ArticlePDF Available

Carbon Footprint of Cassava Starch Production in North-Eastern Thailand

Authors:

Abstract

Carbon footprint was calculated for cassava starch product in Thailand. Objective of this study was to evaluate and compare the global warming impacts of cassava starch production in 3 factories located in North-Eastern Thailand. The system boundary was defined from cradle to factory gate, starting from cassava cultivation and harvesting until cassava starch production by using life cycle assessment (LCA) methodology based on ISO 14040 series. The selected functional unit was 1,000 kg of dry native starch, excluding packaging. Input and output data were analyzed and results were shown in terms of global warming potential (GWP) impact categories. The average greenhouse gases (GHGs) emission value based on LCA methodology of 3 factories was 594 kgCO2e per one ton of dry native starch. The results indicated that the cultivation and harvesting procedure was the major source emitting GHGs, around 40-59% of the total, if the factory used the biogas from wastewater treatment plant. Based on this result, the estimated total GHGs emission of cassava starch production in Thailand in the year 2013 was a total of approximately 10,500 million tons of CO2e.
Available online at www.sciencedirect.com
2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of The 22nd CIRP conference on Life Cycle Engineering
doi: 10.1016/j.procir.2015.02.031
Procedia CIRP 29 ( 2015 ) 462 467
ScienceDirect
7KHQG&,53&RQIHUHQFHRQ/LIH&\FOH(QJLQHHULQJ
&DUERQ)RRWSULQWRI&DVVDYD6WDUFK3URGXFWLRQLQ1RUWK(DVWHUQ7KDLODQG
3KDLUDW8VXEKDUDWDQD
D
DQG+DUQSRQ3KXQJUDVVDPL
D

