Tethered Robotic Explorer (TReX), show full rotational freedom while under tension on steep terrain, and basic autonomy during flat-ground tether management. Extensions for steep-terrain tether management are also discussed. Lastly, a planar lidar fixed to a tether spool is used to demonstrate a 3D mapping capability during a tethered traverse. Using visual odometry to construct local point-cloud maps over short distances, a globally-aligned 3D map is reconstructed using a variant of the Iterative Closest Point (ICP) algorithm.
Content may be subject to copyright.
A preview of the PDF is not available
... By taking advantage of fixed anchors, tetherworld friction supports exponential amplification of ground traction forces and the effective load holding capacity of simple lightweight mobile robots. agents tethered to a "mother-ship" [3], [4]. Systems overcome obstacles in irregular environments using robot-robot cooperation through pushing [5], [6] and exploiting tethers [7]- [9]. ...
... These works assume robust attachment or traction with the world, achieved through specialized gripping or anchoring mechanisms [1], [2], [17], [18], making an agent massive enough to be assumed unmovable [3], or manually predeploying secure anchor points by researchers [9]. Applications outside of these specific scenarios warrant new robust and more generalized lightweight methods for the mobile creation of secure anchor points on the fly in the field. ...
Preprint
Full-text available
Reduced traction limits the ability of mobile robotic systems to resist or apply large external loads, such as tugging a massive payload. One simple and versatile solution is to wrap a tether around naturally occurring objects to leverage the capstan effect and create exponentially-amplified holding forces. Experiments show that an idealized capstan model explains force amplification experienced on common irregular outdoor objects - trees, rocks, posts. Robust to variable environmental conditions, this exponential amplification method can harness single or multiple capstan objects, either in series or in parallel with a team of robots. This adaptability allows for a range of potential configurations especially useful for when objects cannot be fully encircled or gripped. These principles are demonstrated with mobile platforms to (1) control the lowering and arrest of a payload, (2) to achieve planar control of a payload, and (3) to act as an anchor point for a more massive platform to winch towards. We show the simple addition of a tether, wrapped around shallow stones in sand, amplifies holding force of a low-traction platform by up to 774x.
... These tasks require sufficiently sized and powered robots that can access these extreme terrains. Tethered rappelling rovers [18], [19] are capable of carrying large payloads and accessing vertical surfaces below the initial landing point. This makes them ideal platforms for missions that are targeting environments such as cliffs, crevasses, and pits. ...
... In an opposite direction, several preliminary works use a tether as a mean of navigation, especially when big efforts are required in climbing. In [4] a navi-guider system for a robot driven by a tether pulled by a person is proposed, whereas in [5] an innovative approach for center-pivoting tether management payload is presented. Such a strategy enables a four-wheeled rover to access and map steep terrain, where a winch is mounted on-board the rover, while the free end of the cable is anchored to a fixed point in the terrain and the tether is used to help the rover climbing high slopes. ...
... In addition, due to the presence of obstacles and cables, certain positions can be reached by robot only under specific robot cable configurations. Under many circumstances, multiple tethered robots have to cooperate and work together in a shared workspace [3][4][5]7], which introduces more constraints to the planning and control problems. More specifically, in the large-scale, multi-robot 3D Printing system [3], the tethers are print nozzle. ...
Article
This paper considers the motion planning problem for multiple tethered planar mobile robots. Each robot is attached to a fixed base by a flexible cable. Since the robots share a common workspace, the interactions amongst the robots, cables, and obstacles pose significant difficulties for planning. Previous works have studied the problem of detecting whether a target cable configuration is intersecting (or entangled). Here, we are interested in the motion planning problem: how to plan and coordinate the robot motions to realize a given non-intersecting target cable configuration. We identify four possible modes of motion, depending on whether (i) the robots move in straight lines or following their cable lines; (ii) the robots move sequentially or concurrently. We present an in-depth analysis of Straight/Concurrent, which is the most practically-interesting mode of motion. In particular, we propose algorithms that (a) detect whether a given target cable configuration is realizable by a Straight/Concurrent motion, and (b) return a valid coordinated motion plan. The algorithms are analyzed in detail and validated in simulations and in a hardware experiment.
... In addition, due to the presence of obstacles and cables, certain positions can be reached by robot only under specific robot cable configurations. Under many circumstances, multiple tethered robots have to cooperate and work together in a shared workspace [3][4][5]7], which introduces more constraints to the planning and control problems. More specifically, in the large-scale, multi-robot 3D Printing system [3], the tethers are print nozzle. ...
