Conference PaperPDF Available

Impact of material properties on the fracture mechanics design approach for notched beams in Eurocode 5

Authors:
CIB-W18/44-6-1
INTERNATIONAL COUNCIL FOR RESEARCH AND INNOVATION
IN BUILDING AND CONSTRUCTION
WORKING COMMISSION W18 - TIMBER STRUCTURES
IMPACT OF MATERIAL PROPERTIES ON THE FRACTURE MECHANICS DESIGN
APPROACH FOR NOTCHED BEAMS IN EUROCODE 5
R Jockwer
R Steiger
EMPA, Dübendorf
A Frangi
J Köhler
ETH Zürich, Institute of Structural Engineering IBK, Zürich
SWITZERLAND
MEETING FORTY FOUR
ALGHERO
ITALY
AUGUST 2011
1
Impact of material properties on the fracture
mechanics design approach
for notched beams in Eurocode 5
Robert Jockwer1,2)
René Steiger1)
Andrea Frangi2)
Jochen Köhler2)
1) EMPA, Swiss Federal Laboratories of Materials Science and Technology,
Wood Laboratory, Dübendorf, Switzerland
2) ETH Zürich, Institute of Structural Engineering IBK, Zürich, Switzerland
1 Introduction
At notch corners stress concentrations occur due to the sudden change in cross section.
Shear stresses and tensile stresses perpendicular to grain are leading to brittle failure of the
notch. Therefore special design considerations are needed to guarantee structural safety.
Generally notches should be avoided. If this is not possible they should be reinforced in an
adequate way to prevent failure. Within a small range of geometrical properties the design
of unreinforced notched beams is possible if the decrease in strength is taken into account.
This decrease in strength due to notches has been known for long time. Hence, several
design approaches were published, leading to, however, different results. The present paper
therefore aims at analysing the impact of material properties on the variation in strength of
notches.
1.1 Design approaches for notched beams
In 1935 Scholten [1] developed an empirical design approach with a reduction of the
strength proportional to the notch ratio α (Figure 1). A bilinear reduction of strength was
determined by Mistler [2] in 1979 from experimental tests and from a study on a stochastic
model. Leicester studied the theoretical stress distribution at notches [3] at the beginning of
the 1970’s. This led to the approach in the Australian Standard AS 1720 [4], which takes
into account also size effects.
At the end of the 1980’s Gustafsson developed a design approach for notched beams based
on fracture energy [5]. The application of the fracture mechanic concept in timber
engineering [6] was studied and later Gustafssons approach was implemented in
Eurocode 5 (EC5) [7].
1.2 Development of the EC5 design approach
Gustafsson described the equlibrium of energy at a notched beam during crack growth. By
rearranging the equation the average shear stresses were separated from a term including
material properties and geometric parameters (Equation (1)).
2
 
xxy
f
EG
d
G
hbV
11
6
1
6.0 22
(1)
Figure 1: Notched glulam beam
The beam’s height h, its notch ratio α and notch length ratio β, as specified in Figure 1, are
the geometric parameters in the model. Fracture energy Gf, modulus of elasticity (MOE) Ex
and shear modulus Gxy reflect the material properties.
Fracture energy is the only strength related material property in Equation (1). Gustafsson
proposed that it is sufficient to take into account only the part of opening of the crack
flanges (mode 1), since crack opening is the main failure mode ocurring at the notch.
Hence, the general fracture energy Gf depending on the stress state at the crack tip was
replaced by the fracture energy of mode 1 Gf,1 for crack opening only.
On the left hand side of Equation (1) the action effect and on the right hand side the
resistance during crack growth can be identified. The resistance of the notch on the right
hand side of Equation (1) increases for large notch ratios α. For a notch ratio of 1 the
resistance approaches infinity since no notch exists in that case. However, the resistance is
limited by the shear capacity of the beam. Hence, Equation (1) was extended by the shear
strength fv and the resulting reduction factor kv was limited to an upper value of 1
(Equation (2)). The material property values can be summarised in two material constants
A and B (Equation (3)). Riberholt, Enquist et al. [8] determined an additional term in a
large test series taking into account notch taper i.
vv kf
hbV
5.1
with
22
5.1
1
1.1
1
;1min
Bh
h
i
A
kv
(2)
and
x
xy
v
xf E
G
f
EG
A6.0
5.1 2
1,
,
(3)
In standards specifying material properties as e.g. EN 338 [9] and EN 1194 [10] all
material properties except fracture energy are given to apply Equation (2) for the relevant
strength classes of timber. For the implementation of Equation (2) in EC5 Larsen and
Gustafsson collected the values of fracture energy derived from experimental tests on
different wood species and timber grades [11]. For densities in a range of
300 kg/m3 ρ 450 kg/m3 Larsen et al. [12] suggested an approximation based on a linear
regression of the results [11]:
65.0
1,
f
G
.
(4)
Using this relationship and further test results on notched beams from literature the
material constants were found to be A = 5 for solid timber and A = 6.5 for glulam and
B = 0.8 for both solid timber and glulam [12]. In EC5 the material constant A is denoted kn.
α·h
bβ·h
h
V
i1
3
1.3 Test results from literature
The material constants found by Larsen et al. are used in different standards and
handbooks for the design of timber structures like EC5 [7], DIN 1052 [13] and SIA 265
[14]. However, all these standards assume different material property values, especially
different values of shear strength. Furthermore the characteristic (fifth percentile) values of
shear strength were subject of permanent modifications in the recent years. In Table 1
characteristic values of shear strength are summarized for common European strength
grades of solid timber and glulam. In Figure 2 the resulting estimated load bearing
capacities are compared with capacities determined in experimental tests by Franke [15]
and Rautenstrauch et al. [16].
Table 1: Charakteristic values of shear strength fv,k
in different standards.
Standard
fv,k [N/mm2]
C24
GL24h
EC5
EN 338 [9]
4
-
EN 1194 [10]
-
2.7
prEN 14080 [17]
-
3.5
DIN 1052 [13]
2
2.5
SIA 265 [14]
2.5
2.7
Figure 2: Ratio of mean notch capacity from
tests [15] (n= 40) and [16] (n= 32) to calculated
characteristic (fifth percentile) notch capacity
according to different standards.
The ratios between mean experimental results and estimated notch capacity on the
characteristic level in the order of 1 for EC5 are clearly too small and, hence, the notch
capacity is overestimated. The ratios determined according to the German and Swiss
standards DIN 1052 and SIA 265 are higher than according to EC5. However, it is not
clear if the targed safety is complied by the estimated capacities.
Hence, it is to be identified to what extend the material properties take an impact on the
notch capacity according to Equation (2) and if the material constants need to be updated
to guarantee the desired safety level the standards are based on.
2 Impact of material properties on the EC5 design approach
For the application of Equation (2) in the design of structures according to EC5 material
property values for shear strength fv, MOE E0 and shear modulus G are specified in
material standards (for solid timber in EN 338 [9], for glulam in EN 1194 [10] and in the
preliminary standard prEN 14080 [17]). Besides the given values material properties can
be determined from experimental tests as specified in EN 408 [18]. Information about
suitable distribution functions of the material properties can be found in part 3.5 of the
JCSS Probabilistic Model Code [19]. However, fracture energy values are not specified in
all these standards.
When evaluating the sensitivity of Equation (2) regarding the influence of any material
property, mean values and variations of these properties have to be estimated and
appropriate distribution functions have to be chosen.
0
0.5
1
1.5
2
2.5
4
2.1 Specification of material properties in standards and codes
Solid timber and glulam are assigned to strength classes as given in EN 338, EN 1194 and
prEN 14080 according to the basic material properties bending strength (MOR), bending
modulus of elasticity (MOE) and density. Other property values are not directly
determined but rather are derived from these three properties using prescribed
relationships.
MOE: JCSS assigns MOE to be lognormal distributed with a coefficient of variation
COV = 13% for both solid timber and glulam. This corresponds to the ratio between
fifth percentile and mean value of MOE in grain direction E0,g,0.05 / E0,g,mean = 0.81 given
for glulam in EN 1194 assuming lognormal distribution. The ratio of 0.67 for solid
timber in EN 384 leads to a higher COV = 23%.
