Article

Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Loss of synapses and dying back of axons are considered early events in brain degeneration during Alzheimer’s disease. This is accompanied by an aberrant behavior of the microtubule-associated protein tau (hyperphosphorylation, aggregation). Since microtubules are the tracks for axonal transport, we are testing the hypothesis that tau plays a role in the malfunctioning of transport. Experiments with various neuronal and non-neuronal cells show that tau is capable of reducing net anterograde transport of vesicles and cell organelles by blocking the microtubule tracks. Thus, a misregulation of tau could cause the starvation of synapses and enhanced oxidative stress, long before tau detaches from microtubules and aggregates into Alzheimer neurofibrillary tangles. In particular, the transport of amyloid precursor protein is retarded when tau is elevated, suggesting a possible link between the two key proteins that show abnormal behavior in Alzheimer’s disease.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... The proper function of axonal transport depends on the correct assembly and functioning of all components including microtubules and motor proteins. Therefore, alterations in axonal transport render neurons vulnerable to the loss of synapses and can trigger axonal degeneration (Mandelkow et al., 2003). Indeed, chemical interventions that directly or indirectly affect axonal transport result in a dying-back form of axonal degeneration (Fukuda et al., 2017). ...
... This, in turn, promotes microtubule destabilization and impairment of axonal transport. Several studies have shown that tau overexpression in neurons increases tau phosphorylation and inhibits axonal transport (Stamer et al., 2002;Mandelkow et al., 2003;Chee et al., 2005;Thies and Mandelkow, 2007). As a result of tau-dependent axonal transport inhibition, organelles and vesicles are reduced in cell processes, which lead to energy depletion, decreased oxidative defense, and dying-back of neurites (Stamer et al., 2002;Mandelkow et al., 2003). ...
... Several studies have shown that tau overexpression in neurons increases tau phosphorylation and inhibits axonal transport (Stamer et al., 2002;Mandelkow et al., 2003;Chee et al., 2005;Thies and Mandelkow, 2007). As a result of tau-dependent axonal transport inhibition, organelles and vesicles are reduced in cell processes, which lead to energy depletion, decreased oxidative defense, and dying-back of neurites (Stamer et al., 2002;Mandelkow et al., 2003). The NAD + biosynthetic enzyme NMNAT2, a well-known pro-survival factor that inhibits axonal degeneration after injury, depends on constant replenishment by anterograde axonal transport (Gilley and Coleman, 2010). ...
Article
Full-text available
Alzheimer’s disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
... Different types of aggregates (amorphous, ribbon-like, fibril, etc.) ( Figure 4C) that are formed in the neuron have been thought to lead to divergent disease phenotypes (e.g., ALS, FTLD-TDP-A, and FTLD-TDP-C) (Laferrière et al., 2019) that may arise from altering different cellular processes (e.g., recruitment of proteasome, interaction with MBOs, etc.) (Fahrenkrog and Harel, 2018;Guo et al., 2018). Dysfunctional aggregated Tau has been shown to (i) decrease binding of kinesin to MTs (Stamer et al., 2002;Mandelkow et al., 2003;Cuchillo-Ibanez et al., 2008), (ii) disrupt MT bundles ( Figure 4D) (Lovestone et al., 1996;Shemesh et al., 2008), and (iii) crowd the neuronal process (Alonso et al., 1996;Wegmann et al., 2018). Decreased MT bundle stability may also result in the collapse of the space between MTs (Figure 4E) that in turn leads to loss of soluble-protein diffusion within the MT bundle, reducing movement of material to the synapse. ...
... Nearly all these diseases progress through an increase in crowding in the neuron. Defects in cargo transport in diseased neurons are thought to starve the distal ends of the neuronal process of freshly synthesized proteins and cargo (Collard et al., 1995;Gunawardena and Goldstein, 2001;Mandelkow et al., 2003;Pigino et al., 2003;Scott et al., 2010;Okamoto et al., 2014). These defects in cargo transport could partly occur through increased physical crowding, which subsequently reduces, over time, the material reaching the synapse. ...
... In healthy neurons, local crowding may not have detrimental consequences. However, in unhealthy neurons, increased crowding may explain the observation of reduced cargo movement over time (Williamson and Cleveland, 1999;Stamer et al., 2002;Mandelkow et al., 2003). Further, local crowding amongst other changes may lead to trafficking defects of multiple cargos over time (Evans et al., 2003;Sugiyama et al., 2008). ...
Article
Full-text available
High concentration of cytoskeletal filaments, organelles, and proteins along with the space constraints due to the axon’s narrow geometry lead inevitably to intracellular physical crowding along the axon of a neuron. Local cargo movement is essential for maintaining steady cargo transport in the axon, and this may be impeded by physical crowding. Molecular motors that mediate active transport share movement mechanisms that allow them to bypass physical crowding present on microtubule tracks. Many neurodegenerative diseases, irrespective of how they are initiated, show increased physical crowding owing to the greater number of stalled organelles and structural changes associated with the cytoskeleton. Increased physical crowding may be a significant factor in slowing cargo transport to synapses, contributing to disease progression and culminating in the dying back of the neuronal process. This review explores the idea that physical crowding can impede cargo movement along the neuronal process. We examine the sources of physical crowding and strategies used by molecular motors that might enable cargo to circumvent physically crowded locations. Finally, we describe sub-cellular changes in neurodegenerative diseases that may alter physical crowding and discuss the implications of such changes on cargo movement.
... This age dependent transition observed in wild type animals was completely lost 478 in the tauopathy model (Fig. S5 A-C). The absence of such an age dependent 479 modulation in reversal rate in the tauopathy model may contribute to crowding and 480 influence disease progression [34,37,38,41,42]. 481 ...
... ; https://doi.org/10.1101/2021.03.12.434740 doi: bioRxiv preprint Collectively, our experimental observations and simulations predict that a reduction in 482 the ability of vesicles to i) switch between distinct motion states, ii) sidestep onto 483 different microtubules during transport, or iii) reverse their direction of transport, leads 484 to increased cargo stalling and a decrease in net anterograde flux (Fig. 7). All these are 485 characteristic features of the defective axonal transport observed in several 486 neurodegenerative disease conditions [37,41,[43][44][45][46][47][48][49]. This suggests that the 487 age-dependent decline in axonal transport in neurodegenerative disease models could be 488 driven by changes in vesicle motility characteristics. ...
Preprint
Full-text available
Molecular motors drive the directed transport of presynaptic vesicles along the narrow axons of nerve cells. Stationary clusters of such vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance. Here, we develop a simulation model describing key features of axonal cargo transport with a view to addressing this question, benchmarking the model against our experiments in the touch neurons of C. elegans. Our simulations provide for multiple microtubule tracks and varied cargo motion states while also incorporating cargo-cargo interactions. Our model also incorporates obstacles to vesicle transport in the form of microtubule ends, stalled vesicles, and stationary mitochondria. We devise computational methodologies to simulate both axonal bleaching and axotomy, showing that our results reproduce the properties of both moving as well as stationary cargo in vivo. Increasing vesicle numbers leads to larger and more long-lived stationary clusters of vesicular cargo. Vesicle clusters are dynamically stable, explaining why they are ubiquitously seen. Modulating the rates of cargo motion-state switching allows cluster lifetimes and flux to be tuned both in simulations and experiments. We demonstrate, both in simulations and in an experimental system, that suppressing reversals leads to larger stationary vesicle clusters being formed while also reducing flux. Our simulation results support the view that the physiological significance of clusters is located in their role as dynamic reservoirs of cargo vesicles, capable of being released or sequestered on demand.
... NFTs are fibrillary intracytoplasmic structures constituted of paired helical filaments (PHFs) of tau protein formed in neurons. Tau protein's main function is to stabilize axonal microtubules, and tau phosphorylation and dephosphorylation are essential for correct functioning of axonal traffic [19]. However, hyperphosphorylation of tau induces a change in its conformation, producing a prion-like molecule that seeds tau self-assembly, leading to the formation of tau aggregates, and tau aggregates form twisted PHFs, which are the main constituents of NFTs [20]. ...
Article
Full-text available
Alzheimer’s disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
... La pathologie Tau est associée à une neurotoxicité comme en témoignent les corrélations entre les symptômes et l'accumulation de Tau (Nelson et al., 2012) Alonso et al., 1996Alonso et al., , 1994 a pour résultat une altération du transport axonal et un dysfonctionnement synaptique, pouvant précéder la mort du neurone (Mandelkow et al., 2003). La souris transgénique MAPT -/-(tg MAPT -/-) est toutefois viable et phénotypiquement normale, suggérant la possibilité de voies vicariantes (Harada et al., 1994). ...
Thesis
Dans la maladie d’Alzheimer, les accumulations de Tau et d’Aβ apparaissent successivement dans des régions discontinues mais connectées. Le rôle des axones dans cette progression lésionnelle a été étudié dans le pilier du fornix (PF), un faisceau axonal isolé reliant le subiculum au corps mamillaire. Une analyse histologique de 47 cas post-mortem de sévérités variées a été réalisée. Le subiculum était affecté avant le corps mamillaire. Seules des accumulations de Tau – et non d'Aβ – ont été détectées dans le PF ; elles étaient anormalement phosphorylées (AT8 et TG3 positives) mais non fibrillaires (Gallyas négatives). Ces accumulations induisaient l’agrégation de Tau P301S dans des biosenseurs cellulaires telles des prions, ou « propagons ». Les accumulations de Tau ou d’Aβ pouvaient être chacune initiales dans ce système. Les pathologies Tau du PF et Aβ du corps mamillaire étaient cependant corrélées. Des dépôts d’Aβ au contact d’axones Tau positifs ont été vus dans le corps mamillaire près de l’arrivée du PF, par CLARITY et par microcryodissection. Le PF transporte des propagons Tau non fibrillaires, transmettant la pathologie du subiculum au corps mamillaire. Aucun ordre hiérarchique constant n’a été établi entre les pathologies Tau et Aβ. Les deux pathologies sont néanmoins corrélées et associées, indiquant une synergie de ces processus, indépendamment initiés.
... In addition, it has been noted that such disruption of axonal transport of mitochondria causes abnormal accumulation of mitochondria in large thickening dystrophic and degenerating neuritis [105]. These disorders consequently give rise to neurodegenerative changes [106]. Viewed from a physiological angle, mitochondrial quality control is regulated by the processes of mitochondrial biogenesis and mitophagy. ...
Article
Full-text available
Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.
... Smith et al., 1995). By contrast, overexpression inhibits anterograde transport, increases oxidative damage, synaptic degeneration and axonal collapse (Stamer et al., 2002;Mandelkow et al., 2003;Thies and Mandelkow, 2007), and disrupts the balance of anterograde and retrograde transport by interfering with both kinesin and dynein (Chaudhary et al., 2018). This interference derives from steric inhibition of motor processivity along MTs (Stamer et al., 2002;Trinczek et al., 1999;Dixit et al., 2008), from tau-induced modification of kinase activity that inhibits kinesin activity (Morfini et al., 2002;Hoeprich et al., 2017), from alteration in kinesin motility by tau phosphorylation (Kanaan et al., 2012) and from tau competing as cargo for kinesin (Dubey et al., 2008). ...