Preprint
This paper considers the motion planning problem for multiple tethered planar mobile robots. Each robot is attached to a fixed base by a flexible cable. Since the robots share a common workspace, the interactions amongst the robots, cables, and obstacles pose significant difficulties for planning. Previous works have studied the problem of detecting whether a target cable configuration is intersecting (or entangled). Here, we are interested in the motion planning problem: how to plan and coordinate the robot motions to realize a given non-intersecting target cable configuration. We identify four possible modes of motion, depending on whether (i) the robots move in straight lines or following their cable lines; (ii) the robots move sequentially or concurrently. We present an in-depth analysis of Straight & Concurrent, which is the most practically-interesting mode of motion. In particular, we propose algorithms that (a) detect whether a given target cable configuration is realizable by a Straight & Concurrent motion, and (b) return a valid coordinated motion plan. The algorithms are analyzed in detail and validated in simulations and in a hardware experiment.
... A four-wheeled parent rover waits near the edge and the twowheeled child rover explores the steep terrain. [17,18] made a tethered vehicle that can explore a steep terrain and create a 3D map of the environment. ...
Preprint
This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.
Conference Paper
Full-text available
Remote Operated Vehicles are widely used in underwater operation mainly because the tether that links the robot to its floating base provides inexhaustible energy and gives live feedback which alleviates two major issues in autonomous underwater vehicles : autonomous decision making and power consumption. Yet deploying and handling a tether is not without drawbacks. Tether dragging or entanglement can hamper the ROV motion and it could make it difficult to navigate in narrow and confined spaces such as wreck or cave. In this paper we introduce the concept of line of ROVs : adding intermediate robot along the tether can be a simple and practical solution to properly handle tether shape. In this paper we propose to investigate the use of a local visual servoing.
Article
Full-text available
Mobile robots outfitted with a supportive tether are ideal for gaining access to extreme environments for mapping when human or remote observation is not possible. This paper is a field report covering both the development and field testing of our Tethered Robotic eXplorer (TReX) to map a steep, tree‐covered rock outcrop in a gravel mine. TReX is a mobile robot designed for the purpose of mapping extremely steep and cluttered environments for geologic and infrastructure inspection. In comparison to other systems, our design improves tethered mobility by enabling rotational freedom on steep slopes using a center‐pivoting tether management payload. To map the terrain, we leverage the rotation of an actuated tether spool with an attached two‐dimensional (2D) lidar, which rotates to both manage tether and produce 3D scans. Given that mapping requires vehicle motion, we also evaluate two existing, real‐time approaches to estimate the trajectory of the robot and rectify motion distortion from individual scans before alignment into the map: (a) a continuous‐time, lidar‐only approach that handles asynchronous measurements using a physically motivated, constant‐velocity motion prior, and (b) a method that computes visual odometry from streaming stereo images to use as a motion estimate during scan collection. Once rectified, individual scans are matched to the global map by an efficient variant of the Iterative Closest Point (ICP) algorithm. Our results include a comparison of estimated maps and trajectories to ground truth (measured by a remote survey station), an example of mapping in highly cluttered terrain, and lessons learned from the design and deployment of TReX.
Article
Full-text available
The domain and technology of mobile robotic space exploration are fast moving from brief visits to benign Mars surface regions to more challenging terrain and sustained exploration. Further, the overall venue and concept of space robotic exploration are expanding---"from flatland to 3D"---from the surface, to sub-surface and aerial theatres on disparate large and small planetary bodies, including Mars, Venus, Titan, Europa, and small asteroids. These new space robotic system developments are being facilitated by concurrent, synergistic advances in software and hardware technologies for robotic mobility, particularly as regard on-board system autonomy and novel thermo-mechanical design. We outline these directions of emerging mobile science mission interest and technology enablement, including illustrative work at JPL on terrain-adaptive and multi-robot cooperative rover systems, aerobotic mobility, and subsurface ice explorers.
Article
Full-text available
Many modern sensors used for mapping produce 3D point clouds, which are typically registered together using the iterative closest point (ICP) algorithm. Because ICP has many variants whose performances depend on the environment and the sensor, hundreds of variations have been published. However, no comparison frameworks are available, leading to an arduous selection of an appropriate variant for particular experimental conditions. The first contribution of this paper consists of a protocol that allows for a comparison between ICP variants, taking into account a broad range of inputs. The second contribution is an open-source ICP library, which is fast enough to be usable in multiple real-world applications, while being modular enough to ease comparison of multiple solutions. This paper presents two examples of these field applications. The last contribution is the comparison of two baseline ICP variants using data sets that cover a rich variety of environments. Besides demonstrating the need for improved ICP methods for natural, unstructured and information-deprived environments, these baseline variants also provide a solid basis to which novel solutions could be compared. The combination of our protocol, software, and baseline results demonstrate convincingly how open-source software can push forward the research in mapping and navigation.
Article
Full-text available
RGB-D cameras provide both a color image and per-pixel depth esti-mates. The richness of their data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, eliminating its depen-dence on unreliable wireless links. We evaluate the effectiveness of our system for stabilizing and controlling a quadrotor micro-air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.