Density: Mean values of density in the range of ρmean = 390-480 kg/m3 are given for
common strength classes between C20 and C35 in EN 338. JCSS assumes density to be
normal distributed with COV = 10% which is in line with the ratio of mean and fifth
percentile values given in EN 338. The mean and fifth percentile values of density with
ρmean = 370-500 kg/m3 for strength classes GL20h to GL32h according to prEN 14080
result in COV = 5-7%, which is lower than the variation stated by JCSS.
Shear strength: For glulam in EN 1194 and for solid timber in the 2004 version of
EN 384 [20] a relationship between the characteristic values of shear strength and
tensile strength of the lamella is stated. Glos and Denzler could not confirm this
relationship [21, 22]. In prEN 14080 and in the current version of EN 384 [23] constant
values therefore are given for shear strength of glulam and solid timber respectively.
Relationships between mean and characteristic values of shear strength are not given in
the cited standards. JCSS assumes a lognormal distribution with a coefficient of
variation COV = 25% for solid timber and COV = 15% for glulam [19].
Shear modulus: The shear modulus is correlated to MOE. In EN 384 and EN 1194 a
ratio between MOE and shear modulus of 16 is specified. In prEN 14080 a constant
value of shear modulus Gg,mean = 650 N/mm2 is assumed. This leads to ratios
E0,g,mean / Gg,mean between 12.3 and 21.5 since MOE is increasing for higher strength
classes. JCSS assumes the same distribution and variation for MOE and shear modulus.
With the lognormal distribution the ratio Gg,0.05 /Gg,mean = 5/6 given in prEN 14080 leads
to a COV = 11%.
Correlations between material properties: For the correlation of all these material
properties a medium correlation (0.6) is postulated in [19] except for the correlation
between MOE and shear strength. Here only low correlation (0.4) is assumed.
Table 2: PDF and COV of material properties.
Material
property
Distribution
function [19]
Solid Timber
Glulam
COV
[19]
COV
EN
COV
[19]
COV
EN
MOE
Lognormal
13%
23%
13%
13%1)
11%2)
Density
Normal
10%
10%
10%
5-7%2)
Shear strength
Lognormal
25%
-
15%
-
Shear modulus
Lognormal
13%
-
13%
11%2)
1) EN 1194:1999 2) prEN14080:2011
Table 3: Correlation of material
properties.
Property
E0
ρ
fv
G
MOE
-
0.6
0.4
0.6
Density
0.6
-
0.6
0.6
Shear strength
0.4
0.6
-
0.6
Shear modulus
0.6
0.6
0.6
-
5
2.2 Fracture energy
Different test methods exist to determine fracture mechanical properties of timber. Tests on
compact tension (CT) specimens, double cantilever beams (DCB) or a tension specimen
with a slit are used to measure fracture toughness or energy release rates [24-26]. A simple
method for determining fracture energy is making use of a single edge notched beam
(SENB) specified in a Draft Standard of CIB-W18 in Annex B of [11] and [27], also
known as Nordtest method. Fracture energy can be calculated from load displacement
curves without the need for detailed information about elastic properties.
2.2.1 Results from tests on SENB according to the Draft Standard CIB-W18
Results from tests on SENB according to the Draft Standard CIB-W18 [11] are
summarized in Table 4. Values were selected based on mean densities in the range of
ρmean = 369-506 kg/m3 reflecting the densities given in the material standards cited above.
A correlation between density and fracture energy can be found. However, this correlation
is low for the observed range of densities being of relevance for structural applications [11,
28]: The standard deviation of the linear regression of the data in Figure 3 (σε = 54 N/m) is
nearly identical to the standard deviation calculated for the whole data without regression
(σε = 55 N/m). Hence, no correlation of fracture energy and density is assumed in the
further parts of the present study.
Other authors found values different from those given in Table 4. Smith explains his values
(Gf,1,mean = 435 N/m with ρmean = 362 kg/m3 at a moisture content (MC) of 12%), being
rather high compared to other values, with the impact of the careful drying from green
wood [29]: Fast kiln drying can produce cracks and reduces the values of fracture energy.
This could explain the low values of fracture energy determined by Franke [15]
(Gf,1,mean = 171 N/m) and Daudeville [30] (Gf,1,mean = 205 N/m) for commercial timber.
However, no clear effect of MC can be identified. Smith [29] found highest fracture energy
values for MC = 18%, whereas Rug [31] found decreasing values for MCs higher than
12%. However, MCs lower than 12% provoke low values in fracture energy, since cracks
arise during storage at low r.H. [11] or during cylic climate at low level [29].
Other parameters with impact on fracture energy are knots and the growth ring orientation.
Knots severly increase fracture energy, due to their dowling effect [8]. Hence, most tests
were done at carefully selected clear wood. For fracture surfaces tangentially to the growth
rings higher values were determined than radialy to the growth rings [24, 30].
2.2.2 Mean value, distribution and variance of fracture energy
Parameters for distribution functions fitted to the fracture energy values of individual data
from Table 4 are summarized in Table 5 . A lognormal distribution with a mean value of
Gf,I,mean = 300 N/m and a COV = 20% is used for the further study, the fifth percentile
value then being Gf,I,0.05 = 216 N/m. A 3-parametric Weibull distribution in line with the
study [28] describes the data well. However, it is not used here since it inhibits fracture
energy values lower than the location parameter and hence is not adequate for the
prediction.
For a mean density of ρg,mean = 420 kg/m3 the regression of mean values of fracture energy
by Larsen and Gustafsson leads to a similar result of Gf,I,mean = 291 N/m as in Table 5
whereas for lower or higher densities the mean values deviate considerably. The proposed
simplification for characteristic values in Equation (3) for densities in the range of
ρg,c = 300 450 kg/m3 is not adequate to describe the fracture energy: For a density as
6
asked for C24 considerably higher fracture energies are resulting. A correlation of fracture
energy with other material parameters could not be found in literature. However, a
coefficient of correlation of 0.2 (very low correlation) can be assumed which is lower than
that of tensile strength perpendicular to the grain and all these other properties [19].
Table 4: Values of fracture energy Gf,I,mean from literature.
Reference:
n
[-]
ρmean (COV)
[kg/m3]
Gf,I,mean (COV)
[N/m]
Larsen and
Gustafsson
[11]
Annex 1
A. 4.3
A. 8
A. 10
A. 11
37
6
62
29
12
426 (10.3%)
369 ( 1.5%)
458 (8.15%)
506 (10.3%)
503 (10.8%)
323 (14.9%)
291 (12.1%)
286 (20.3%)
337 (15.3%)
263 (15.9%)
Riberholt
et al. [8]
Solid
Timber
Glulam
88
43
415 (7.9%)
436 (8.6%)
290 (17.5%)
311 (18% )
Gustafsson [5]
14
467 (11%)
294 (17.5%)
Aicher et al. [28]
83
457 (5.3%)
277 (27.2%)
Gustafsson et al. [32]
-
475 (8.8%)
272 (15.4%)
Table 5: Distribution parameters for fracture energy.
Individual data from Table 4
Aicher [28]
Normal
Logn.
2p-Weibull
3p-Weibull
Gf,I,mean [N/m]
300
300
299
283
Std [N/m]
55.2
57.3
59.4
74.9
COV
18.4%
19.1%
19.8%
26.5%
Gf,I,0.05 [N/m]
209
216
194
176
Figure 3: Fracture energy Gf,I in
dependency of density ρ from test
results [5, 8, 11] listed in Table 4.
Figure 4: Distribution of fracture energy
Gf,I from test results [5, 8, 11] listed in
Table 4 and PDFs from Table 5.
2.3 Impact of varying material properties on the EC5 design approach
The sensitivity of material properties in Equation (2) was analysed by means of the
structural reliability software COMREL [33] using the values and distributions listed in
Table 6. The impact of MOE and shear modulus depends on the ratios α and β as can be
seen in the denominator of Equation (1). The minimal notch length necessary for
preventing compression failure perpendicular to the grain is in the range of β = 0.1 - 0.5
(GL24h) and β = 0.2 - 0.7 (C24), respectively. Larger notch length should be prevented
since notch capacity is reduced considerably. Suitable notch ratios are not less than α = 0.5
for solid timber and higher for glulam. Depending on the structure smaller notch ratios lead
to uneconomical design due to the considerable decrease in beams capacity.