Article
Full-text available
Tau impacts overall axonal transport particularly when overexpressed by interfering with translocation of kinesin along microtubules (MTs) and/or as a cargo of kinesin by outcompeting other kinesin cargo. To discern between which of these mechanisms was more robust during axonal outgrowth, we overexpressed phosphomimetic (E18; which is incapable of MT binding), phospho-null (A18) or wild-type (WT) full-length human tau conjugated to EGFP, the latter two of which bind MTs. Expression of WT and A18 displayed increased acetylated MTs and resistance to colchicine, while expression of E18 did not, indicating that E18 did not contribute to MT stabilization. Expression of all tau constructs reduced overall levels of neurofilaments (NFs) within axonal neurites, and distribution of NFs along neurite lengths. Since NFs are another prominent cargo of kinesin during axonal neurite outgrowth, this finding is consistent with WT, A18 and E18 inhibiting NF transport to the same extent by competing as cargo of kinesin. These findings indicate that tau can impair axonal transport independently of association with MTs in growing axonal neurites.
... The most vulnerable neurons are normally large with myelinated axons extending over long distances, from one region of the nervous system to another or from the central nervous system to peripheral targets [95][96][97][98][99]. This axon projection mechanism could be particularly linked to their vulnerability to aging, including high energy requirements, dependence on axonal transport (antegrade and retrograde) that support function and trophism, and a large cell surface that increases the risk of exposure of cells to toxic environmental conditions [100]. Normally, degeneration is often extended to subpopulations of neurons with a particular neurotransmitter phenotype. ...
Article
Full-text available
This review presents recent knowledge on the neuroprotective effects of vitamin D and their usefulness as oral supplementation when combined with other molecules, such as curcumin. A critical look at the effectiveness of vitamin D in this field is also provided. Vitamin D plays a crucial role in neuroprotection and in the cognitive decline associated with aging, where vitamin D's levels are related to the levels of several neurotrophic factors. An important role of vitamin D has also been observed in the mechanism of neuroinflammation, which is the basis of several aging conditions, including cognitive decline and neurodegeration; furthermore, the neuroprotective effect of vitamin D in the cognitive decline of aging has recently been reported. For this reason, many food supplements created for humans contain vitamin D alone or combined with other molecules with antioxidant properties. However, recent studies also explored negative consequences of the use at a high dosage of vitamin D. Vitamin D in tissues or brain cells can also modulate calbindin-D28K, parvalbumin, and calretinin, and is involved in immune function, thanks also to the combination with curcumin. Curcumin acts as a free radical scavenger and antioxidant, inhibiting lipid peroxidation and oxidative DNA damage. In particular, curcumin is a potent immune-regulatory agent and its administration has been reported to attenuate cognitive impairments. These effects could be exploited in the future to control the mechanisms that lead to the brain decay typical of neurodegenerative diseases.
... However, with PICS, we can study the transport of specific molecular structures without labeling. We selected Tau, as abnormalities in its localization are associated with many cellular pathologies 55 . To calculate these parameters, we substituted the estimated fluorescence signal for the dry-mass and computed the DPS advection coefficients associated with the whole field of view. ...
Preprint
Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. Yet, the unique behavioral properties of neurons make them challenging to study - with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy to assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescent signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.
... These cases have no clear aetiology, nor mechanisms of onset. However, the pathologies associated with AD include the presence of amyloid plaques comprised of amyloid-β (Aβ) aggregates [3][4][5][6][7][8][9][10], neurofibrillary tangles resulting from the intra-neuronal accumulation of hyperphosphorylated tau protein [11], and neuroinflammation that causes gliosis and further exacerbates Aβ production [12][13][14][15]. ...
Article
Full-text available
Metabolic syndromes share common pathologies with Alzheimer’s disease (AD). Adiponectin, an adipocyte-derived protein, regulates energy metabolism via its receptors, AdipoR1 and AdipoR2. To investigate the distribution of adiponectin receptors (AdipoRs) in Alzheimer’s, we examined their expression in the aged 5XFAD mouse model of AD. In age-matched wild-type mice, we observed neuronal expression of both ARs throughout the brain as well as endothelial expression of AdipoR1. The pattern of receptor expression in the aged 5XFAD brain was significantly perturbed. Here, we observed decreased neuronal expression of both ARs and decreased endothelial expression of AdipoR1, but robust expression of AdipoR2 in activated astrocytes. We also observed AdipoR2-expressing astrocytes in the dorsomedial hypothalamic and thalamic mediodorsal nuclei, suggesting the possibility that astrocytes utilise AdipoR2 signalling to fuel their activated state in the AD brain. These findings provide further evidence of a metabolic disturbance and demonstrate a potential shift in energy utilisation in the AD brain, supporting imaging studies performed in AD patients.
... Moreover, these active complexes physically interact with the microtubule-associated protein tau [68]. Tau is known to localize to the axon to maintain proper microtubule stability, essential to axon integrity and efficient axonal transport [69]. Small interfering RNA (siRNA)-driven downregulation and pharmacological inhibition of CDK1/2 or cyclin B, D or E promote neurite outgrowth in mouse primary neurons [68], confirming that these proteins play a role in neuronal maturation. ...
Article
Full-text available
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
... Tau overexpression and hyperphosphorylation have been found to impair axonal movement of cell organelles, including mitochondria [7][8][9]. There has been much evidence demonstrating mitochondrial dysfunction accompanied by aging and aging-related neurodegenerative disease [10]. ...
Article
Full-text available
Alzheimer’s disease is the most common neurodegenerative brain disease causing dementia. It is characterized by slow onset and gradual worsening of memory and other cognitive functions. Recently, parabiosis and infusion of plasma from young mice have been proposed to have positive effects in aging and Alzheimer’s disease. Therefore, this study examined whether infusion of plasma from exercised mice improved cognitive functions related to the hippocampus in a 3xTg-Alzheimer’s disease (AD) model. We collected plasma from young mice that had exercised for 3 months and injected 100 µL of plasma into the tail vein of 12-month-old 3xTg-AD mice 10 times at 3-day intervals. We then analyzed spatial learning and memory, long-term memory, hippocampal GSK3β/tau proteins, synaptic proteins, mitochondrial function, apoptosis, and neurogenesis. In the hippocampus of 3xTg-AD mice, infusion of plasma from exercised mice improved neuroplasticity and mitochondrial function and suppressed apoptosis, ultimately improving cognitive function. However, there was no improvement in tau hyperphosphorylation. This study showed that plasma from exercised mice could have a protective effect on cognitive dysfunction and neural circuits associated with AD via a tau-independent mechanism involving elevated brain-derived neurotrophic factor due to exercise.
... When tau becomes phosphorylated, it does not bind microtubules as readily, resulting in microtubule disassembly and ultimately self-aggregation of tau [26,122]. Aberrant phosphorylation of tau results in distinct changes in neuronal cytoarchitecture [122][123][124], which may negatively impact synaptic stability and cognitive function. Precise regulation of tau phosphorylation is achieved via the actions of several different kinases and phosphatases [125,126]. ...
Article
Full-text available
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
... Reasons for impaired mitochondrial function are still under investigation. Tau accumulation in axons has been shown to affect mitochondrial trafficking (Mandelkow et al., 2003), an essential process for bioenergetic maintenance in neurons. Disease-associated tau has also been shown to impair mitophagy, and thus hamper quality-control systems (Cummins et al., 2019). ...
Article
The brain is highly dependent on mitochondrial energy metabolism. As a result, mitochondrial dysfunction is a central aspect of many adult-onset neurological diseases, including stroke, ALS, Alzheimer's, Huntington's, and Parkinson's diseases. We review here how different mitochondrial functions, including oxidative phosphorylation, mitochondrial dynamics, oxidant generation, cell death regulation, Ca2+ homeostasis, and proteostasis are involved in these disorders.
... In addition to loss of tau function, tau aggregation may disturb organelle trafficking and other cellular processes by steric hindrance [44]. GVBs emerge at the convergence of the endocytic and autophagic pathways. ...
Article
Full-text available
Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer’s disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.
... Normal tau also plays an important role in cellular transport as a microtubule stabilizing protein, and pathological tau species have been associated with impaired axonal transport in post-mortem AD brains (Dai et al., 2002). Tau-induced impairments in axonal transport are hypothesized to disrupt the normal transport of organelles such as mitochondria, which are essential for healthy synapse function (Mandelkow et al., 2003). This idea is supported from findings of ultrastructual post-mortem analyses, where more abnormal mitochondria are found in synapses of human AD brains compared to healthy controls (Pickett et al., 2018). ...
Article
Full-text available
Dynamic gain and loss of synapses is fundamental to healthy brain function. While Alzheimer’s Disease (AD) treatment strategies have largely focussed on beta-amyloid and tau protein pathologies, the synapse itself may also be a critical endpoint to consider regarding disease modification. Disruption of mechanisms of neuronal plasticity, eventually resulting in a net loss of synapses, is implicated as an early pathological event in AD. Synaptic dysfunction therefore may be a final common biological mechanism linking protein pathologies to disease symptoms. This review summarizes evidence supporting the idea of early neuroplastic deficits being prevalent in AD. Changes in synaptic density can occur before overt neurodegeneration and should not be considered to uniformly decrease over the course of the disease. Instead, synaptic levels are influenced by an interplay between processes of degeneration and atrophy, and those of maintenance and compensation at regional and network levels. How these neuroplastic changes are driven by amyloid and tau pathology are varied. A mixture of direct effects of amyloid and tau on synaptic integrity, as well as indirect effects on processes such as inflammation and neuronal energetics are likely to be at play here. Focussing on the synapse and mechanisms of neuroplasticity as therapeutic opportunities in AD raises some important conceptual and strategic issues regarding translational research, and how preclinical research can inform clinical studies. Nevertheless, substrates of neuroplasticity represent an emerging complementary class of drug target that would aim to normalize synapse dynamics and restore cognitive function in the AD brain and in other neurodegenerative diseases.
... Microtubules are continuously assembled and disassembled in cells in a dynamic fashion, and this is maintained by the interaction between tau and the microtubule, which is tightly controlled by several factors. Modification of tau affects microtubule stabilization and other processes related to this protein [7]. Tau modification is promoted by post-translational modifications, conformational changes and the misfolding structure of tau. ...
Article
Full-text available
Tauopathy is a collective term for neurodegenerative diseases associated with pathological modifications of tau protein. Tau modifications are mediated by many factors. Recently, reactive oxygen species (ROS) have attracted attention due to their upstream and downstream effects on tauopathy. In physiological conditions, healthy cells generate a moderate level of ROS for self-defense against foreign invaders. Imbalances between ROS and the anti-oxidation pathway cause an accumulation of excessive ROS. There is clear evidence that ROS directly promotes tau modifications in tauopathy. ROS is also highly upregulated in the patients’ brain of tauopathies, and anti-oxidants are currently prescribed as potential therapeutic agents for tauopathy. Thus, there is a clear connection between oxidative stress (OS) and tauopathies that needs to be studied in more detail. In this review, we will describe the chemical nature of ROS and their roles in tauopathy.