Article
Full-text available
Long-duration robotic missions on lunar and planetary surfaces (for example, the Mars Exploration Rovers have operated continuously on the Martian surface for close to 3 years) provide the opportunity to acquire scientifically interesting information from a diverse set of surface and subsurface sites and to explore multiple sites in greater detail. Exploring a wide range of terrain types, including plains, cliffs, sand dunes, and lava tubes, requires the development of robotic systems with mobility enhanced beyond that which is currently fielded. These systems include single as well as teams of robots. TRESSA (Teamed Robots for Exploration and Science on Steep Areas) is a closely coupled three-robot team developed at the Jet Propulsion Laboratory (JPL) that previously demonstrated the ability to drive on soil-covered slopes up to 70 deg. In this paper, we present results from field demonstrations of the TRESSA system in even more challenging terrain: rough rocky slopes of up to 85 deg. In addition, the integration of a robotic arm and instrument suite has allowed TRESSA to demonstrate semi-autonomous science investigation of the cliffs and science sample collection. TRESSA successfully traversed cliffs and collected samples at three Mars analog sites in Svalbard, Norway as part of a recent geological and astrobiological field investigation called AMASE: Arctic Mars Analog Svalbard Expedition under the NASA ASTEP (Astrobiology Science and Technology for Exploring Planets) program. © 2007 Wiley Periodicals, Inc.
Article
A micro rover, code-named Moonraker, was developed to demonstrate the feasibility of 10kg-class lunar rover missions. Requirements were established based on the Google Lunar X-Prize mission guidelines in order to effectively evaluate the prototype. A 4-wheel skid steer configuration was determined to be effective to reduce mass, maximize regolith traversability, and fit within realistic restrictions on the rover’s envelope by utilizing the top corners of the volume. A static, hyperbolic mirror-based omnidirectional camera was selected in order to provide full 360° views around the rover, eliminating the need for a pan/tilt mechanism and motors. A front mounted, motorless MEMS laser scanner was selected for similar mass reduction qualities. A virtual reality interface is used to allow one operator to intuitively change focus between various narrow targets of interest within the wide set of fused data available from these sensors. Lab tests were conducted on the mobility system, as well as field tests at three locations in Japan and Mauna Kea. Moonraker was successfully teleoperated to travel over 900m up and down a peak with slopes of up to 15° These tests demonstrate the rover’s capability to traverse across lunar regolith and gather sufficient data for effective situational awareness and near real-time tele-operation.
Article
On March 11, 2011, a massive earthquake (magnitude 9.0) and accompanying tsunami hit the Tohoku region of eastern Japan. Since then, the Fukushima Daiichi Nuclear Power Plants have been facing a crisis due to the loss of all power that resulted from the meltdown accidents. Three buildings housing nuclear reactors were seriously damaged from hydrogen explosions, and, in one building, the nuclear reactions became out of control. It was too dangerous for humans to enter the buildings to inspect the damage because radioactive materials were also being released. In response to this crisis, it was decided that mobile rescue robots would be used to carry out surveillance missions. The mobile rescue robots needed could not be delivered to the Tokyo Electric Power Company (TEPCO) until various technical issues were resolved. Those issues involved hardware reliability, communication functions, and the ability of the robots' electronic components to withstand radiation. Additional sensors and functionality that would enable the robots to respond effectively to the crisis were also needed. Available robots were therefore retrofitted for the disaster reponse missions. First, the radiation tolerance of the electronic componenets was checked by means of gamma ray irradiation tests, which were conducted using the facilities of the Japan Atomic Energy Agency (JAEA). The commercial electronic devices used in the original robot systems operated long enough (more than 100 h at a 10% safety margin) in the assumed environment (100 mGy/h). Next, the usability of wireless communication in the target environment was assessed. Such tests were not possible in the target environment itself, so they were performed at the Hamaoka Daiichi Nuclear Power Plants, which are similar to the target environment. As previously predicted, the test results indicated that robust wireless communication would not be possible in the reactor buildings. It was therefore determined that a wired communication device would need to be installed. After TEPCO's official urgent mission proposal was received, the team mounted additional devices to facilitate the installation of a water gauge in the basement of the reactor buildings to determine flooding levels. While these preparations were taking place, prospective robot operators from TEPCO trained in a laboratory environment. Finally, one of the robots was delivered to the Fukushima Daiichi Nuclear Power Plants on June 20, 2011, where it performed a number of important missions inside the buildings. In this paper, the requirements for the exploration mission in the Fukushima Daiichi Nuclear Power Plants are presented, the implementation is discussed, and the results of the mission are reported. © 2013 Wiley Periodicals, Inc. (Webpage: http://www.astro.mech.tohoku.ac.jp/)
Conference Paper