In the sensitivity analysis weighting factors αi are determined, giving information about the
relative impact of the respective parameter on the variation of notch capacity when
calculated according to Equation (2) and on the related reliability. Fracture energy is the
material property with the most impact on notch capacity as can be seen in Figure 5 and
Figure 6. The impact of variations in both MOE and shear modulus is almost constant for
different notch ratios α and notch length ratios β. However, depending on the values α and
0
100
200
300
400
500
300 350 400 450 500 550 600
Fracture energy Gf,I [N/m]
Density ρ [kg/m3 ]
Larsen
Riberholt
Gustafsson
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
100130160190 220 250 280 310 340 370 400 430 460 490 520 550
Probability density [-]
Fracture energy Gf,I [N/m]
Test results
Normal
Lognormal
2p-Weibull
7
β the impact is differently distributed in between MOE and shear modulus: the impact of
shear modulus increases for larger α and smaller β, respectively. In the practical range of
notch ratios 0.5 ≤ α ≤ 1.0 the influence of shear modulus and MOE is mostly depending on
notch length ratio β.
It has to be taken into account that shear strength originally was not part of Equation (1).
Equation (2) contains shear strength both in nummerator and denominator. That is why
shear strength has no influence on the estimated notch capacity.
The ratio of MOE and shear modulus has only minor effect on the notch capactiy as
estimated according to equation (2).
Table 6: Mean values and distributions of material properties in the sensitivity analysis.
Material property
Solid timber (C24)
Glulam (GL24h)
Mean
Distribution
COV
Mean
Distribution
COV
Fracture energy [N/m]
300
Lognormal
20%
300
Lognormal
20%
MOE [N/mm2]
11000
Lognormal
13%
11600
Lognormal
13%
Shear modulus [N/mm2]
690
Lognormal
13%
760
Lognormal
13%
Shear strength [N/mm2]
6.2
Lognormal
25%
3.5
Lognormal
15%
Figure 5: Impact of selected material properties
on Equation (2) for notch length ratio β = 0.25 in
glulam, range of suitable notch ratio α in grey.
Figure 6: Impact of selected material properties
on Equation (2) for notch ratio α = 0.75 in glulam,
range of suitable notch length ratio β in grey.
3 Revisiting material parameters in the EC5 design approach
Material constants A and B in Equation (3) can be calculated using the material property
values given in material standards EN 338 and EN 1194 or by analysing the results of
experimental tests on notched beams. For the use in structural design and for their
implementation in design codes these material parameters have to be set on a reliable and
safe base. Hence, a reliability analysis is required.
3.1 Evaluation of experimental data from tests on notched beams
To compare the results from experimental tests with different geometrical configurations it
is necessary to normalize the parameters. From the sensitivity analysis in chapter 2.3
fracture energy is found to be the key parameter with most impact on variation of notch
capacity. The overall impact of both MOE and shear modulus is almost constant for notch
ratios and notch length ratios in the common range in practise. For reasons of
simplification and for a better comparison a constant ratio of MOE to shear modulus of
Ex / Gxy = 16 in line with the ratios given in EN 384 and EN 1194 and Larsen et al. [12] is
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sensitivity factor αi [-]
Notch ratio α[-]
α= 0.75
Ex
Gxy
Gf
Gf
Ex
Gxy
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
Sensitivity factor αi[-]
Notch length ratio β[-]
Gf
Ex
Gxy
β= 0.25
Ex
Gxy
Gf
β= 1.0
Ex
Gxy
Gf
β= 2.0
Ex
Gxy
Gf
8
assumed which leads to a parameter B = 0.8. Equation (2) can be solved for the remaining
material properties:
'
166.0 1
5.1
1.1
1
1
8.0
5.1 2
,
5.1
22
AAf
f
EG
Xf
h
i
h
hb
V
v
v
xIf
v
f
(5)
The model uncertainty of Equation (5) is covered by including an additional parameter X.
The parameter A’ neither depends on the geometrical parameters nor on the shear strength
and can therefore be determined independently from the values given in different
standards. It has the same unit [Nmm-3/2] as stress intensity factors (SIF) K have and hence
A’ can be seen as the fracture toughness of the notch and can therefore be called notch
strength. The corresponding critical SIF of mode 1 KI,c for the assumed crack opening is
related to the energy release rate Gc,I as follows:
IIccI EGK ,,
with
2
1
2
2
G
E
E
E
EEE x
y
x
yxI
(6)
This corresponds to the material property part of A’ neglecting the constant factors 1.5 and
0.6 and assuming that the energy release rate Gc,I is equal to the fracture energy Gf,I. Using
the ratios Ex / Gxy = 16 and Ex / Ey = 30 from EN 384 and EN 1194 and assuming a
Poissons ratio ν = 0.4 a good agreement between the material property part of Equation (5)
and KI,c = (Gf,I·Ex /14)1/2 is found despite the fact that orthotropic material behaviour was
not considered in Equation (1).
Table 7: Values of notch strength A’ [Nmm-3/2]
for glulam from experimental results
A’mean (COV)
Riberholt et al. [8]
25.5 (21.0%)
Rautenstrauch et al. [16]
20.2 (24.4%)
Gustafsson et al. [32]
26.2 (26.2%)
Möhler, Mistler [34]
30.5 (26%)
All
25.7 (27.6%)
Table 8: Distribution parameters to describe the
notch strength A’ [Nmm-3/2]
A’mean (COV)
A’0.05
Normal
25.7 (27.6%)
14.0
Lognormal
25.7 (28.2%)
15.7
2p-Weibull
25.6 (29.8%)
12.8
Figure 7: Distribution of notch strength A’ from
test results for glulam and PDFs as specified in
Table 8
The notch strength parameter A’ can be determined by analysing experimental data from
tests on notched beams. In Table 7 results from tests on glulam beams are summarized and
in Figure 7 the distribution of the notch strength parameter A’ is given. A lognormal
distribution with a mean value of A’mean = 25.7 Nmm-3/2 and COV = 28.2% fits the test data
well.
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0 4 8 12 16 20 24 28 32 36 40 44 48
Probability density [-]
Notch strength A' [Nmm-3/2]
Test results
Normal
Lognormal
2p-Weibull
9
3.2 Evaluation of theoretical distributions of material properties
The notch strength parameter A’ depends only on fracture energy and shear modulus or
MOE and ratio of MOE to shear modulus, respectively. Hence, the estimated notch
strength can be determined by using the values and distributions as given in Table 6.
As can be seen in figure Figure 8 the mean value of the estimated strength is considerably
higher and its variation lower compared to the analysed test results if no model uncertainty
is assumed (X = 1). By chosing the model uncertainty to be lognormal distributed with
Xmean = 0.82 and COV = 24% the notch strength is well representing the experimental data.
The reason for considering this model uncertainty can be attributed to the assumption by
Gustafsson that mode 1 failure of the notch is dominating the notch failure [5]. The
fracture energy analysed in chapter 2.2 is pure mode 1 fracture energy. However, both
fracture modes 1 and 2 take impact on the notch strength as has been described in different
studies [15, 35]. In numerical studies and experimental tests Franke found that the sum of
the occurring fracture energies is constant. For Norway spruce a mean sum of fracture
energies from mode 1 and 2 fractures of
 
mNGG ff /210
2,1,
(7)
was determined, which corresponds to 65% of the fracture energy as assumed by Larsen et
al. in Equation (4) [12]. If the model uncertainty X is implemented in the fracture energy
by using equation (7), its coefficient of variation increases to COV 50%. Such high COV
of fracture energies were also observed by Franke [15] by means of Close Range
Photogrametry at notches.
Table 9: Distribution parameter to describe notch
strength A’ according to Equation (5) [Nmm-3/2].
A’mean
(COV)
A’0.05
Xmean
(COV)
Solid Timber
17.9
(28.7%)
12.4
0.66
(22.7%)
Glulam
22.8
(30.6%)
15.6
0.82
(24.4%)
Figure 8: Distribution of notch strength A’ from
test results for glulam and notch strength
according to Equation (5) with model
uncertainty X.
3.3 Reliability of the EC5 design approach
Adequate material constants for the EC5 design approach can be derived by means of a
reliability analysis. By taking into account the partial factors defined in EC5, the material
constants can be adapted to assure the reliability of the design approach.