... However, it has been shown that heterologous overexpression of Tau protein, despite being localized to microtubules in 3T3-L1 adipocytes, delays the initial appearance of GLUT4 at the cell membrane following insulin stimulation (Emoto et al., 2001). This is in accordance with the view that excess Tau blocks axonal transport due to interference with motor proteins (Mandelkow et al., 2003). If Tau is indeed a critical regulator of GLUT4 movement in insulin-sensitive tissues, reduced glucose uptake into these tissues may have contributed to the early development of hyperglycemia in Tau KO mice and remains to be explored in future studies. ...
Article
Full-text available
The microtubule-associated protein tau (MAPT) is mainly identified as a tubulin binding protein essential for microtubule dynamics and assembly and for neurite outgrowth. However, several other possible functions for Tau remains to be investigated. Insulin signaling is important for synaptic plasticity and memory formation and therefore is essential for proper brain function. Tau has recently been characterized as an important regulator of insulin signaling, with evidence linking Tau to brain and peripheral insulin resistance and beta cell dysfunction. In line with this notion, the hypothesis of Tau pathology as a key trigger of impaired insulin sensitivity and secretion has emerged. Conversely, insulin resistance can also favor Tau dysfunction, resulting in a vicious cycle of these events. In this review article, we discuss recent evidence linking Tau pathology, insulin resistance and insulin deficiency. We further highlight the deleterious consequences of Tau pathology-induced insulin resistance to the brain and/or peripheral tissues, suggesting that these are key events mediating cognitive decline in Alzheimer’s disease (AD) and other tauopathies.
... The vulnerable, AD-affected neuronal populations early undergo a classic "dying-back" pattern of atrophy leading to retrograde degeneration of neural networks (Griffin and Watson, 1988;Mandelkow et al., 2003;Roy et al., 2005;Overk and Masliah, 2014) through which the loss in synaptic integrity and function(s) -the major biological correlate of cognitive impairment in AD (Terry et al., 1991;Selkoe, 2002;Coleman and Yao, 2003;Arendt, 2009)-long precedes somatic cell death (Campenot, 1982;Brady and Morfini, 2010). Compelling studies using in vitro compartmentalized chamber of sensory sympathetic neurons (Campenot, 1982) and NGF-deprived septo-hippocampal cholinergic-enriched primary neurons support the pivotal role of deprivation from trophic support in triggering the "dyingback" axonal/synaptic pruning, in the absence of overt neuronal death. ...
Article
Full-text available
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer’s disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers “dying-back” degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
... In a study with various neuronal and nonneuronal cell lines, it is shown that tau impaired not only axonal transport of organelles (including mitochondria), but also the transport of amyloid precursor protein (APP) (Mandelkow et al., 2003). Retarded APP transport caused by tau indicates a possible relationship between two vital pathogenic factors in AD. ...
Article
Full-text available
Increasing evidence suggests that abnormally hyperphosphorylated tau plays a vital role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction also has a recognized role in the pathophysiology of AD. In recent years, mitochondrial dysfunction has been strongly associated with tau pathology in AD. Overexpression of hyperphosphorylated and aggregated tau appears to damage the axonal transport, leading to abnormal mitochondrial distribution. In addition, pathological tau impairs mitochondrial dynamics by regulating mitochondrial fission/fusion proteins, and further causes mitochondrial dysfunction and neuronal damage. Moreover, mitochondrial dysfunction is also involved in promoting tau pathology in AD. In this article, we evaluate the relationship between phosphorylated tau and mitochondrial dysfunction in AD.
... However, the analysis of the consequences of Tau depletion, in Tau knock-out mice or in cell culture, revealed neither any major brain defects, nor any clear disruption of the MT cytoskeleton, nor any axonal transport defects [24][25][26][27]. This is in contrast with studies showing that an excess of Tau impairs axonal transport [28][29][30][31]. This would suggest that loss of Tau has milder consequences than an excess of this protein. ...
Article
Full-text available
Structural microtubule associated protein Tau is found in high amount in axons and is involved in several neurodegenerative diseases. Although many studies have highlighted the toxicity of an excess of Tau in neurons, the in vivo understanding of the endogenous role of Tau in axon morphology and physiology is poor. Indeed, knock-out mice display no strong cytoskeleton or axonal transport phenotype, probably because of some important functional redundancy with other microtubule-associated proteins (MAPs). Here, we took advantage of the model organism Drosophila, which genome contains only one homologue of the Tau/MAP2/MAP4 family to decipher (endogenous) Tau functions. We found that Tau depletion leads to a decrease in microtubule number and microtubule density within axons, while Tau excess leads to the opposite phenotypes. Analysis of vesicular transport in tau mutants showed altered mobility of vesicles, but no change in the total amount of putatively mobile vesicles, whereas both aspects were affected when Tau was overexpressed. In conclusion, we show that loss of Tau in tau mutants not only leads to a decrease in axonal microtubule density, but also impairs axonal vesicular transport, albeit to a lesser extent compared to the effects of an excess of Tau.
Article
Full-text available
Many neurodegenerative diseases, such as Alzheimer’s disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17, are characterized by tau pathology. Numerous motor proteins, many of which are involved in synaptic transmission, mediate transport in neurons. Dysfunction in motor protein-mediated neuronal transport mechanisms occurs in several neurodegenerative disorders but remains understudied in AD. Kinesins are the most important molecular motor proteins required for microtubule-dependent transport in neurons, and kinesin-1 is crucial for neuronal transport among all kinesins. Although kinesin-1 is required for normal neuronal functions, the dysfunction of these motor domains leading to neurodegenerative diseases is not fully understood. Here, we reported that the kinesin-I heavy chain (KIF5B), a key molecular motor protein, is involved in tau homeostasis in AD cells and animal models. We found that the levels of KIF5B in P301S tau mice are high. We also found that the knockdown and knockout (KO) of KIFf5B significantly decreased the tau stability, and overexpression of KIF5B in KIF5B-KO cells significantly increased the expression of phosphorylated and total tau levels. This suggested that KIF5B might prevent tau accumulation. By conducting experiments on P301S tau mice, we showed that partially reducing KIF5B levels can reduce hyperphosphorylation of the human tau protein, formation of insoluble aggregates, and memory impairment. Collectively, our results suggested that decreasing KIF5B levels is sufficient to prevent and/or slow down abnormal tau behavior of AD and other tauopathies.
Article
Fetal Alcohol Spectrum Disorders (FASDs) are comprised of developmental, behavioral, and cognitive abnormalities caused by prenatal alcohol exposure, affecting an estimated 2%-5% of children and costing $4 billion annually in the United States. While some behavioral therapies help, the neurobiological mechanisms that underpin FASDs need further elucidation for development of efficacious pharmacotherapeutics. The role of the tau protein in the hippocampus is likely to be involved. Tau catalyzes microtubule polymerization in developing neurons. However, this function can become disrupted by hyperphosphorylation. Many of the cognitive deficits observed in neurodegenerative tauopathies overlap to some degree with what is observed in juvenile developmental disabilities, such as FASDs (e.g., selective memory, executive dysfunction). Thus, tau protein phosphorylation may be one important mechanism of dysfunction in FASDs. The purpose of this study is to provide an empirical basis for a tauopathic characterization of FASDs. To do so, hippocampal slices were extracted from rats at postnatal day 10 (PND10); hippocampal slices were then exposed to 5 days of 50mM ethanol between 6 days in vitro (DIV) and 11DIV. Immunoblots were taken for Total and p-Tau (Threonine231) at 12DIV and 24DIV. Immunohistochemical fluorescent images were taken for p-Tau (Threonine231) at 12DIV and 24DIV. Separate p-Tau measures were taken for the cornu ammonis 1 (CA1), CA3, and dentate gyrus (DG). Total Tau protein expression remained unchanged between 12DIV and 24DIV regardless of EtOH condition. In the control group, longer DIV was associated with decreased p-Tau. However, in the EtOH-exposed group, p-Tau was sustained across DIV. This is the first study to show that EtOH exposure sustains tau Threonine231 phosphorylation in the perinatal hippocampus regardless of total tau expression. These findings could lead to innovative pharmacotherapeutic targets for the treatment of cognitive deficits seen in FASDs.
Article
As the prevalence of dementia and Alzheimer’s disease (AD) increases worldwide, it is imperative to reflect on the major clinical trials in the prevention of dementia and the challenges that surround them. The pharmaceutical industry has focused on developing drugs that primarily affect the Aβ cascade and tau proteinopathy, while academics have focused on repurposed therapeutics and multi-domain interventions for prevention studies. This paper highlights significant primary, secondary, and tertiary prevention trials for dementia and AD, overall design, methods, and systematic issues to better understand the current landscape of prevention trials. We included 32 pharmacologic intervention trials and 9 multi-domain trials. Fourteen could be considered primary prevention, and 18 secondary or tertiary prevention trials. Major categories were Aβ vaccines, Aβ antibodies, tau antibodies, anti-inflammatories, sex hormones, and Ginkgo biloba extract. The 9 multi-domain studies mainly focused on lifestyle modifications such as blood pressure management, socialization, and physical activity. The lack of validated drug targets, and the complexity of the diagnostic frameworks, eligibility criteria, and outcome measurements for trials, make it difficult to show efficacy for both pharmacological and multi-domain interventions. We hope that this summative analysis of trials will stimulate discussion for scientists and clinicians interested in reviewing and developing preventative interventions for AD.
Article
Full-text available
The noradrenergic locus ceruleus (LC) is the first site of detectable tau pathology in Alzheimer’s disease (AD), but the mechanisms underlying the selective vulnerability of the LC in AD have not been completely identified. In the present study, we show that DOPEGAL, a monoamine oxidase A (MAO-A) metabolite of norepinephrine (NE), reacts directly with the primary amine on the Lys353 residue of tau to stimulate its aggregation and facilitate its propagation. Inhibition of MAO-A or mutation of the Lys353 residue to arginine (Lys353Arg) decreases tau Lys353–DOPEGAL levels and diminishes tau pathology spreading. Wild-type tau preformed fibrils (PFFs) trigger Lys353–DOPEGAL formation, tau pathology propagation and cognitive impairment in MAPT transgenic mice, all of which are attenuated with PFFs made from the Lys353Arg mutant. Thus, the selective vulnerability of LC neurons in AD may be explained, in part, by NE oxidation via MAO-A into DOPEGAL, which covalently modifies tau and accelerates its aggregation, toxicity and propagation.
Article
Full-text available
Alzheimer’s disease (AD) is the most common form of dementia and typically characterized by the accumulation amyloid-β plaques and tau tangles. Intriguingly, there also exists a group of elderly which do not develop dementia during their life, despite the AD neuropathology, the so-called non-demented individuals with AD neuropathology (NDAN). In this review, we provide extensive background on AD pathology and normal aging and discuss potential mechanisms that enable these NDAN individuals to remain cognitively intact. Studies presented in this review show that NDAN subjects are generally higher educated and have a larger cognitive reserve. Furthermore, enhanced neural hypertrophy could compensate for hippocampal and cingulate neural atrophy in NDAN individuals. On a cellular level, these individuals show increased levels of neural stem cells and ‘von Economo neurons’. Furthermore, in NDAN brains, binding of Aβ oligomers to synapses is prevented, resulting in decreased glial activation and reduced neuroinflammation. Overall, the evidence stated here strengthens the idea that some individuals are more resistant to AD pathology, or at least show an elongation of the asymptomatic state of the disease compared to others. Insights into the mechanisms underlying this resistance could provide new insight in understanding normal aging and AD itself. Further research should focus on factors and mechanisms that govern the NDAN cognitive resilience in order to find clues on novel biomarkers, targets, and better treatments of AD.