The solar system's most scientifically tantalizing terrain remains out of reach for traditional planetary rovers, which are typically limited to driving on slopes below 30 degrees. This paper details the design of a novel robotic explorer that would open access to these previously inaccessible locales, such as Martian crater walls where evidence of salty water was recently detected, Lunar polar craters where evidence of water ice was detected, and Lunar and Martian lava tubes for future habitability. The Axel rover is a two-wheeled robot capable of rappelling down steep (even vertical) slopes supported by a tether. The DuAxel rover is comprised of two Axel vehicles docked to a central module. Unrestricted by tether length, this four-wheeled system would be capable of driving long distances from a safe landing zone to the extreme terrain of interest. Once in the vicinity of terrain in which the tether would be required, one of the Axel rovers could undock from the central chassis and rappel downslope. The other Axel and central chassis would remain topside to act as an anchor and to provide line of site to Earth (for communications) and the Sun (for energy). As the detached Axel descends into the area of interest, it would receive power and relays data through conductors in its tether. Each Axel would carry a suite of instruments in a bay that would be tucked inside the wheels. Because of the novel configuration of Axel's major degrees of freedom, these instruments could be precisely pointed at targets at any desired downslope spatial separation. These instruments could then be deployed into close proximately to the ground by means of a simple mechanism, allowing for detailed study of the strata on the slope. Axel could accommodate a host of instruments, including a microscopic imager, infrared spectrometers, thermal probes, and sample collection devices. This paper will describe the design of both the latest generation of Axel and DuAxel systems and their instrum- nt/sampling mechanisms. Results from recent field trials at a rock quarry in California and a Martian analog site in the desert of Arizona will be described.
Article
Some of the most appealing science targets for future exploration missions in our solar system lie in terrains that are inaccessible to state-of-the-art rover technology. This paper discusses the challenges and constraints of designing a robotic explorer for these “extreme'' terrains and then examines the trade-offs among different mobility architectures. To address many of these challenges, we have developed the Axel family of rovers. The Axel rover is a two-wheeled tethered robot capable of rappelling down steep slopes and traversing rocky terrain. The DuAxel rover, which is a four-wheeled vehicle formed from two Axel rovers, provides untethered mobility to get to extreme terrains. We describe the basic design principles of these rovers and review our efforts to implement the key features of the Axel concept. Limitations found during experiments with prior Axel rover prototypes led to the design of a third-generation Axel rover. We describe the features of this new rover and then present a thermal analysis conducted to assess the feasibility of exploring lunar cold traps, which are expected to have a temperature range of 40 to 70 K. We conclude the paper with results showcasing Axel and DuAxel's extreme-terrain performance as evaluated during two recent field tests in a steeply sloped Southern California rock quarry and at a location in Arizona that closely resembles rugged Martian terrain. We also summarize lessons learned during the Axel development program. © 2012 Wiley Periodicals, Inc.
Article
With the continued success of the Mars Exploration Rovers and the return of humans to the Moon within the next decade, a considerable amount of research is being done on the technologies required to provide surface mobility and the tools required to provide scientific capability. Here, we explore the utility of lidar and the mobile Scene Modeler (mSM) – which is based on a stereo camera system – as scientific tools. Both of these technologies have been, or are being considered for, technological applications such as autonomous satellite rendezvous and rover navigation. We carried out a series of field tests at the 23 km diameter, 39 Ma, Haughton impact structure located on Devon Island in the Canadian Arctic. Several sites of geological interest were investigated, including polygonal terrain, gullies and channels, slump/collapse features, impact melt breccia hills, and a site of impact-associated hydrothermal mineralization. These field tests show that lidar and mSM provide a superior visual record of the terrain, from the regional (km) to outcrop (m to cm) scale and in 3-D, as compared to standard digital photography. Thus, a key strength of these technologies is in situ reconnaissance and documentation. Lidar scans also provide a wealth of geometric and structural information about a site, accomplishing the equivalent of weeks to months of manual surveying and with much greater accuracy than traditional tools, making this extremely useful for planetary exploration missions. An unexpected result of these field tests is the potential for lidar and mSM to provide qualitative, and potentially quantitative, composition information about a site. Given the high probability of lidar and mSM being used on future lunar missions, we suggest that it would be beneficial to further investigate the potential for these technologies to be used as science tools.
Article
Dante is a tethered walking robot capable of climbing steep slopes. In 1992 it was created at Carnegie Mellon University and deployed in Antarctica to explore an active volcano, Mount Erebus. The Dante project's robot science objectives were to demonstrate a real exploration mission, rough terrain locomotion, environmental survival, and self-sustained operation in the harsh Antarctic climate. The volcano science objective was to study the unique convecting magma lake inside Mount Erebus' inner crater. The expedition demonstrated the advancing state-of-art in mobile robotics and the future potential of robotic explorers. This paper details our objectives, describes the Dante robot, overviews what happened on the expedition and discusses what did and didn't work.