The design equation can be expressed for a simplified case with characteristic values of
permanent (Gk) and variable (Qk) action effects and characteristic value of the resistance Rk
as follows [36]:
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0 4 8 12 16 20 24 28 32 36 40 44 48
Probability density [-]
Notch strength A' [Nmm-3/2]
Test results
Eq. (5) X=0.82
Eq. (5) X=1
Lognormal
Test results
Eq. (5) X~LN(0.82,0.20)
Eq. (5) X=1
Lognormal
10
0kQkG
m
kQG
Rz
(8)
Both action effects and resistance are factored by partial factors γi. The characteristic value
of the resistance Rk is reduced by the partial factor γm in order to account for model
uncertainties and dimensional variations [7]. In this study the modification factor to
account for duration of load and moisture content was set to kmod = 1 which corresponds to
short term loading and service class 1. The variable z takes into account the individual
geometric properties and configurations for a certain design and depends amongst others
on the partial factors used: z = f(γm, γG, γQ).
The ultimate limit state function g can be set up:
QGR zg
(9)
Partial factors γ are to be chosen that way that the limit state function (Equation (9)) does
not exceed a certain probability (here 10-5) according to Equation (10) [19] for a given
value of z and the distributed parameters resistance R and action effects G and Q.
5
10)0()0(
QGRzPgP ff
(10)
In EN 1990 [37] the partial factor is γG = 1.35 for permanent action effects and γQ = 1.5 for
variable action effects. Regarding the partial factor γm a general value of 1.3 is
recommended for solid timber and of 1.25 for glulam independently of the design situation
[7]. These values were determined for the verification of strength of beams subjected to
bending [38]. For other types of stresses like shear or tension, different γm values may be
obtained. If these values are larger than those recommended in EC5 the desired failure
probability is exceeded by applying the partial factors from EC5. If they are smaller failure
probability is below the target level but uneconomical design is the consequence.
For the combined design approach in Equation (2) both partial factors for shear and notch
capacities are to be considered. Since shear design shall not be affected by the partial factor
for notch design, γm = 1.3 is set for the shear strength fv. For the material constant A a
partial factor γNotch is determined in order to verify that the failure probability is below the
target probability for the notch capacity. However, the design value of the material
constant A should be implemented in the design approach to not confuse the user with
different partial factors. In the reliability analysis only the failure mode associated with the
notch capacity of kv is taken into account (the reliability of the system of failure modes
(shear and notch related capacity) of kv in Equation (2) is not studied). Therefore Equation
(2) is rearranged to receive a design equation according to the format of Equation (8):
0
1
8.0
1.1
15.1
22
5.1
05.0
,
kQkG
z
Notchm
kv QG
h
h
i
hb
A
f
  
(11)
The product of characteristic values of shear strength fv,k and material constant Ak can be
expressed by the fifth percentile value of notch strength A’0.05 according to Equation (5)
and Table 9. The corresponding limit state function according to Equation (9) is as follows:
11
QG
fEG
Xf v
xIf,
v
166.0
5.1 2
zg
(12)
In this limit state function all the properties shear strength fv, model uncertainty X, fracture
energy Gf,I and MOE Ex are distributed with parameters according to Table 6 and Table 9.
A ratio of Gmean / Qmean = 0.25 of self weight and live loads is assumed. Wind and snow
loads are neglected. The distribution parameter of G and Q are as given in Table 10
following JCSS recommendations [19].
The resulting notch strengths A’, partial factors γNotch and material constants A for solid
timber and glulam are summarized in Table 11. The relationship between partial factors
and characteristic and mean values are shown in Figure 9.
Table 10: Distribution characteristics for load types
according to JCSS [19] and partial factors.
Load type
Distr.
COV
char. level
γ
Self weight
Normal
10%
50%
1.35
Live Loads
Gamma
5%
98%
1.5
Table 11: Resistances, partial factor and
proposed material factors from reliability
analysis.
Solid
Timber
Glulam
A’mean [Nmm-3/2]
17.9
22.8
A’0.05 [Nmm-3/2]
12.4
15.6
A’d = fv,dAd [Nmm-3/2]
9.1
10.9
γm
1.3
1.25
γNotch = A‘0.05 / (γm A’d)
1.05
1.15
Ad = A’d / fv,d [mm1/2]
2.96 1)
3.17 2)
3.89 3)
1) EN 338:2009
2) EN 1194:1999
3) prEN 14080:2011
Figure 9: Illustration of mean-, characteristic-, fifth
percentile- and design values of action effect E and
restiance R.
The notch strength A’d is independent from the shear strength value and can be used for
different strength classes, similarly to the specified reaction force strength in the Canadian
standard CSA 083.1-94 [39]. It is particularly suitable to be applied in design codes, when
the material constants given for the design approaches should be independent of the shear
strength values in product standards as it is the case for EC5 and the corresponding
material standards EN 338, EN 1194 and prEN 14080, respectively. For the
implementation of material constant Ad as factor kn in EC5, the notch strength A’d is
divided by the corresponding shear strength values fv,d from valid material standards. If
different shear strength values are assigned to the strength classes the highest value is to be
used to determine the material factor to also provide the desired reliability for strength
classes with lower shear strength values. E.g. in the calculation of the material constant Ad
for glulam according to EN 1194 a characteristic value of shear strength fv,k = 4.3 N/mm2
assigned to GL32h is to be used.
The resulting values for the material constant Ad in Table 11 are up to two times smaller
than the existing values in the final version of EC5 (EN 1995-1-1:2004) [7]. Other
standards [39] and studies [40] declare similar values.
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
Probability density [-]
Logaritmic distribution of action effect Eand resistance R
Emean Rmean
γM
γNotch
γG,Q
R0.05
Ek
Ed=Rd
12
Conclusions
The impact of material properties on the fracture mechanical design approach for end
notched beams as given in EC5 was studied. Values and distributions of elastic material
properties included in the theoretical basis of the design approach are specified in
standards and codes whereas fracture energy can only be found in literature. In the
sensitivity analysis fracture energy is found to be the material property with the most
impact on notch capacity. A comparison of the theoretical distribution of the notch
capacity with data from experimental tests on notched beams shows a considerable model
uncertainty when taking into account only mode 1 fracture instead of both mode 1 and 2
fractures. Values of notch strength Ad were determined in a reliability analysis. They are
particularly suitable for being implemented in design codes due to their independency
towards shear strength. The revised design values of the material constants Ad, denoted kn
in EC5, were determined as well. Depending on the shear strength value used these
adapted values to be implementated in EC5 are up to two times smaller than the existing
values in the final 2004 version of EC5.
Literatur
1. Scholten, Rounding notches makes stronger joists, American Lumberman, January 19, 1935, p. 46.
2. Mistler, H.-L., Die Tragfähigkeit des am Endauflager unten rechtwinklig ausgeklinkten
Brettschichtträgers, 1979, Lehrstuhl Ingenieurholzbau und Baukonstruktionen, Technischen
Hochschule Karlsruhe, Karlsruhe.
3. Leicester, R.H., Some aspects of stress fields at sharp notches in orthotropic material, 1. Plane
stress, Division of forest products technological paper no. 57, 1971, Commonwealth scientific and
industrial research organization, Melbourne, Australia.
4. Standards Australia International, AS 1720.1-1997: Australian StandardTM - Timber Structures -
Part 1: Design methods, 1997, Standards Australia International Ltd, Sydney, Australia.
5. Gustafsson, P.J., A study of strength of notched beams, CIB-W18 Meeting 21, 1988, Parksville,
Canada, 21-10-1.
6. Valentin, G.H., et al., Application of fracture mechanics to timber structures RILEM state-of-the-art
report, Research notes 1262, 1991, Technical research centre of Finland (VTT), Espoo, Finland.
7. European Committee for Standardization CEN, EN 1995-1-1: Eurocode 5: Design of timber
structures - Part 1-1: General - Common rules and rules for buildings, 2004, CEN, Bruxelles,
Belgium.
8. Riberholt, H., et al., Timber beams notched at the support, 1991, Afdelingen for Baerende
Konstruktioner, Lyngby, Denmark.
9. European Committee for Standardization CEN, EN 338: Structural timber - Strength classes, 2009,
CEN, Bruxelles, Belgium.