Article
Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) share the pathological hallmark of intracellular neurofibrillary tangles, which result from the hyperphosphorylation of microtubule associated protein tau. The P301S mutation in human tau carried by TAU58/2 transgenic mice results in brain pathology and behavioural deficits relevant to FTD and AD. The phytocannabinoid cannabidiol (CBD) exhibits properties beneficial for multiple pathological processes evident in dementia. Therefore, 14-month-old female TAU58/2 transgenic and wild type-like (WT) littermates were treated with 100 mg/kg CBD or vehicle i.p. starting three weeks prior to conducting behavioural paradigms relevant to FTD and AD. TAU58/2 females exhibited impaired motor function, reduced bodyweight and less anxiety behaviour compared to WT. An impaired spatial reference memory of vehicle-treated transgenic mice were restored by chronic CBD treatment. Chronic CBD also reduced anxiety-like behaviors and decreased contextual fear-associated freezing in all mice. Chronic remedial CBD treatment ameliorated several disease-relevant phenotypes in 14-month-old TAU58/2 transgenic mice, suggesting potential for the treatment of tauopathy-related behavioural impairments including cognitive deficits.
Article
Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. However, the unique behavioral properties of neurons make them challenging to study, with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy-to-assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescence signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.
Article
Full-text available
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Article
Full-text available
This review examines new biomolecular findings that lend support to the hemodynamic role played by chronic brain hypoperfusion (CBH) in driving a pathway to Alzheimer’s disease (AD). CBH is a common clinical feature of AD and the current topic of intense investigation in AD models. CBH is also the basis for the vascular hypothesis of AD which we originally proposed in 1993. New biomolecular findings reveal the interplay of CBH in increasing tau phosphorylation (p-Tau) in the hippocampus and cortex of AD mice, damaging fast axonal transport, increasing signaling of mammalian target of rapamycin (mTOR), impairing learning-memory function, and promoting the formation of neurofibrillary tangles, a neuropathologic hallmark of AD. These pathologic elements have been singularly linked with neurodegeneration and AD but their abnormal, collective participation during brain aging have not been fully examined. The format for this review will provide a consolidated analysis of each pathologic phase contributing to cognitive decline and AD onset, summarized in nine chronological steps. These steps galvanize each factor’s active participation and contribution in constructing a biomolecular pathway to AD onset generated by CBH.
Article
Full-text available
The microtubule-associated protein tau (tau) forms hyperphosphorylated aggregates in the brains of tauopathy patients that can be pathologically and biochemically defined as distinct tau strains. Recent studies show that these tau strains exhibit strain-specific biological activities, also referred to as pathogenicities, in the tau spreading models. Currently, the specific pathogenicity of human-derived tau strains cannot be fully recapitulated by synthetic tau preformed fibrils (pffs), which are generated from recombinant tau protein. Reproducing disease-relevant tau pathology in cell and animal models necessitates the use of human brain-derived tau seeds. However, the availability of human-derived tau is extremely limited. Generation of tau variants that can mimic the pathogenicity of human-derived tau seeds would significantly extend the scale of experimental design within the field of tauopathy research. Previous studies have demonstrated that in vitro seeding reactions can amplify the beta-sheet structure of tau protein from a minute quantity of human-derived tau. However, whether the strain-specific pathogenicities of the original, human-derived tau seeds are conserved in the amplified tau strains has yet to be experimentally validated. Here, we used biochemically enriched brain-derived tau seeds from Alzheimer’s disease (AD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) patient brains with a modified seeding protocol to template the recruitment of recombinant 2N4R (T40) tau in vitro. We quantitatively interrogated efficacy of the amplification reactions and the pathogenic fidelity of the amplified material to the original tau seeds using recently developed sporadic tau spreading models. Our data suggest that different tau strains can be faithfully amplified in vitro from tau isolated from different tauopathy brains and that the amplified tau variants retain their strain-dependent pathogenic characteristics.
Article
Full-text available
The strongest genetic risk factor for idiopathic late-onset Alzheimer's disease (LOAD) is apolipoprotein E (APOE) ɛ4, while the APOE ɛ2 allele is protective. However, there are paradoxical APOE ɛ4 carriers who remain disease-free and APOE ɛ2 carriers with LOAD. We compared exomes of healthy APOE ɛ4 carriers and APOE ɛ2 Alzheimer's disease (AD) patients, prioritizing coding variants based on their predicted functional impact, and identified 216 genes with differential mutational load between these two populations. These candidate genes were significantly dysregulated in LOAD brains, and many modulated tau- or β42-induced neurodegeneration in Drosophila. Variants in these genes were associated with AD risk, even in APOE ɛ3 homozygotes, showing robust predictive power for risk stratification. Network analyses revealed involvement of candidate genes in brain cell type-specific pathways including synaptic biology, dendritic spine pruning and inflammation. These potential modifiers of LOAD may constitute novel biomarkers, provide potential therapeutic intervention avenues, and support applying this approach as larger whole exome sequencing cohorts become available. © 2020 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association
Article
Impairment of axonal transport is an early pathologic event that precedes neurotoxicity in Alzheimer’s disease (AD). Soluble amyloid-β oligomers (Aβ Os), a causative agent of AD, activate intracellular signaling cascades that trigger phosphorylation of many target proteins, including tau, resulting in microtubule destabilization and transport impairment. Here, we investigated how KIF1A, a kinesin-3 family motor protein required for the transport of neuro-trophic factors, is impaired in mouse hippocampal neurons treated with Aβ Os. By live cell imaging, we observed that Aβ Os inhibit transport of KIF1A-GFP similarly in wild-type and tau knock-out neurons, indicating that tau is not required for this effect. Pharmacological inhibition of glycogen synthase kinase 3β (GSK3β),akinase over activated in AD, prevented the transport defects. By mass spectrometry on KIF1A immunoprecipitated from transgenic AD mouse brain, we detected phosphorylation at S402, which conforms to a highly conserved GSK3β consensus site. We confirmed that this site is phosphorylated by GSK3β in vitro. Finally, we tested whether a phosphomimic of S402 could modulate KIF1A motility in control and Aβ O-treated mouse neurons and in a Golgi dispersion assay devoid of endogenous KIF1A. In both systems, transport driven by mutant motors was similar to that of WT motors. In conclusion, GSK3β impairs KIF1A transport but does not regulate motor motility at S402. Further stud-ies are required to determine the specific phosphorylation sites on KIF1A that regulate its cargo binding and/or motility in physiological and disease states.
Article
Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) exhibit intracellular inclusions [neurofibrillary tangles (NFT’s)] of microtubule-associated protein tau that contributes to neuronal dysfunction and death. Mutations in the microtubule-associated protein tau (MAPT) gene leads to tau hyperphosphorylation and promotes NFT formation. The TAU58/2 transgenic mouse model expresses mutant human tau (P301S mutation) and exhibits behavioural abnormalities relevant to dementia in early adulthood. Here we comprehensively determined the behavioural phenotype of TAU58/2 transgenic female mice at 14 months of age using test paradigms relevant to FTD and AD. TAU58/2 females showed a significant motor deficit and lower bodyweight compared to WT littermates. Transgenic females failed to habituate to the test arena in the light-dark test. Interestingly, transgenics did not exhibit an anxiolytic-like phenotype and intermediate-term spatial learning in the cheeseboard test was intact. However, a significant learning deficit was detected in the 1st trial across test days indicating impaired long-term spatial memory. In addition, the preference for a previously rewarded location was absent in transgenic females during probe trial testing. Finally, TAU58/2 mice had a defective acoustic startle response and impaired sensorimotor gating. In conclusion TAU58/2 mice exhibit several behavioural deficits that resemble those observed in human FTD and AD. Additionally, we observed a novel startle response deficit in these mice. At 14 months of age, TAU58/2 females represent a later disease stage and are therefore a potentially useful model to test efficacy of therapeutics to reverse or ameliorate behavioural deficits in post-onset tauopapthy-related neurodegenerative disorders.
Article
Tau is an evolutionary conserved protein that promotes the assembly and stabilization of microtubules in neuronal axons. Complex patterns of posttranslational modifications (PTMs) dynamically regulate tau biochemical properties and consequently its functions. An imbalance in tau PTMs has been connected with a broad spectrum of neurodegenerative conditions which are collectively known as tauopathies and include Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) among others. The hallmark of these neurological disorders is the presence in the brain of fibrillary tangles constituted of misfolded species of hyper-phosphorylated tau. The pathological events leading to tau aggregation are still largely unknown but increasing evidence suggests that neuroinflammation plays a critical role in tangle formation. Moreover, tau aggregation itself could enhance inflammation through feed-forward mechanisms, amplifying the initial neurotoxic insults. Protective effects of tau against neuroinflammation have been also documented, adding another layer of complexity to this phenomenon. Here, we will review the current knowledge on tau regulation and function in health and disease. In particular, we will address its emerging role in connecting neurodegenerative and neuroinflammatory processes.
Article
Frontotemporal dementia (FTD) describes a group of clinically heterogeneous conditions that frequently affect people under the age of 65 (1). There are multiple genetic causes of FTD, including coding or splice-site mutations in MAPT, GRN mutations that lead to haploinsufficiency of progranulin protein, and a hexanucleotide GGGGCC repeat expansion in C9ORF72. Pathologically, FTD is characterised by abnormal protein accumulations in neurons and glia. These aggregates can be composed of the microtubule-associated protein tau (observed in FTD with MAPT mutations), the DNA/RNA-binding protein TDP-43 (seen in FTD with mutations in GRN or C9ORF72 repeat expansions) or dipeptide proteins generated by repeat associated non-ATG translation of the C9ORF72 repeat expansion. There are currently no disease-modifying therapies for FTD and the availability of in vitro models that recapitulate pathologies in a disease-relevant cell type would accelerate the development of novel therapeutics. It is now possible to generate patient-specific stem cells through the reprogramming of somatic cells from a patient with a genotype/phenotype of interest into induced pluripotent stem cells (iPSCs). iPSCs can subsequently be differentiated into a plethora of cell types including neurons, astrocytes and microglia. Using this approach has allowed researchers to generate in vitro models of genetic FTD in human cell types that are largely inaccessible during life. In this review we explore the recent progress in the use of iPSCs to model FTD, and consider the merits, limitations and future prospects of this approach.
Article
Full-text available
Background: Exercise promotes brain health and improves cognitive functioning in the elderly, while 40-Hz light flickering through the visual cortex reduces amyloid beta (Aβ) by stabilizing gamma oscillation. We examined whether exercise was associated with hippocampus-mediated improvement in cognitive functioning in the 3xTg-Alzheimer's disease (3xTg-AD) murine model following exposure to 40-Hz light flickering and exercise. Methods: We subjected 12-month-old 3xTg-AD mice to exercise and 40-Hz light flickering for 3 months to investigate spatial learning, memory, long-term memory, Aβ levels, tau levels, mitochondrial functioning including Ca2+ retention and H2O2 emission, apoptosis, and neurogenesis in the hippocampus. Results: Treatments had a positive effect; however, the combination of exercise and 40-Hz light flickering exposure was most effective in reducing Aβ and tau levels. Reducing Aβ and tau levels by combination of exercise and 40-Hz light flickering improves Ca2+ homeostasis and reactive oxygen species such as H2O2 in mitochondria and apoptosis including bax, bcl-2, cytochrome c, and cleaved caspase-3 and cell death, cell differentiation, and neurogenesis in the 3xTg-AD model of the hippocampus, resulting in improving cognitive impairment such as spatial learning, memory and long term memory. Conclusion: Our results show that exercising in a 40-Hz light flickering environment may improve cognitive functioning by reducing Aβ and tau levels, thereby enhancing mitochondrial function and neuroplasticity.
