Computational side-effect prediction tools have been used in rational drug design to decrease the late-stage failure of the drugs under trial. Irrational selection of cancer drug targets in the deregulated MAPK pathways causes more side effects. Quantitative data on the network centralities and biological features degree, radiality, eccentricity, closeness, bridging, stress, pagerank centralities, essentiality, pathway-specific proteins, disease-causing proteins, protein domains and the other functional features exploited. We trained an artificial neural network with 15 selected features for the binary classification of side effects causing and less side-effect causing drug targets among the non-targeted proteins. Inter-relationship among the node centralities revealed three clusters with positive correlations. Among three clusters of centralities, the top centrality nodes overlap within the clusters playing multiple roles in the complex networks. Top-ranked proteins among the degree, eccentricity, betweenness centralities, possessing GO-based molecular function, involved in more than one biocarta pathways, domain content is prone to cause a number of side effects than other centralities and functional features. We predicted the following 15 less side effect causing cancer drug targets - Shc, Rap 1a, Mos, Tpl-2, PAC1, 4EBP1, GAB1, LAD, MEF2, ZAK, GADD45, TAB2, TAB1, ELK1 and SRF.