10. European Committee for Standardization CEN, EN 1194: Timber structures - Glued laminated
timber - Strength classes and determination of characteristic values, 1999, CEN, Bruxelles,
Belgium.
11. Larsen, H.J. and P.J. Gustafsson, The fracture energy of wood in tension perpendicular to the grain,
CIB-W18 Meeting 23, 1990, Lissabon, Portugal, 23-19-2.
12. Larsen, H.J., H. Riberholt, and P.J. Gustafsson, Annex to paper CIB-W18/25-102-1: Eurocode 5 -
Design of notched beams, CIB-W18 Meeting 25, 1992, Ahus, Sweden, 25-102-1A.
13. DIN Deutsches Institut für Normung e.V., DIN 1052 (2008-12): Entwurf, Berechnung und
Bemessung von Holzbauwerken - Allgemeine Bemessungsregeln und Bemessungsregeln für den
Hochbau, 2008, Beuth Verlag GmbH, Berlin, Germany.
14. Swiss Society of Engineers and Architects SIA, Standard SIA 265 - Timber Structures, 2003, SIA,,
Zurich, Switzerland.
15. Franke, B., Zur Bewertung der Tragfähigkeit von Trägerausklinkungen in Nadelholz, 2008, Fakultät
für Bauingenieurwesen, Bauhaus-Universität, Weimar.
13
16. Rautenstrauch, K., et al., Beanspruchungsanalyse von Bauteilen aus Voll- und Brettschichtholz
durch Industriephotogrammetrie am Beispiel von Ausklinkungen und Durchbrüchen. Schlussbericht,
Reihe Holzbauforschung Band 5, 2008, Fraunhofer IRB Verlag, Stuttgart, Germany.
17. European Committee for Standardization CEN, prEN 14080: Timber structures - Glued laminated
timber and glued solid timber - Requirement, 2011, CEN, Bruxelles, Belgium.
18. European Committee for Standardization CEN, EN 408: Timber structures - Structural timber and
glued laminated timber - Determination of some physical and mechanical properties, 2010, CEN,
Bruxelles, Belgium.
19. JCSS, Probabilistic Model Code, 2007; Available from: www.jcss.ethz.ch.
20. European Committee for Standardization CEN, EN 384: Structural timber - Determination of
characteristic values of mechanical properties and density, 2004, CEN, Bruxelles, Belgium.
21. Glos, P. and J. Denzler, Characteristic Shear Strength Values Based on Tests According to EN
1193, CIB-W18 Meeting 36, 2003, Colorado, USA, 36-6-1.
22. Denzler, J.K. and P. Glos, Determination of shear strength values according to EN 408, Materials
and Structures, 2007, 40(1): 79-86.
23. European Committee for Standardization CEN, EN 384: Structural timber - Determination of
characteristic values of mechanical properties and density, 2010, CEN, Bruxelles, Belgium.
24. Pizio, S., Die Anwendung der Bruchmechanik zur Bemessung von Holzbauteilen, untersucht am
durchbrochenen und am ausgeklinkten Träger, Publikation Nr. 91-1, 1991, Institut für Baustatik und
Stahlbau, ETH Zürich, Zurich, Switzerland.
25. Petterson, R.W. and J. Bodig, Prediction of fracture-toughness of conifers, Wood and Fiber Science,
1983, 15(4): 302-316.
26. Jensen, J.L., Quasi-non-linear fracture mechanics analysis of the double cantilever beam specimen,
Journal of Wood Science, 2005, 51(6): 566-571.
27. Nordtest, Wood: Fracture energy in tension perpendicular to the grain, 1993, Nordtest, Espoo,
Finland.
28. Aicher, S., Bruchenergien, kritische Energiefreisetzungsraten und Bruchzähigkeiten von Fichte bei
Zugbeanspruchung senkrecht zur Faserrichtung, Holz als Roh- und Werkstoff, 1994, 52(6): 361-
370.
29. Smith, I. and Y.H. Chui, Factors affecting mode I fracture energy of plantation-grown red pine,
Wood Science and Technology, 1994, 28(2): 147-157.
30. Daudeville, L., M. Yasumura, and J.D. Lanvin, Fracture of wood in tension perpendicular to the
grain: experiment and numerical simulation by damage mechanics, CIB-W18, 1995, Copenhagen,
Denmark, 28-19-1.
31. Rug, W., M. Badstube, and W. Schöne, Determination of the fracture energie of wood for tension
perpendicular to the grain, CIB-W18A Meeting 23, 1990, Portugal, 23-19-1.
32. Gustafsson, P.J., P. Hoffmeyer, and G. Valentin, DOL behaviour of end-notched beams-
Zeitstandfestigkeit keilverzinkter Träger, Holz als Roh- und Werkstoff, 1998, 56(5): 307-317.
33. Reliability Consulting Programs (RCP), STRUREL, a Structural Reliability Analysis Program-
System, COMREL & SYSREL, 1997, RCP Consult, Munich.
34. Möhler, K. and H.-L. Mistler, Untersuchungen über den Einfluss von Ausklinkungen im
Auflagerbereich von Holzbiegeträgern auf die Tragfestigkeit, 1978, Lehrstuhl für Ingenieurholzbau
und Baukonstruktionen, Karlsruhe, Germany.
35. Riipola, K., Dimensioning of beams with cracks, notches and holes. An application of fracture
mechanics, CIB-W18 Meeting 23, 1990, Lisbon, Portugal, 23-10-2.
36. Köhler, J., J.D. Sørensen, and M.H. Faber, Probabilistic modeling of timber structures, Structural
Safety, 2007, 29(4): 255-267.
37. European Committee for Standardization CEN, EN 1990/A1: Eurocode - Basis of structural design,
2005, CEN, Bruxelles, Belgium.
38. Sørensen, J.D., Calibration of Partial Safety Factors in Danish Structural Codes, Proceedings of
JCSS Workshop on Reliability Based Code Calibration, 2002, Zurich, Switzerland.
39. CSA, O86.1-94: Engineering Design in Wood (Limit States Design), 1994, Canadian Standards
Association, Etobicoke, Ontario, Canada.
40. Aicher, S. and L. Höfflin, Glulam Beams with round holes- a comparision of different design
approaches vs. test data, CIB-W18 Meeting 35, 2002, Kyoto, Japan, 35-12-1.
... Moreover, the material properties ( , , ) influence the resulting strength, some sensitive analyse [5,6] conclude that is the most impacting property for the determination of the shear force for splitting failure of notched beams. Not taking into account the failure in mode II and considering the wood as a pure brittle material may lead to significant biases. ...
... Not taking into account the failure in mode II and considering the wood as a pure brittle material may lead to significant biases. This was highlighted by Jockwer who compared the prediction made by the Gustafsson's expression with Eurocode 5 based on properties from an experimental campaign on spruce glulam notched beams [5]. The obtained ultimate predictive loads were 20% higher than the values of the experimental campaign. ...
... Currently, the Eurocode 5 rules are based on pure brittle failure in mode I (orange curve), whereas the proposed model is based on failure in mixed mode and take into account the quasi-brittle behaviour of wood (green curve). According to Figure 6, not considering the quasi-brittle behaviour and considering only the failure in mode I, leads to an overestimation of the ultimate load of 18%, which is almost the difference found by Jockwer [5], between the predictive loads of the Gustafsson's expression and his experimental values. But considering mode II with a brittle behaviour, as preconized by Jockwer, would lead to a more important overestimation of the ultimate load (blue curve). ...
Conference Paper
Full-text available
In order to improve the design rules of structured components in the case of splitting failure, a review of the current design codes was conducted at first. A numerical model was then developed in order to take into account the mixed mode failure and the quasi-brittle behaviour of wood. An experimental campaign was performed on Maritime Pine (Pinus pinaster) and Spruce (Picea abies) in order to compare with the proposed numerical predictions. A good estimate of the load bearing capacity of the notched beams is obtained when the R-curves in mode I and II are known. The study also reveals that it is possible to reproduce the experimental load-displacement curve, which supplies more details concerning the failure mechanisms. The present study contributes to predict more accurately the load bearing capacity of structural end notched beams, which is a crucial point for the revision of Eurocode 5.