Chapter
Alzheimer’s disease (AD) is the most common cause of progressive dementia in the elderly population. AD is histologically characterized by accumulation of amyloid-β protein on extracellular plaques and deposition of hyperphosphorylated tau protein in intracellular neurofibrillary tangles. Sporadic form of AD is accompanied by insulin resistance and type 2 diabetes. These conditions precede AD type of dementia and that lifestyle factors play a critical role in the onset of sporadic AD.
Chapter
Tau is a microtubule-associated protein that is involved in both normal and pathological processes in neurons. Since the discovery and characterization of tau over 40 years ago, our understanding of tau’s normal functions and toxic roles in neurodegenerative tauopathies has continued to expand. Fast axonal transport is a critical process for maintaining axons and functioning synapses, critical subcellular compartments underlying neuronal connectivity. Signs of fast axonal transport disruption are pervasive in Alzheimer’s disease and other tauopathies and various mechanisms have been proposed for regulation of fast axonal transport by tau. Post-translational modifications of tau including phosphorylation at specific sites, FTDP-17 point mutations, and oligomerization, confer upon tau a toxic effect on fast axonal transport. Consistent with the well-established dependence of axons on fast axonal transport, these disease-related modifications are closely associated temporally and spatially with axonal degeneration in the early disease stages. These factors position tau as a potentially critical factor mediating the disruption of fast axonal transport that precedes synaptic dysfunction and axonal degeneration at later disease stages. In this chapter, we review the evidence that tau affects fast axonal transport and examine several potential mechanisms proposed to underlie this toxicity.
Article
The three isoforms of 3R-tau are predominantly deposited in neurons bearing neurofibrillary tangles in Alzheimer's disease (AD), while only 3R-tau accumulation has been detected in Pick's disease (PiD), suggesting the involvement of 3R-tau in neurodegeneration. However, both the role and the molecular mechanism of 3R-tau in neurodegeneration are elusive. Here, we co-expressed three isoforms of human wild-type 3R-tau in adult mouse hippocampal to mimic the pathologic tau accumulating observed in PiD patients. We found that co-expressing three 3R-tau isoforms induced hyperphosphorylation and accumulation of tau proteins; simultaneously, the mice showed remarkable neuron death with synapse and memory deficits. Further in vitro and in vivo studies demonstrated that co-expressing 3R-tau isoforms caused oxidative stress evidenced by an increased malondialdehyde, and the decreased superoxide dismutase and glutathione peroxidase; the 3R-tau accumulation also induced significant glial activation and DNA double-strand breaks (DSBs). Notably, the toxic effects of 3R-tau accumulation were efficiently reversed by administration of antioxidants Vitamin E (VitE) and Vitamin C (VitC), respectively. These data reveal that intracellular accumulation of 3R-tau isoforms in adult brain induces significant neuron death and memory deficits with the mechanism involving oxidation-mediated DSBs; and the antioxidants VitE and VitC can efficiently attenuate the toxicities of 3R-tau. Given that no significant cell death has been detected in the currently available wild-type tau-accumulating models, co-expressing 3R-tau isoforms could be a promising model for drug development of tauopathies, such as PiD.
Article
Full-text available
Many mouse models of Alzheimer's disease (AD) exhibit impairments in hippocampal long-term-potentiation (LTP), seemingly corroborating the strong correlation between synaptic loss and cognitive decline reported in human studies. In other AD mouse models LTP is unaffected, but other defects in synaptic plasticity may still be present. We recently reported that THY-Tau22 transgenic mice, that overexpress human Tau protein carrying P301S and G272 V mutations and show normal LTP upon high-frequency-stimulation (HFS), develop severe changes in NMDAR mediated long-term-depression (LTD), the physiological counterpart of LTP. In the present study, we focused on putative effects of AD-related pathologies on depotentiation (DP), another form of synaptic plasticity. Using a novel protocol to induce DP in the CA1-region, we found in 11-15 months old male THY-Tau22 and APPPS1-21 transgenic mice that DP was not deteriorated by Aß pathology while significantly compromised by Tau pathology. Our findings advocate DP as a complementary form of synaptic plasticity that may help in elucidating synaptic pathomechanisms associated with different types of dementia.
Article
Abstract Neurofibrillary tangles, formed of misfolded, hyperphosphorylated tau protein, are a pathological hallmark of several neurodegenerations, including Alzheimer's disease. Tau pathology spreads between neurons and propagates misfolding in a prion-like manner throughout connected neuronal circuits. Tauopathy is accompanied by significant neuronal death, but the relationships between initial tau misfolding, propagation across connected neurons and cytotoxicity remain unclear. In particular the immediate functional consequence of tau misfolding for the individual neuron is not well understood. Here, using microfluidic devices to recreate discretely organised neuronal connections, we show that the spread and propagation of misfolded tau between individual murine neurons is rapid and efficient; it occurs within days. The neurons containing and propagating tau pathology display selective axonal transport deficits but remain viable and electrically competent. Therefore, we demonstrate that seed-competent misfolded tau species do not acutely cause cell death, but instead initiate discrete cellular dysfunctions. Significance statement Public awareness of progressive neurodegenerations such as dementias associated with ageing or repetitive head trauma is rising. Protein misfolding underlies many neurodegenerative diseases including tauopathies, where the misfolded tau protein propagates pathology through connected brain circuits in a prion-like manner. Clinically, these diseases progress over the course of years. Here we show that the underlying protein misfolding propagates rapidly between individual neurons. Presence of misfolded tau is not directly cytotoxic to the neuron; the cells remain viable with limited deficits. This suggests that neurons with tau pathology could be rescued with a therapeutic disease modifier and highlights an under-appreciated time window for such therapeutic intervention.
Article
Full-text available
Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegeneration, including Alzheimer’s disease (AD). The molecular mechanisms of impaired mitochondrial homeostasis in AD are being investigated. Here we provide evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models. In both amyloid-β (Aβ) and tau Caenorhabditis elegans models of AD, mitophagy stimulation (through NAD⁺ supplementation, urolithin A, and actinonin) reverses memory impairment through PINK-1 (PTEN-induced kinase-1)-, PDR-1 (Parkinson’s disease-related-1; parkin)-, or DCT-1 (DAF-16/FOXO-controlled germline-tumor affecting-1)-dependent pathways. Mitophagy diminishes insoluble Aβ1–42 and Aβ1–40 and prevents cognitive impairment in an APP/PS1 mouse model through microglial phagocytosis of extracellular Aβ plaques and suppression of neuroinflammation. Mitophagy enhancement abolishes AD-related tau hyperphosphorylation in human neuronal cells and reverses memory impairment in transgenic tau nematodes and mice. Our findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and that mitophagy represents a potential therapeutic intervention.
Article
Full-text available
Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer’s disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than ”wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.
Article
Preclinical studies have shown that anesthesia might accelerate the clinical progression of Alzheimer's disease (AD) and can have an impact on tau pathology, a hallmark of AD. Although benzodiazepines have been suggested to increase the risk of incident dementia, their impact on tau pathology in vivo is unknown. We thus examined the impact of midazolam, a benzodiazepine that is often administered perioperatively as an anxiolytic, on tau hyperphosphorylation in nontransgenic and in hTau mice, the latter a model of AD-like tau pathology. The acute administration of midazolam in C57BL/6 mice was associated with downregulation of protein phosphatase-1 and a significant and persistent increase in brain tau phosphorylation. In hTau mice, tau hyperphosphorylation was also observed; however, midazolam was neither associated with proaggregant changes nor spatial reference memory impairment. In C57BL/6 mice, chronic midazolam administration immediately increased hippocampal tau phosphorylation, and this effect was more pronounced in older mice. Interestingly, in young C57BL/6 mice, chronic midazolam administration induced hippocampal tau hyperphosphorylation, which persisted for 1 week. In hTau mice, chronic midazolam administration increased hippocampal tau phosphorylation and, although this was not associated with proaggregant changes, this correlated with a decreased capacity of tau to bind to preassembled microtubules. These findings suggest that midazolam can induce significant tau hyperphosphorylation in vivo, which persists well beyond recovery from its sedative effects. Moreover, it can disrupt one of tau's critical functions. Hence, future studies should focus on the impact of more prolonged or repeated benzodiazepine exposure on tau pathology and cognitive decline.
Article
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of elderly and old-aged people. Cerebrospinal fluid (CSF) and peripheral tissues—lymphocytes and platelets, buccal and olfactory epithelium, and skin fibroblasts—are used for intravital diagnostics of the expression of signaling molecules (AD markers). There are several changes in the production of hyperphosphorylated τ-protein form, BACE1, and peptide Aβ42 in CSF in the case of AD, but CSF sampling can have a number of side effects. Biopsies of the epithelium and portions of blood are a less traumatic method of obtaining tissue samples for AD diagnosis. An increase in the expression of the hyperphosphorylated form of τ-protein is shown in the blood lymphocytes of AD patients. An increase in the content of high molecular forms of phosphorylated τ protein and amyloid precursor protein (APP) was also detected in the platelets of AD patients. Changes in the amount of two miRNA families, miR-132 and miR-134, were detected in blood cells 1–5 years before the manifestation of clinical signs of AD. An increase in the bound-calcium concentration, Aβ40 and Aβ42 peptide synthesis, and τ protein was observed in AD skin fibroblasts. In olfactory and buccal epithelia, an increase in the expression of hyperphosphorylated τ-protein form and Aβ peptide was detected in AD patients. The detection of AD markers in peripheral tissues available for biopsy is highly important for intravital diagnostics, prevention, and targeted treatment of AD.
Article
Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.
Article
Full-text available
The Drosophila Activin signaling pathway employs at least three separate ligands – Activin-β (Actβ), Dawdle (Daw), and Myoglianin (Myo) – to regulate several general aspects of fruit fly larval development, including cell proliferation, neuronal remodeling, and metabolism. Here we provide experimental evidence indicating that both Daw and Myo are anti-ageing factors in adult fruit flies. Knockdown of Myo or Daw in adult fruit flies reduced mean lifespan, while overexpression of either ligand in adult muscle tissues but not in adipose tissues enhanced mean lifespan. An examination of ubiquitinated protein aggregates in adult muscles revealed a strong inverse correlation between Myo- or Daw-initiated Activin signaling and the amount of ubiquitinated protein aggregates. We show that this correlation has important functional implications by demonstrating that the lifespan extension effect caused by overexpression of wild-type Daw or Myo in adult muscle tissues can be completely abrogated by knockdown of a 26S proteasome regulatory subunit Rpn1 in adult fly muscle, and that the prolonged lifespan caused by overexpression of Daw or Myo in adult muscle could be due to enhanced protein levels of the key subunits of 26S proteasome. Overall, our data suggest that Activin signaling initiated by Myo and Daw in adult Drosophila muscles influences lifespan, in part, by modulation of protein homeostasis through either direct or indirect regulation of the 26S proteasome levels. Since Myo is closely related to the vertebrate muscle mass regulator Myostatin (GDF8) and the Myostatin paralog GDF11, our observations may offer a new experimental model for probing the roles of GDF11/8 in ageing regulation in vertebrates. This article has an associated First Person interview with the first author of the paper.
Article
Full-text available
Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The injected tau protein increases tubulin polymerization and stabilizes microtubules against depolymerization. This increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement. Thus, tau protein acts in vivo primarily to induce tubulin assembly and stabilize microtubules, activities that may be necessary, but not sufficient, for neuronal morphogenesis.
Article
Full-text available
A large body of evidence indicates that microtubules (MTs) conduct organelle transport in axons, but recent studies on extruded squid axoplasm have suggested that actin microfilaments (MFs) may also play a role in this process. To investigate the separate contributions to transport of each class of cytoskeletal element in intact vertebrate axons, we have monitored mitochondrial movements in chick sympathetic neurons experimentally manipulated to eliminate MTs, MFs, or both. First, we grew neurons in the continuous presence of: (a) cytochalasin E to create neurites which had never contained MFs; or (b) nocodazole or vinblastine to produce neurites which had never contained MTs. Mitochondria moved bidirectionally at normal velocities along the length of neurites which contained MTs and lacked MFs, but did not even enter neurites grown without MTs but containing MFs. In a second approach, we treated established neuronal cultures with cytoskeletal drugs to disrupt either MTs or MFs in axons already containing mitochondria. In cytochalasin-treated cells, which retained MTs but lacked MFs, average mitochondrial velocity increased in both directions, but net directional transport decreased. In vinblastine-treated cells, which lacked MTs but retained essentially normal levels of MFs, mitochondria continued to move bidirectionally but the average mitochondrial velocity and excursion length were reduced for both directions of movement, and the mitochondria spent threefold as much time moving in the retrograde as in the anterograde direction, resulting in net retrograde transport. Treatment of established cultures with both drugs produced neurites lacking MTs and MFs but still rich in neurofilaments; these showed a striking absence of any mitochondrial motility. These data indicate that axonal organelle transport can occur along both MTs and MFs in vivo, but with different velocities and net transport properties.
Article
Full-text available
The 4-kDa beta-amyloid peptide (Abeta), a principal component of parenchymal amyloid deposits in Alzheimer's disease, is derived from amyloid precursor proteins (APP). To identify potential intracellular compartments involved in Abeta production, we expressed human APP-695 (APPwt) and APP-695 harboring the Swedish double mutation (APPswe) associated with familial early-onset Alzheimer's disease, in mouse N2a cells. We demonstrate that cells expressing APPswe secrete high levels of Abeta peptides and beta-secretase-generated soluble APP derivatives (APP s beta) relative to cells expressing APPwt. In addition, we observed a concomitant diminution in the levels of alpha-secretase-generated soluble APP derivatives (APP s alpha). Our interpretation of these findings is that beta-secretase cleavage occurs in an intracellular compartment and disables those substrates which would normally be cleaved by alpha-secretase. As anticipated, the levels of APPswe are diminished relative to the steady-state levels of surface-bound APPwt; moreover, surface-bound APPswe and APPwt molecules are released from the plasma membrane after cleavage by alpha-secretase, but not by beta-secretase. Finally, by examining the rate of appearance of specific APP metabolites generated by beta-secretase, we now unequivocally demonstrate that beta-secretase cleavage of APPswe occurs within the Golgi apparatus, as early as the medial compartment.
Article
Full-text available
beta-amyloid protein (A beta) formation was reconstituted in permeabilized neuroblastoma cells expressing human Alzheimer beta-amyloid precursor protein (beta APP) harboring the Swedish double mutation associated with familial early-onset Alzheimer disease. Permeabilized cells were prepared following metabolic labeling and incubation at 20 degrees C, a temperature that allows beta APP to accumulate in the trans-Golgi network (TGN) without concomitant A beta formation. Subsequent incubation at 37 degrees C led to the generation of A beta. A beta production in the TGN persisted even under conditions in which formation of nascent post-TGN vesicles was inhibited by addition of guanosine 5'-O-(3-thiotriphosphate), a nonhydrolyzable GTP analogue, or by omission of cytosol. These and other results indicate that vesicle budding and trafficking may not be required for proteolytic metabolism of beta APP to A beta, a process that includes "gamma-secretase" cleavage within the beta APP transmembrane domain.
Article
Full-text available
The neuronal microtubule-associated protein tau plays an important role in establishing cell polarity by stabilizing axonal microtubules that serve as tracks for motor-protein-driven transport processes. To investigate the role of tau in intracellular transport, we studied the effects of tau expression in stably transfected CHO cells and differentiated neuroblastoma N2a cells. Tau causes a change in cell shape, retards cell growth, and dramatically alters the distribution of various organelles, known to be transported via microtubule-dependent motor proteins. Mitochondria fail to be transported to peripheral cell compartments and cluster in the vicinity of the microtubule-organizing center. The endoplasmic reticulum becomes less dense and no longer extends to the cell periphery. In differentiated N2a cells, the overexpression of tau leads to the disappearance of mitochondria from the neurites. These effects are caused by tau's binding to microtubules and slowing down intracellular transport by preferential impairment of plus-end-directed transport mediated by kinesin-like motor proteins. Since in Alzheimer's disease tau protein is elevated and mislocalized, these observations point to a possible cause for the gradual degeneration of neurons.
Article
Full-text available
The excessive generation and accumulation of 40- and 42-aa beta-amyloid peptides (Abeta40/Abeta42) in selectively vulnerable brain regions is a major neuropathological feature of Alzheimer's disease. Abeta, derived by proteolytic cleavage from the beta-amyloid precursor protein (betaAPP), is normally secreted. However, recent evidence suggests that significant levels of Abeta also may remain inside cells. Here, we have investigated the subcellular compartments within which distinct amyloid species are generated and the compartments from which they are secreted. Three experimental approaches were used: (i) immunofluorescence performed in intact cortical neurons; (ii) sucrose gradient fractionation performed with mouse neuroblastoma cells stably expressing wild-type betaAPP695 (N2a695); and (iii) cell-free reconstitution of Abeta generation and trafficking from N2a695 cells. These studies demonstrate that: (i) Abeta40 (Abeta1-40 plus Abetax-40, where x is an NH2-terminal truncation) is generated exclusively within the trans-Golgi Network (TGN) and packaged into post-TGN secretory vesicles; (ii) Abetax-42 is made and retained within the endoplasmic reticulum in an insoluble state; (iii) Abeta42 (Abeta1-42 plus Abetax-42) is made in the TGN and packaged into secretory vesicles; and (iv) the amyloid peptides formed in the TGN consist of two pools (a soluble population extractable with detergents and a detergent-insoluble form). The identification of the organelles in which distinct forms of Abeta are generated and from which they are secreted should facilitate the identification of the proteolytic enzymes responsible for their formation.
Article
Full-text available
Several lines of evidence suggest that the cytoskeletal minally postmitotic neurons abandon the mechanisms elements known as microtubules may be central to all that mitotic cells use to organize their microtubules and of these issues. Microtubules are dynamic polymers develop entirely novel strategies. This assumption, based made up of tubulin subunits. They provide architectural on the fact that the neuronal microtubule arrays appear support for eukaryotic cells, and act as railways along to be so unlike those of dividing cells, has led research- which cytoplasmic constituents are actively transported. ers away from the mitotic spindle as a potential model Microtubules have an intrinsic polarity. One end of the for understanding how the neuron might generate the microtubule is called the plus end, while the other end microtubule arrays of axons and dendrites. In recent is called the minus end. Although microtubule polarity years, my laboratory has questioned the validity of this was originally defined in terms of the preferential addi- assumption. We have proposed that neurons establish tion of tubulin subunits onto the plus end of the polymer, their microtubule arrays using modifications of the same it is now apparent that the polarity of the microtubule mechanisms used by dividing cells. If this is true, then is also relevant to its transport properties. Certain cyto- the most important lessons regarding neuronal polarity plasmic constituents are transported preferentially to- may lie within a very unexpected place, namely the mi- ward the plus end of the microtubule, while others are totic spindle. transported preferentially toward the minus end. Thus, by organizing its microtubules relative to their polarity, a cell can generate an asymmetric distribution of cyto- Microtubules and the Mitotic Spindle plasmic constituents. Microtubules in the axon are uni- The mitotic spindle is the most fundamental of all micro- formly oriented with their plus ends distal to the cell tubule arrays and the best studied. During prophase, body, while microtubules in the dendrites are of both the centrosome replicates, and each new centrosome orientations (Baas et al., 1988). As a result, different nucleates microtubules. The minus ends of the microtu- complements of cytoplasmic constituents are trans- bules remain in association with the centrosome from ported from the cell body of the neuron into each type which they are nucleated, while the plus ends emanate of process (Black and Baas, 1989). Given the structural outward. The duplicated centrosomes are driven to op- and functional roles that microtubules play within cells, posite poles of the cell (presumably as a direct result it is not difficult to imagine how the distinct microtubule of changes in microtubule organization), and a bipolar spindle begins to take shape. During metaphase, some of the microtubules called kinetochore microtubules in- teract with the kinetochore regions of the chromosomes.
Article
Full-text available
We have searched for a minimal interaction motif in tau protein that supports the aggregation into Alzheimer-like paired helical filaments. Digestion of the repeat domain with different proteases yields a GluC-induced fragment comprising 43 residues (termed PHF43), which represents the third repeat of tau plus some flanking residues. This fragment self assembles readily into thin filaments without a paired helical appearance, but these filaments are highly competent to nucleate bona fide PHFs from full-length tau. Probing the interactions of PHF43 with overlapping peptides derived from the full tau sequence yields a minimal hexapeptide interaction motif of (306)VQIVYK(311) at the beginning of the third internal repeat. This motif coincides with the highest predicted beta-structure potential in tau. CD and Fourier transform infrared spectroscopy shows that PHF43 acquires pronounced beta structure in conditions of self assembly. Point mutations in the hexapeptide region by proline-scanning mutagenesis prevent the aggregation. The data indicate that PHF assembly is initiated by a short fragment containing the minimal interaction motif forming a local beta structure embedded in a largely random-coil protein.
Article
Full-text available
The microtubule-binding protein tau has been implicated in the pathogenesis of Alzheimer's disease and related disorders. However, the mechanisms underlying tau-mediated neurotoxicity remain unclear. We created a genetic model of tau-related neurodegenerative disease by expressing wild-type and mutant forms of human tau in the fruit flyDrosophila melanogaster. Transgenic flies showed key features of the human disorders: adult onset, progressive neurodegeneration, early death, enhanced toxicity of mutant tau, accumulation of abnormal tau, and relative anatomic selectivity. However, neurodegeneration occurred without the neurofibrillary tangle formation that is seen in human disease and some rodent tauopathy models. This fly model may allow a genetic analysis of the cellular mechanisms underlying tau neurotoxicity.