... Jockwer [4] referred this to the dominant effect of Mode 2 fracture for these smaller notches. This could only partly be confirmed by the present FE-analyses, which indeed show that the total energy release rate is more influenced by Mode 2 for large values of α, but this effect accounts for only around 5-10% of the increase in relation to assuming Mode 1 failure. ...
... En conséquence, nous ne pouvons pas réfuter les propos faits par Larsen et Gustafsson (1991) puisque notre étude porte sur une unique essence. Larsen et Gustafsson (1991) montrent qu'il existe une influence de la densité sur G Rc I , mais Jockwer et al. (2011) considèrent qu'il n'en existe pas. Il serait donc intéressant de réaliser une étude plus poussée, afin de déterminer les paramètres de rupture de Mode I et II, toujours à partir d'une unique géométrie, mais sur une large gamme de densité, ce qui implique plusieurs essences de bois. ...
Thesis
La problématique liée à la fissuration des éléments de structure en bois interpelle les professionnels depuis de nombreuses années. Les risques de fissurations sont intimement liés aux variations climatiques et notamment aux conséquences, en termes de teneur en eau du bois. De plus, en fonction de la géométrie de l’élément et des sollicitations appliquées, les fissures se propagent généralement en mode mixte et de manière intermittente.Cette thèse a pour but de caractériser les propriétés de rupture du bois et plus particulièrement du pin maritime, pour différentes teneurs en eau et pour différents modes de propagations de fissure : en Mode I (ouverture), en Mode II (cisaillement plan) et en mode mixte I+II. Cette caractérisation s’appuie sur la Mécanique Linéaire Elastique de la Rupture équivalente permettant l’estimation de courbes de résistance à la propagation de fissure (courbe-R). Par ailleurs, les propriétés de rupture étant influencées par la géométrie des spécimens d’essais nous avons fait le choix d’utiliser une unique géométrie (Mixed Mode Bending) pour caractériser les propriétés des différents modes de rupture. Ce choix entraine néanmoins un risque élevé d’instabilité de la fissuration dans bon nombre de configurations d’essais et nous avons donc dû recourir à un asservissement en déplacement par voie externe des essais afin de minimiser ces risques. Cette procédure conduit à un taux de réussite des essais (i.e., l’obtention d’une courbe de résistance « complète ») supérieur à 60 % pour les essais de Mode I (Double Cantilever Beam) et plus de 40 % pour les essais de Mode II (End Notched Flexure), toutes teneurs en eau confondues (5 % à 20 %).Parallèlement, nous proposons un modèle de courbe de résistance en mode mixte I+II basé sur les courbes-R des Modes purs I et II et leur dépendance vis à vis de la teneur en eau. Ce modèle, inspiré des modèles de zone cohésive, est composé de deux critères formulés en énergie : le premier est basé sur la résistance à la propagation de la fissure élastique équivalente et s’appuie sur la notion de taux de développement de la zone d’élaboration (FPZ) tandis que le second est fondé sur l’énergie nécessaire au développement de la zone d’élaboration. Le modèle proposé, décrit les courbes-R de mode mixte I+II expérimentales avec une précision satisfaisante et ce quels que soient la teneur en eau et le taux de mixité considérés.
... Le dimensionnement des poutres entaillées tient compte de la géométrie des entailles, ce qui nécessite l'utilisation d'une notation dédiée (Figure 1 Chacune de ces approches a ses spécificités. En 1972 [30], le code australien utilise les concepts de la mécanique linéaire élas- [41]. ...
Thesis
Full-text available
Le renforcement des assemblages et des éléments structuraux en bois vise à dépasser les limites de résistances du matériau, en assurant le transfert d’efforts plus importants dans des zones de faiblesses pouvant être la source de fissurations prématurées dans les ouvrages. Les renforts utilisés peuvent être en acier, en matériaux composites, voire même en bois. Leur accroche peut être mécanique (organes vissés) ou par adhérence (collage structural : goujons collés par exemple). Dans les deux cas, le transfert des sollicitations reste mal connu, et les effets d’amorce ou de déviation de fissure ne sont pas bien appréhendés. Dans les techniques de l’ingénieur, la résistance offerte par le bois dans la zone renforcée reste négligée, ce qui va dans le sens du principe de précaution. Actuellement, les investigations scientifiques s’intéressent à la résistance de ce type de techniques sans pour autant se pencher sur les interactions entre le comportement quasi-fragile du bois et celui des renforts qui régissent le gain en performance mécanique. Or, ces solutions peuvent aboutir à une rupture ultime provoquée par le fendage progressif du bois et la perte d’ancrage du renfort. Il semble donc dans un premier temps utile de proposer des prédictions de la résistance à court terme au fendage des poutres renforcées et sans renfort, qui peuvent servir à l’exploration ultérieure des mécanismes de ruine pour les comportements à long terme. C’est pourquoi, dans cette étude, un modèle global de prédiction de la résistance ultime des composants de structure soumis au fendage, renforcés et non-renforcés, a été développé. Il considère l’aspect quasi-fragile du bois et la propagation de fissure en mode mixte, à l’aide d’une loi de mélange établie sur les courbes-R. La pertinence de cette modélisation est ensuite comparée aux méthodes de dimensionnement actuellement proposées dans les Eurocodes 5, pour les poutres entaillées, via des campagnes expérimentales à différentes échelles.
... The reliability of the approaches for the design of connections loaded perpendicular to the grain can be evaluated as desribed in Kohler et al. (2012) or Jockwer et al. (2011). In the general design equation (Eq. ...
Conference Paper
Full-text available
In this paper different design approaches for connections loaded perpendicular to the grain are evaluated with regard to their reliability. The structural behaviour of connections loaded perpendicular to the grain is described based on existing experimental and theoretical studies. The detailed failure behaviour of dowel connections loaded perpendicular to grain with slotted in steel plates is analysed in a recent test series. Based on these observations and on a large number of test results from literature different design approaches are benchmarked. The design and characteristic values of the relevant material parameters and the partial safety factors for the design of connections loaded perpendicular to grain are determined in a reliability analysis. As a result a much lower design value of the material parameter used in the EC5 design equation for connections loaded perpendicular to grain is proposed.
Article
Full-text available
End-notched timber beams can have a significant decrease in load-carrying capacity as a consequence of stress concentration due to height reduction at the supports. To prevent crack opening and its propagation at the notches, these beams are usually reinforced. In this paper, extensive experimental research on end-notched glulam beams reinforcement with glass fibre reinforced polymer - GFRP bars is presented. Bending tests on unreinforced and reinforced end-notched glulam beams were carried out until the point of failure. Behaviour of tested beams is described through load–deflection diagrams, failure modes and ultimate loads. In addition, different reinforcement schemes of notches were analysed in order to determine an optimal configuration under the aspect of load-carrying capacity improvement in relation to the unreinforced beams. The effectiveness of GFRP bars as a reinforcement of end-notched glulam beams was evident from significantly increased ultimate load and deformability. The design procedures for unreinforced end-notched beams according to Eurocode 5 and reinforced end-notched beams according to German national annex of Eurocode 5 were analysed through comparison with the experimental results. Recommendations for the design of GFRP reinforcement are given.