Article
Full-text available
Previous studies have shown that transgenic (Tg) mice overexpressing human tau protein develop filamentous tau aggregates in the CNS. The most abundant tau aggregates are found in spinal cord and brainstem in which they colocalize with neurofilaments (NFs) as spheroids in axons. To elucidate the role of NF subunit proteins in tau aggregate formation and to test the hypothesis that NFs are pathological chaperones in the formation of intraneuronal tau inclusions, we crossbred previously described tau (T44) Tg mice overexpressing the smallest human tau isoform with knock-out mice devoid of NFL (NFL-/-) or NFH (NFH-/-). Depletion of NF subunit proteins from the T44 mice (i.e., T44;NFL-/- and T44;NFH-/-), in particular NFL, resulted in a dramatic decrease in the total number of tau-positive spheroids in spinal cord and brainstem. Concomitant with the reduction in spheroid number, the bigenic mice showed delayed accumulation of insoluble tau protein in the CNS, increased viability, reduced weight loss, and improved behavioral phenotype when compared with the single T44 Tg mice. These results imply that NFs are pathological chaperones in the development of tau spheroids and suggest a role for NFs in the pathogenesis of neurofibrillary tau lesions in neurodegenerative disorders that contain both NFs and tau proteins.
Article
Full-text available
JNPL3 transgenic mice expressing a mutant tau protein, which develop neurofibrillary tangles and progressive motor disturbance, were crossed with Tg2576 transgenic mice expressing mutant β-amyloid precursor protein (APP), thus modulating the APP-Aβ (β-amyloid peptide) environment. The resulting double mutant (tau/APP) progeny and the Tg2576 parental strain developed Aβ deposits at the same age; however, relative to JNPL3 mice, the double mutants exhibited neurofibrillary tangle pathology that was substantially enhanced in the limbic system and olfactory cortex. These results indicate that either APP or Aβ influences the formation of neurofibrillary tangles. The interaction between Aβ and tau pathologies in these mice supports the hypothesis that a similar interaction occurs in Alzheimer's disease.
Article
Full-text available
Microtubule associated protein tau is abnormally phosphorylated in Alzheimer's disease (AD) and aggregates as paired helical filaments (PHFs) in neurofibrillary tangles (NFTs). We show here that the pattern of tau phosphorylation correlates with the loss of neuronal integrity. Studies using 11 phosphorylation dependent tau antibodies and a panel of AD cases of varying severity were evaluated in terms of three stages of neurofibrillary tangle development: (1) pre-neurofibrillary tangle, (2) intra-, and (3) extra-neuronal neurofibrillary tangles. The pretangle state, in which neurons display nonfibrillar, punctate regions in the cytoplasm, sound dendrites, somas, and nuclei, was observed especially with phospho-tau antibodies TG3 (pT231), pS262, and pT153. Intraneuronal neurofibrillary tangles are homogenously stained with fibrillar tau structures, which were most prominently stained with pT175/181, 12E8 (pS262/pS356), pS422, pS46, pS214 antibodies. Extracellular NFTs, which contain substantial filamentous tau, are most prominently stained with AT8 (pS199/pS202/pT205), AT100 (pT212/pS214), and PHF-1 (pS396/pS404) antibodies, which also stain intracellular NFT. The sequence of early tau phosphorylation suggests that there are events prior to filament formation that are specific to particular phosphorylated tau epitopes, leading to conformational changes and cytopathological alterations.
Article
Full-text available
Neurons seem to have at least two self-destruct programs. Like other cell types, they have an intracellular death program for undergoing apoptosis when they are injured, infected, or not needed. In addition, they apparently have a second, molecularly distinct self-destruct program in their axon. This program is activated when the axon is severed and leads to the rapid degeneration of the isolated part of the cut axon. Do neurons also use this second program to prune their axonal tree during development and to conserve resources in response to chronic insults?
Article
Full-text available
Motor proteins and microtubule-associated proteins (MAPs) play important roles in cellular transport, regulation of shape and polarity of cells. While motor proteins generate motility, MAPs are thought to stabilize the microtubule tracks. However, the proteins also interfere with each other, such that MAPs are able to inhibit transport of vesicles and organelles in cells. In order to investigate the mechanism of MAP-motor interference in molecular detail, we have studied single kinesin molecules by total internal reflection fluorescence microscopy in the presence of different neuronal MAPs (tau, MAP2c). The parameters observed included run-length (a measure of processivity), velocity and frequency of attachment. The main effect of MAPs was to reduce the attachment frequency of motors. This effect was dependent on the concentration, the affinity to microtubules and the domain composition of MAPs. In contrast, once attached, the motors did not show a change in speed, nor in their run-length. The results suggest that MAPs can regulate motor activity on the level of initial attachment, but not during motion.
Article
: The microtubule-associated protein τ which stimulates the assembly of α-β tubulin heterodimers into microtubules, is abnormally phosphorylated in Alzheimer's disease (AD) brain and is the major component of paired helical filaments. In the present study, the levels of τ and abnormally phosphorylated τ were determined in brain homogenates of AD and age-matched control cases. A radioimmuno-slot-blot assay was developed, using a primary monoclonal antibody, Tau-1, and a secondary antibody, antimouse 125I-immunoglobulin G. To assay the abnormally phosphorylated τ, the blots were treated with alkaline phosphatase before immunolabeling. The levels of total τ were about eightfold higher in AD (7.3 ± 2.7 ng/μg of protein) than in control cases (0.9 ± 0.2 ng/μg), and this increase was in the form of the abnormally phosphorylated protein. These studies indicate that the abnormal phosphorylation—not a decrease in the level of τ—is a likely cause of neurofibrillary degeneration in AD.
Article
We studied the accumulation of neurofibrillary tangles (NFTs) and senile plaques (SPs) in 10 Alzheimer's disease patients who had been examined during life. We counted NFTs and SPs in 13 cytoarchitectural regions representing limbic, primary sensory, and association cortices, and in subcortical neurotransmitter-specific areas. The degree of neuropathologic change was compared with the severity of dementia, as assessed by the Blessed Dementia Scale and duration of illness. We found that (1) the severity of dementia was positively related to the number of NFTs in neocortex, but not to the degree of SP deposition; (2) NFTs accumulate in a consistent pattern reflecting hierarchic vulnerability of individual cytoarchitectural fields; (3) NFTs appeared in the entorhinal cortex, CA1/subiculum field of the hippocampal formation, and the amygdala early in the disease process; and (4) the degree of SP deposition was also related to a hierarchic vulnerability of certain brain areas to accumulate SPs, but the pattern of SP distribution was different from that of NFT.
Article
Eighty-three brains obtained at autopsy from nondemented and demented individuals were examined for extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern and packing density of amyloid deposits turned out to be of limited significance for differentiation of neuropathological stages. Neurofibrillary changes occurred in the form of neuritic plaques, neurofibrillary tangles and neuropil threads. The distribution of neuritic plaques varied widely not only within architectonic units but also from one individual to another. Neurofibrillary tangles and neuropil threads, in contrast, exhibited a characteristic distribution pattern permitting the differentiation of six stages. The first two stages were characterized by an either mild or severe alteration of the transentorhinal layer Pre-alpha (transentorhinal stages I-II). The two forms of limbic stages (stages III-IV) were marked by a conspicuous affection of layer Pre-alpha in both transentorhinal region and proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical association areas. The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations.
Article
The observation that neurons containing neurofibrillary tangles are usually adjacent to neurons free of any morphological indication of disease, suggests the hypothesis that it is NFT-bearing neurons that are primarily responsible for the loss of function in AD. Quantitative Golgi postmortem studies from our laboratories have indicated that there is in many regions of the brains of nondemented humans an age-related increase in dendritic extent of single neurons. In Alzheimer's disease, this normal, age-related increase in dendritic extent was not found, leading to the hypothesis that one of the neurobiological defects in AD is a failure of neuronal plasticity. Message levels of the growth-associated protein, GAP-43, in frontal association cortex (area 9/46) indicated that AD brains with the highest density of neurofibrillary tangle-bearing neurons, showed GAP-43 message levels decreased of the order of 6-fold relative to AD brains with the lowest density of NFT. Combined immunocytochemistry to differentiate tangle-bearing from tangle-free neurons with in situ hybridization to define relative GAP-43 message levels in single neurons revealed that grain density over tangle-bearing neurons containing nuclei was reduced 3-fold compared to that over adjacent tangle-free neurons. This reduction in expression of GAP-43 message in tangle-bearing neurons was selective, because using probes for other messages showed that grain density over tangle-bearing neurons was, on average, increased or similar to that over adjacent non-tangle-bearing neurons. Message levels for the synaptic vesicle-associated protein, synaptophysin, have also been found to be reduced in tangle-bearing neurons relative to adjacent tangle-free neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
A characteristic neuropathological feature of Alzheimer's disease is the cerebral deposition of amyloid plaques. These deposits contain beta A4 amyloid peptide, a cleavage product of the transmembrane protein amyloid protein precursor (APP). Despite numerous studies on the processing of the different APP isoforms in non-neuronal cells, little is known about its sorting and transport in neurons of the central nervous system (CNS). To analyze this question we expressed in cultured rat hippocampal neurons the human APP 695, tagged at its N-terminus with the myc epitope, using the Semliki forest virus (SFV) expression system. APP was first delivered from the cell body to the axon and later appeared also in the dendrites. Inhibition of protein synthesis at the time of axonal expression did not block the late appearance of the protein in the dendrites. An antibody directed against the myc tag, bound to the cell surface at 4 degrees C at the time of axonal APP expression, could be chased to the dendritic domain after subsequent incubation at 37 degrees C. These results suggest that the newly synthesized APP, after initial axonal delivery, may be transported to the dendrites by a transcytotic mechanism. The routing of APP in polarized neurons is different from that of polarized epithelial cells, in which the protein is delivered basolaterally, arguing for neuronal specific sorting and processing mechanisms.
Article
The Alzheimer's disease paired helical filament (PHF), after digestion with Pronase, retains its characteristic morphological features. We term this the protease resistant core PHF. A 12 kDa tau fragment can be released from the core as an essentially pure preparation. Sequence analysis of this fragment revealed six distinct N-termini beginning in the repeat region of tau. The precise C-terminus is unknown, but the fragment is approximately 100 residues long. A monoclonal antibody, mAb 423, which recognizes the core PHF and the 12 kDa tau fragment, does not recognize normal full-length tau. We describe cDNA synthesis and expression of candidate 12 kDa tau analogues which permit the mapping of the mAb 423 epitope. mAb 423 recognizes all and only those analogues which terminate at Glu391, which lies beyond the homology repeat region. Addition or removal of a single residue at the C-terminus abolishes immunoreactivity. Therefore, mAb 423, together with knowledge of the N-terminus, can be used to measure the precise extent of 12 kDa PHF core tau fragment which we term the minimal protease resistant tau unit of the core PHF. This unit is 93-95 residues long, which is equivalent to three repeats, but is 14-16 residues out of phase with respect to the maximum homology organization of the repeat region. mAb 423 labels isolated PHFs prior to Pronase digestion and intracellular granular and neurofibrillary degeneration in Alzheimer's disease tissues. The constraints which determine endogenous truncation at Glu391 appear to be characteristic of an assembled configuration of tau, either within the PHF or its precursor.