Thesis
Full-text available
The thesis describes the process of üre-design, the calculation and the description of a design model for new types of timber-to-timber connections. Based on the traditional mortise and timber joint the multiple tenon connection was developed and experimentally investigated in this thesis. Two or more tenons enable to share the total shear force into multiple contact forces. Thus, several possible crack layers occur. An optimised connection geometry was developed by applying FE-based optimisation process. The result of an experimental test campaign was a three times higher load capacity compared to the single tenon geometry. A detailed analysis of the strains and stresses in the crack area showed the influence of transversal tension stresses on the fracture process in mode I and shear parallel to the wood fiber in mode II. Due to the comparability with end-notched beams, tenons could be analysed by the energy-based approach and by the application of the finite element method (FEM) with cohesive zones or the evaluation of the J-integral. The J -integral is calculated out of the strains and stresses in a linear elastic model. The fracture criteria is reached, when the J -integral exceeds the combined specific fracture energy in mode I and II. After reliability and sensitivity of the model was checked, a para- metric study was performed to carve out the main influences of the geometric dimensions and relations of notched beams, tenon connections and multiple tenon connections. The results of the parametric study were used to set up a simplified model to calculate the load bearing resistance based on the decisive geometrical parameters. The finally proposed model to design tenons and multiple tenons is based on the energy conservation which was already used for the design of end-notched beams in Eurocode 5. All principles of the energy-based method were applied on the mortise and tenon joint and the multiple tenon connection together with mechanical consistent assumptions of the crack propagating which were extracted from the experimental results and the FE analysis. All models were compared and showed very good results compared to experimental failure loads of multiple tenon connections. In the end a reliability analysis was performed to determine the main design parameters for tenons and multiple tenon connections on the characteristic design level with reference to the formulation of Eurocode 5. The design parameter k n was evaluated for both connection types and considers the spreading of the material properties as well as the model uncertainties. The given proposal enables the integration of the tenon connection as well as the multiple tenon connection into the design formulation of end-notched beams in Eurocode 5. Currently, the design of CNC-manufactured dovetail connection is also referring to the Eurocode 5. A collection of all experimental results under the application of a reliability analysis could extend the given design proposal as well. For the structural design, the J-integral model was presented. More applications for this model are probable regarding the design and optimisation of new types of timber-to-timber connections. Auf Grundlage der traditionellen Zapfenverbindung wurde in dieser Arbeit die gereihte Zapfenverbindung entwickelt. Durch die verteilte Kraftübertragung auf eine Vielzahl von Zapfen kann die Tragfähigkeit entscheidend erhöht werden, mehrere potentielle Rissebenen sind jedoch vorstellbar. Für die optimierte Anschlussgeometrie der gereihten Zapfenverbindung mittels der Finiten- Elemente-Methode (FEM) wurden unterschiedliche Zapfengeometrien und Einbauvarianten im Entwurf berücksichtigt und experimentell untersucht. Obwohl es sich um ein sprödes Versagen der Verbindung handelt, konnten, bei Bauteilen aus Brettschichtholz, durch die Verteilung der Spannungen, sehr geringe Streuungen der Bruchlasten im Vergleich zu ausgeklinkten Trägerauflagern oder der traditionellen Zapfenverbindung erzielt werden. Die Auswertung der Verzerrungen an den Rissebenen konnte zeigen, dass Querzugspannun- gen in Modus I sowie Schubspannungen in Modus II auftreten, welche das Versagen durch die kritische Rissentwicklung unterhalb der Zapfen in Richtung der Holzfaser einleitet. Die Rissentwicklung an Zapfen und ausgeklinkten Trägerauflagern sind vergleichbar, sodass sich für die Berechnung von Bruchlasten das analytische Konzept der Energiebilanz, sowie die Finite-Elemente-Methode mit Kohäsivzonen oder mit J-Integral eignen. In dieser Arbeit wurden die drei verschiedenen Berechnungskonzepte weiterentwickelt und auf die Zapfenverbindung und die gereihte Zapfenverbindung angewendet und verglichen. Die Finite-Elemente-Methode mit Kohäsivzonen ermöglicht die Simulation der Rissentwick- lung, wodurch eine realitätsnahe Last-Verformungskurve, sowie die Bruchlast, bestimmt werden kann. Mit Hilfe der berechneten Bruchlast verschiedener Modellkonfigurationen konnte die Anschlussgeometrie der Zapfen weiter optimiert und der Einfluss von Passunge- nauigkeiten im Anschluss identifiziert werden. Des Weiteren konnte das J -Integralmodell auf Grundlage der FEM weiterentwickelt werden, um die Bruchlast von Riss behafteten Strukturen unter Beanspruchung des Modus I und II zu ermitteln. Über die die kombinierte spezifische Bruchenergie konnte die Bruchlast von ausgeklinkten Trägerauflagern, Zapfen und gereihten Zapfenverbindungen in umfangreichen Parameterstudien zuverlässig bestimmt werden. Aus den Ergebnissen wurde ein vereinfach- tes Handrechenmodell zur Bestimmung der Bruchlast von ausgeklinkten Trägerauflagern, Zapfen- und gereihten Zapfenverbindungen entwickelt. Ein weiters Bemessungskonzept für Zapfen- und gereihte Zapfenverbindungen basiert auf dem Konzept der Energiebilanz, welches auf der Basis des ausgeklinkten Trägeraufla- gers weiterentwickelt wurde. Der Vergleich experimenteller und berechneter Mittelwerte von Bruchlasten zeigte hier die beste Übereinstimmung. Über die Anwendung einer Zu- verlässigkeitsanalyse konnten die Proportionalitätskonstanten k n in Abhängigkeit der Materialparameter für Brettschichtholz und Nadelvollholz bestimmt werden. Hierdurch konnte ein Vorschlag für ein Bemessungsmodell für Zapfen und gereihte Zapfenverbindun- gen als Integration in den Tragfähigkeitsnachweis für ausgeklinkte Trägerauflager nach DIN EN 1995-1-1 gemacht werden. Es ist denkbar, dass der erarbeitete Vorschlag auf weitere Verbindungstypen, wie den Schwalbenschwanzzapfen, und auf andere Werkstoffe angewendet werden kann. Zudem bietet das entwickelte J -Integralmodell vielfältige Möglichkeiten zur Modellie- rung von Holzverbindungen und zur Bestimmung von Bruchlasten sowie zur weiteren Formoptimierung von Holz-Holz-Verbindungen.
Article
Formschlüssige Holz‐Holz‐Verbindungen haben aufgrund der einfachen Herstellung und Montage eine lange Tradition und gleichzeitig ein großes Potential im modernen Holzbau. In den vergangenen Jahren wurde u.a. die Zapfenverbindung sukzessive an die CNC‐Produktionstechniken angepasst und weiterentwickelt. Mit schwalbenschwanzförmigen Zapfen wurden so die Montageabläufe und bei der gereihten Zapfenverbindung die Tragfähigkeit entscheidend verbessert. Experimentelle Untersuchungen zeigten, dass bei allen auf der Zapfenverbindung basierenden Verbindungstypen das Versagen von der Rissentwicklung am Zapfen eingeleitet wird. Hohe Querzug‐ und Schubspannungen in der Rissebene führen dann, wie bei ausgeklinkten Trägerauflagern, zum Versagen des Bauteils. In dem folgenden Beitrag wird eine Bemessung von Zapfenverbindungen mit Bezug zu dem Konzept vorgeschlagen, welches der Eurocode 5 für die Ausklinkung bereithält. Dies basiert auf der bruchmechanischen Auswertung des Rissprozesses und wird dann zu einem Nachweis mit Bezug auf die Schubfestigkeit umformuliert. Das entwickelte Modell zeigt sehr gute Übereinstimmung mit experimentellen Ergebnissen. Durch die Analyse der Ergebnisse aus experimentellen Untersuchungen an Zapfenverbindungen konnte eine Zuverlässigkeitsanalyse der aufgestellten Bemessungsgleichung durchgeführt werden. Das vorgeschlagene Bemessungskonzept für den Grenzzustand der Tragfähigkeit ist als Erweiterung der Bemessung für ausgeklinkte Trägerauflager konzipiert und ist auf unterschiedliche Zapfenverbindungen anwendbar. Abstract: Tenon connections in timber constructions ‐ fracture mechanic analysis and proposal of a new design model: Timber‐to‐timber connections benefits in terms of the production and assembly process in structural timber engineering. In the past few years, the traditional mortise and tenon connection was adapted step‐by‐step on the CNC production process. New connection types as the dovetail connection enables a better installability and multiple tenon connections show significant higher loading capacity. Experimental investigations showed that all these connection types fail due to the crack propagation in grain direction. Transversal tension stresses combined with shear stresses as observed at the notch results in failure. In this contribution the failure load of tenon connections will be developed with the energy‐based fracture mechanic method used in Eurocode 5. The new model shows good accordance to experimental investigations on tenon connections. A normalization of the experimental test results enabled a reliability analysis of the developed design equations. The proposed design equation is a modification of the Eurocode 5 formulation and allows to calculate the ultimate limit state of tenon joints.
Conference Paper
Full-text available
Cet article établit le protocole d'une campagne expérimentale, qui sera réalisé prochainement, et ayant pour objectif de comparer les propriétés de rupture en mode I et II, de l'Epicéa et du Pin Maritime. Afin de s'affranchir de l'influence de la géométrie, une géométrie unique pouvant être testée en mode I et II a été étudiée. De plus, pour limiter les effets de la variabilité, les éprouvettes testées sont jumelées selon deux méthodes différentes de débit. Dans cette étude le bois est considéré comme quasi-fragile, ainsi les comparaisons seront effectuées à partir des courbes-R. Le dernier objectif de cette campagne expérimentale, est d'établir une relation entre l'angle des cernes de croissance du bois et les paramètres des courbes-R selon les deux modes de rupture. ABSTRACT. This article aimed at establishing the protocol of an experimental campaign, in order to characterize the degree of anisotropy of fracture energies of Spruce and Maritime Pine (mode I and I). In order to avoid the influence of the geometry on the fracture properties, a single geometry, was chosen. Moreover, in order to reduce the effect of variability, the tested specimen are twinned according to two different methods. In this study wood is considered as quasi-brittle material, so the comparison will be performed according to different R-curve parameters. The last objective of this investigation is to determine a relationship between the orientation of the annual rings and corresponding R-curve parameters in mode I and II of failure. MOTS-CLÉS : Pin Maritime, Epicéa, Rupture, Mode I, Mode II, Quasi-fragilité.
Book
Full-text available
COST Action FP1004, Enhance Mechanical Properties of Timber, Engineered Wood Products and Timber structures, has a broad mandate. Clearly timber suffers in comparison with homogeneous, isotropic materials such as steel. There are many ways of addressing the variability timber, which is a result of it being a natural, harvested product. There are techniques for moderating the effects of timber’s different strength and stiffness at angles to the grain. The objective of the COST Action is to bring together an understanding of the state of the art in research in these areas and to identify particular gaps in knowledge. At the first Management Committee Meeting of the COST Action, in November 2012, there were two important decisions. Firstly, the delegates agreed to focus, initially, on a selection of the key issues outlined in the Memorandum of Understanding, which underpin the scope of the project. Secondly, in response to COST Action Strategic intent, delegates agreed to promote a conference that would focus on Early Stage Researchers, giving them the maximum opportunity to become involved in the COST Action and helping them to promote their research and network with one another and to meet experts in their field of work. The result of these two decisions was the Early Stage Researchers Conference in Zagreb, held on 19 and 20 April 2012. The template for the call for papers was an extended abstract and the papers selected for presentation are published in these proceedings. They form an excellent basis for understanding the State of the Art in these important areas of research. The COST Action will proceed to explore these and wider areas of research in the field of enhancement of performance of timber. Attendees at the Conference, many of whom were presenting at an international conference for the first time, were able to enter into dialogue with their peers and with international experts. Scientific collaboration will develop from these exchanges and the many delegates will look back on Zagreb as an important milestone in their careers.
Article
The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures’ [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties is presented and possible refinements are given related to updating of the probabilistic model given new information, modeling of the spatial variation of strength properties and the duration of load effects.
Article
A quasi-non-linear fracture mechanics model based on beam on elastic foundation theory is applied for analysis of the double cantilever beam (DCB) specimen for determination of fracture energy of wood. The properties of the elastic foundation are chosen so that the perpendicular-to-grain tensile strength and fracture energy properties of the wood are correctly represented. It is shown that this particular choice of foundation stiffness makes a conventional maximum stress failure criterion lead to the same solution as the fracture mechanics compliance method. Results of linear elastic fracture mechanics are obtained as a special case by assuming an infinitely large value of the perpendicular-to-grain tensile strength. The quasi-non-linear fracture mechanics model is compared with other models and with results of tests conducted to reveal the influence of the geometrical properties of the DCB specimen. In addition, the appropriateness of choice of the foundation stiffness is investigated.
Article
Mode I fracture energy of premature plantation-grown red pine is discussed, for crack growth in the longitudinal direction. It is demonstrated that fracture energy is influenced by moisture content at test and the direction that stress is applied in the radial-tangential plane. Secondary influences of moisture conditioning and density on fracture energy were observed, with the severity related to the moisture content of the material at test. Discrepancies with findings in the literature are identified and discussed. It is likely that results of this study apply to other conifer species with low extractive contents.
Article
It is reported on Mode I fracture energyG f, critical strain energy release rateG c and fracture toughnessK c of spruce in RL-crack system. The investigations were performed with special SENB specimens acc. to a CIB W18A draft standard. For determination of size effects geometrically similar specimens of significant different sizes were tested; the cross-sectional depthd varied from 10 to 320 mm and notch length was constant 0,6d. All “tension perpendicular to grain volumes” were cut from two boards with similar mean densities of about 460 kg/m3. The paper first deals with some general aspects of related energy termsG f resp.G c and then gives finite element results for normalized strain energy release rates and stress intensity factors of the specific orthotropic specimen. The experimental results can be summarized as follows: Fracture energyG f is quite independent of initial crack length and counts in mean 280 N/m; the 5th percentile value due to fitted 3parameter Weibull distribution is 180 N/m and thus about 30% lower as given implicitly in Eurocode 5 for respective density. For density dependency in the range of about 420 to 480 kg/m3 the linear relationG f≈0,62 ρ12 was found. Critical strain energy release rateG c increases degressively with specimen depth resp. initial crack length. Compared toG f,G c is roughly 25% lower up to crack lengths of about 60 mm and is then of similar quantity asG f. Fracture toughnessK c alikeG f, was found to be quite independent of initial crack length; for mean and characteristic values 440 resp. 280 kN/√m3 were received.
Article
This paper presents the results of 382 shear tests carried out according to EN 408. The test pieces consisted of spruce (Picea abies) and varied in density and ring width orientation (radial, tangential and at an angle of 45° to the steel plates). In addition pieces containing pith and knots were tested. The paper discusses problems observed when using this test configuration and shows that the test results do not support the characteristic shear strength values as given in EN 338. Moreover, the test results do not support the relationship between characteristic shear strength and characteristic bending strength as given in EN 384. Cet article présente les résultats de 382 essais de cisaillement menés conformément à EN 408. Les éprouvettes d’essai sont en épicéa (Picea abies) et présentent une variabilité en termes de masse volumique et d’orientation des cernes d’accroissement (radiale, tangentielle, à un angle de 45° par rapport aux plaques métalliques). Des éprouvettes supplémentaires contenant du cœur et des nœuds ont également été testées. L’article évoque les problèmes qui ont été mis en évidence lors de l’utilisation de ce dispositif expérimental et montre que les résultats expérimentaux ne sont pas en accord avec les valeurs caractéristiques de résistance au cisaillement données dans EN 338. De plus, ces résultats ne confirment pas la relation entre résistance caractéristique au cisaillement et résistance caractéristique à la flexion telle que stipulée dans EN 384.
Article
The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested after conditioning in the various climates. Both the short-term and long-term strength of beams without moisture sealing was significantly affected by transient moisture conditions, e.g. the moisture variations due to change of the time of the year. The strength was only slightly affected by the magnitude of the humidity, if this was kept constant. Duration of load strength reduction factors were evaluated for 6 months of loading. Average reductions in ultimate failure strength ranged from 0.68 for small LVL beams without moisture sealing tested during spring and summer to 0.81 for large glulam beams with a moisture sealing at the notch. Die Zeitstandfestigkeit keilverzinkter Träger aus Glulam und LVL wurde geprüft. Die Balken waren unterschiedlich bemessen und mit oder ohne Endversiegelung versehen Die Prüfung erfolgte sowohl in natürlichem, geschützten Klima als auch bei konstanter Feuchte und im Wechselklima. Die Kurzzeitfestigkeit wurde jeweils nach dem Konditionieren geprüft. Alle Ergebnisse an nicht versiegelten Proben waren deutlich beeinflußt durch Feuchteübergänge, z.B. die Feuchtewechsel innerhalb eines Jahres. Die Festigkeit hing nur in geringem Maße vom Wassergehalt ab, wenn dieser konstant gehalten war. Reduktionsfaktoren (k mod) wurden für ömonatige Belastung ermittelt. Die durchschnittlichen Werte für die Bruchlast lagen im Bereich von 0,68 für kleine LVL-Träger ohne Feuchteversiegelung (geprüft im Frühjahr und Sommer) bis zu 0,81 für lange Brettschichtholz-Träger mit Feuchteversiegelung der Keilzinken.