Article
The strongest physical correlate with the severity of dementia in Alzheimer's disease and its most rational cause are the loss of neocortical and hippocampal synapses. Evidence, showing that beta-amyloid causes that loss is weak despite the popularity of that hypothesis. Other changes can better explain that damaging phenomenon. Axonal terminals are dependent on axoplasmic flow, and that function requires intact microtubules and the motor proteins kinesin, dynein and dynamin. It has been known since the earliest electron microscopic studies of AD that neuronal microtubules are lessened in number. Tubules are normally in equilibrium with unpolymerized tubulin, and the stability of the formed elements is dependent on normal binding of tau to the tubule. But, as is well known, tau is abnormally hyperphosphorylated in AD leading to tangle formation and to dissolution of the tubules. Tangles are insufficient in number to account for the cortical loss of neurons and synapses, but hyperphosphorylated tau in the unpolymerized pre-tangle state undoubtedly plays a role. Abnormalities in the motor proteins are now being investigated (some have already been found) and these too would contribute to the loss of synapses in AD by way diminished axoplasmic flow.
Article
Microtubules (MTs) serve as tracks for cellular transport, and regulate cell shape and polarity. Rapid transitions between stable and dynamic forms of MTs are central to these processes. This dynamic instability is regulated by a number of cellular factors, including the structural MT-associated proteins (MAPs), which in turn are regulated by phosphorylation. MT-affinity-regulating kinases (MARKs) are novel mammalian serine/threonine kinases that phosphorylate the tubulin-binding domain of MAPs and thereby cause their detachment from MTs and increased MT dynamics. Molecular cloning of MARKs revealed a family of four closely related protein kinases that share homology with genes from the nematode Caenorhabditis elegans and fission yeast that are involved in the generation of cell shape and polarity. Hence, MARKs might play a role in the regulation of MT stability during morphogenesis.
Article
Neurofibrillar protein aggregates containing tau are one of the major hallmarks of Alzheimer's disease (AD). In normal cells, tau stabilizes axonal microtubules, which are the tracks for intracellular traffic. In AD, tau becomes abnormally phosphorylated, aggregates into paired helical filaments and loses its ability to maintain the microtubule tracks. There is renewed interest in tau as a causative factor in neurodegenerative disease based on recently discovered mutations in the gene encoding tau. This article discusses how changes in tau protein could lead to retraction of neuronal processes and thus cell death and argues that tau pathology, rather than beta-amyloid, might be the most reliable indicative factor for AD.
Article
The ability of neurons to detoxify exogenously applied peroxides was analyzed using neuron-rich primary cultures derived from embryonic rat brain. Incubation of neurons with H2O2 at an initial concentration of 100 microM (300 nmol/3 ml) led to a decrease in the concentration of the peroxide, which depended strongly on the seeding density of the neurons. When 3 x 10(6) viable cells were seeded per dish, the half-time for the clearance by neurons of H2O2 from the incubation buffer was 15.1 min. Immediately after application of 100 microM H2O2 to neurons, glutathione was quickly oxidized. After incubation for 2.5 min, GSSG accounted for 48% of the total glutathione. Subsequent removal of H2O2 caused an almost complete regeneration of the original ratio of GSH to GSSG within 2.5 min. Compared with confluent astroglial cultures, neuron-rich cultures cleared H2O2 more slowly from the incubation buffer. However, if the differences in protein content were taken into consideration, the ability of the cells to dispose of H2O2 was identical in the two culture types. The clearance rate by neurons for H2O2 was strongly reduced in the presence of the catalase inhibitor 3-aminotriazol, a situation contrasting with that in astroglial cultures. This indicates that for the rapid clearance of H2O2 by neurons, both glutathione peroxidase and catalase are essential and that the glutathione system cannot functionally compensate for the loss of the catalase reaction. In addition, the protein-normalized ability of neuronal cultures to detoxify exogenous cumene hydroperoxide, an alkyl hydroperoxide that is reduced exclusively via the glutathione system, was lower than that of astroglial cells by a factor of 3. These results demonstrate that the glutathione system of peroxide detoxification in neurons is less efficient than that of astroglial cells.
Article
We have performed a real time analysis of fluorescence-tagged vesicle and mitochondria movement in living CHO cells transfected with microtubule-associated protein tau or its microtubule-binding domain. tau does not alter the speed of moving vesicles, but it affects the frequencies of attachment and detachment to the microtubule tracks. Thus, tau decreases the run lengths both for plus-end and minus-end directed motion to an equal extent. Reversals from minus-end to plus-end directed movement of single vesicles are strongly reduced by tau, but reversals in the opposite direction (plus to minus) are not. Analogous effects are observed with the transport of mitochondria and even with that of vimentin intermediate filaments. The net effect is a directional bias in the minus-end direction of microtubules which leads to the retraction of mitochondria or vimentin IFs towards the cell center. The data suggest that tau can control intracellular trafficking by affecting the attachment and detachment cycle of the motors, in particular by reducing the attachment of kinesin to microtubules, whereas the movement itself is unaffected.
Article
Neurons transport newly synthesized membrane proteins along axons by microtubule-mediated fast axonal transport. Membrane proteins destined for different axonal subdomains are thought to be transported in different transport carriers. To analyze this differential transport in living neurons, we tagged the amyloid precursor protein (APP) and synaptophysin (p38) with green fluorescent protein (GFP) variants. The resulting fusion proteins, APP-yellow fluorescent protein (YFP), p38-enhanced GFP, and p38-enhanced cyan fluorescent protein, were expressed in hippocampal neurons, and the cells were imaged by video microscopy. APP-YFP was transported in elongated tubules that moved extremely fast (on average 4.5 micrometer/s) and over long distances. In contrast, p38-enhanced GFP-transporting structures were more vesicular and moved four times slower (0.9 micrometer/s) and over shorter distances only. Two-color video microscopy showed that the two proteins were sorted to different carriers that moved with different characteristics along axons of doubly transfected neurons. Antisense treatment using oligonucleotides against the kinesin heavy chain slowed down the long, continuous movement of APP-YFP tubules and increased frequency of directional changes. These results demonstrate for the first time directly the sorting and transport of two axonal membrane proteins into different carriers. Moreover, the extremely fast-moving tubules represent a previously unidentified type of axonal carrier.
Article
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also establish some links between microtubules and other cytoskeletal elements or proteins. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of intraneuronal and glial fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, a direct correlation has been established between the progressive involvement of the neocortical areas and the increasing severity of dementia, suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. The recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies.
Article
Tau and MAP1B are the main members of neuronal microtubule-associated proteins (MAPs), the functions of which have remained obscure because of a putative functional redundancy (Harada, A., K. Oguchi, S. Okabe, J. Kuno, S. Terada, T. Ohshima, R. Sato-Yoshitake, Y. Takei, T. Noda, and N. Hirokawa. 1994. Nature. 369:488-491; Takei, Y., S. Kondo, A. Harada, S. Inomata, T. Noda, and N. Hirokawa. 1997. J. Cell Biol. 137:1615-1626). To unmask the role of these proteins, we generated double-knockout mice with disrupted tau and map1b genes and compared their phenotypes with those of single-knockout mice. In the analysis of mice with a genetic background of predominantly C57Bl/6J, a hypoplastic commissural axon tract and disorganized neuronal layering were observed in the brains of the tau+/+map1b-/- mice. These phenotypes are markedly more severe in tau-/-map1b-/- double mutants, indicating that tau and MAP1B act in a synergistic fashion. Primary cultures of hippocampal neurons from tau-/-map1b-/- mice showed inhibited axonal elongation. In these cells, a generation of new axons via bundling of microtubules at the neck of the growth cones appeared to be disturbed. Cultured cerebellar neurons from tau-/-map1b-/- mice showed delayed neuronal migration concomitant with suppressed neurite elongation. These findings indicate the cooperative functions of tau and MAP1B in vivo in axonal elongation and neuronal migration as regulators of microtubule organization.
Article
The microtubule-associated protein tau was originally identified as a protein that co-purified with tubulin in vitro, stimulated assembly of tubulin into microtubules and strongly stabilized microtubules. Recognized now as one of the most abundant axonal microtubule-associated proteins, a convergence of evidence implicates an overlapping in vivo role of tau with other axonal microtubule-associated proteins (e.g. MAP1B) in establishing microtubule stability, axon elongation and axonal structure. Missense and splice-site mutations in the human tau gene are now known to be causes of inherited frontotemporal dementia and parkinsonism linked to chromosome 17, a cognitive disorder of aging. This has provided direct evidence for the hypothesis that aberrant, filamentous assembly of tau, a frequent hallmark of a series of human cognitive diseases, including Alzheimer's disease, can directly provoke neurodegeneration.
Article
Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research.
Article
Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.
Article
β-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuropathological hallmarks of Alzheimer's disease, but their pathophysiological relation is unclear. Injection of β-amyloid Aβ42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold increases in the numbers of NFTs in cell bodies within the amygdala from where neurons project to the injection sites. Gallyas silver impregnation identified NFTs that contained tau phosphorylated at serine 212/threonine 214 and serine 422. NFTs were composed of twisted filaments and occurred in 6-month-old mice as early as 18 days after Aβ42injections. Our data support the hypothesis that Aβ42 fibrils can accelerate NFT formation in vivo.
Article
The recent demonstration that the fast axonal transport motors kinesin and dynein participate in axonal transport of neurofilaments--known to undergo slow transport--supports and extends recent studies indicating that some neurofilaments exhibit alternating bursts of fast axonal transport interspersed with periods of non-motility. In addition, these findings unify both certain aspects of axonal transport and neurofilament biology. We discuss these data herein in the context of both older and more recent studies of neurofilament dynamics.
Article
We studied the effect of microtubule-associated tau protein on trafficking of vesicles and organelles in primary cortical neurons, retinal ganglion cells, and neuroblastoma cells. Tau inhibits kinesin-dependent transport of peroxisomes, neurofilaments, and Golgi-derived vesicles into neurites. Loss of peroxisomes makes cells vulnerable to oxidative stress and leads to degeneration. In particular, tau inhibits transport of amyloid precursor protein (APP) into axons and dendrites, causing its accumulation in the cell body. APP tagged with yellow fluorescent protein and transfected by adenovirus associates with vesicles moving rapidly forward in the axon (approximately 80%) and slowly back (approximately 20%). Both movements are strongly inhibited by cotransfection with fluorescently tagged tau (cyan fluorescent protein-tau) as seen by two-color confocal microscopy. The data suggests a linkage between tau and APP trafficking, which may be significant in Alzheimer's disease.
Article
In its earliest clinical phase, Alzheimer's disease characteristically produces a remarkably pure impairment of memory. Mounting evidence suggests that this syndrome begins with subtle alterations of hippocampal synaptic efficacy prior to frank neuronal degeneration, and that the synaptic dysfunction is caused by diffusible oligomeric assemblies of the amyloid beta protein.
Article
Kinesins are motor proteins that move cargoes such as vesicles, organelles and chromosomes along microtubules. They are best known for their role in axonal transport and in mitosis. There is a diverse family of kinesins, members of which differ in composition and functions. Roles of kinesins in diseases typically involve defective transport of cell components, transport of pathogens, or cell division.