D
&KHPLFDO(QJLQHHULQJ'HSDUWPHQW)DFXOW\RI(QJLQHHULQJ7KDPPDVDW8QLYHUVLW\3DWKXPWKDQL7KDLODQG
&RUUHVSRQGLQJDXWKRU7HOID[(PDLODGGUHVVSKDUQSRQ#HQJUWXDFWK
Abstract
&DUERQ IRRWSULQW ZDV FDOFXODWHG IRU FDVVDYD VWDUFK SURGXFW LQ 7KDLODQG 2EMHFWLYH RI WKLV VWXG\ ZDV WR HYDOXDWH DQG FRPSDUH WKH JOREDO
ZDUPLQJLPSDFWVRIFDVVDYDVWDUFKSURGXFWLRQLQIDFWRULHVORFDWHGLQ1RUWK(DVWHUQ7KDLODQG7KHV\VWHPERXQGDU\ZDVGHILQHGIURPFUDGOH
WR
IDFWRU\ JDWH VWDUWLQJ IURP FDVVDYD FXOWLYDWLRQ DQG KDUYHVWLQJ XQWLO FDVVDYD VWDUFK SURGXFWLRQ E\ XVLQJ OLIH F\FOH DVVH
VVPHQW /&$
PHWKRGRORJ\EDVHGRQ,62VHULHV7KHVHOHFWHGIXQFWLRQDOXQLWZDVNJRIGU\QDWLYHVWDUFKH[FOXGLQJSDFNDJLQJ,QSXWDQGRXWSXW
G
DWD ZHUH DQDO\]HG DQG UHVXOWV ZHUH VKRZQ LQ WHUPV RI JOREDO ZDUPLQJSRWHQWLDO *:3 LPSDFW FDWHJRULHV 7KHDYHUDJH JUHHQKRXVHJDVHV
*+*VHPLVVLRQYDOXHEDVHGRQ/&$PHWKRGRORJ\RIIDFWRULHVZDVNJ&2
HSHURQHWRQRIGU\QDWLYHVWDUFK7KHUHVXOWVLQGLFDWHGWKDW
WKHFXOWLYDWLRQDQGKDUYHVWLQJSURFHGXUHZDVWKHPDMRUVRXUFHHPLWWLQJ*+*VDURXQGRIWKHWRWDOLIWKHIDFWRU\XVHGWKHELRJDVIURP
Z
DVWHZDWHUWUHDWPHQWSODQW%DVHGRQWKLVUHVXOWWKHHVWLPDWHGWRWDO*+*VHPLVVLRQRIFDVVDYDVWDUFKSURGXFWLRQLQ7KDLODQGLQWKH\HDU
ZDVDWRWDORIDSSUR[LPDWHO\PLOOLRQWRQVRI&2
H
7KH$XWKRUV3XEOLVKHGE\(OVHYLHU%9
3HHUUHYLHZXQGHUUHVSRQVLELOLW\RIWKH,QWHUQDWLRQDO6FLHQWLILF&RPP
LWWHHRIWKH&RQIHUHQFH³QG&,53FRQIHUHQFHRQ/LIH&\FOH
(QJLQHHULQJ
.H\ZRUGV/LIHF\FOHDVVHVVPHQW&DVVDYD*UHHQKRXVHJDV&DUERQIRRWSULQW6WDUFK
1. Introduction
&DVVDYDLVDQLPSRUWDQWIRRGSODQW7KHVFLHQWLILFQDPHLV
0DQLKRW HVFXOHQWD &UDQWV DQG FRPPRQ QDPHV DUH VXFK DV
FDVVDYD \XFFD PDQGLRD PDQLRF DQG WDSLRFD 7KH ZRUOG
SURGXFWLRQ ZDVDERXW  PLOOLRQ WRQV LQ WKH \HDU  >@
7KH SURGXFWLRQ UDWH LQFUHDVHG WR  IURP WKH \HDU 
1LJHULDSURGXFHG WKHILUVWFDVVDYDLQWKH ZRUOGDQGIROORZHG
E\ 7KDLODQG >@ 7KH DYHUDJH SODQWDWLRQ DUHD LQ 7KDLODQG LV
DERXW  WR  PLOOLRQ P
LQ WKH ODVW \HDUV >@
0RVWRIWKHFDVVDYDSODQWDWLRQVDUHORFDWHGLQWKH1RUWK(DVW
&HQWUDODQG1RUWKRI7KDLODQG7KHWRWDO
FDVVDYDURRWVZDVDERXWPLOOLRQWRQVLQWKH\HDUFKLS
DQGSHOOHWVWDUFKDQGHWKDQRO$ERXW
PLOOLRQWRQVRIFDVVDYDVWDUFKZDV XVHGQDWLRQDOO\DQGDERXW
PLOOLRQWRQVZDVH[SRUWHGLQWKH\HDU>@$VVKRZQ
LQ 7DEOH  WKH H[SRUWV RI FDVVDYD VWDUFK FRQVLVW RI QDWLYH
VWDUFK  PRGLILHG VWDUFK  DQG VDJR  >@
&DVVDYD VWDUFK LV XVHG QRW RQO\ IRU KRXVHKROG FRQVXPSWLRQ
EXWDOVRDVDUDZPDWHULDOIRUPDQ\SURGXFWVVXFKDVIRRG
DQG EHYHUDJH LQGXVWULHV  VZHHWHQHU LQGXVWULHV  WH[WLOH
LQGXVWU\  SDSHU LQGXVWU\  JOXH LQGXVWU\  SO\ZRRG
LQGXVWU\06*DQGO\VLQHLQGXVWU\PHGLFDOLQGXVWU\
ELRGHJUDGDEOHPDWHULDOVHWF
7DEOH4XDQWLW\RIH[SRUWHGFDVVDYDVWDUFKLQ\HDU
1DWLYHVWDUFK
WRQ
0RGLILHGVWDUFK
WRQ
6DJR
WRQ
-DQXDU\



)HEUXDU\



0DUFK



$SULO



0D\



-XQH



-XO\



$XJXVW



6HSWHPEHU



2FWREHU



1RYHPEHU



'HFHPEHU



$OWKRXJKWKHVWDUFKLQGXVWU\FRQWULEXWHVLQFRPHWR7KDLODQG
LW DOVR JHQHUDWHV KLJK HQYLURQPHQWDO LPSDFWV GXH WR
FXOWLYDWLRQ DQG SURGXFWLRQ DW WKH VDPH WLPH 0RUHRYHU
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer
-review under responsibility of the scientifi c committee of The 22nd CIRP conference on Life Cycle Engineering
463
Phairat Usubharatana and Harnpon Phungrassami / Procedia CIRP 29 ( 2015 ) 462 – 467
DFFRUGLQJZLWK7KDLODQG6WUDWHJLF3ODQQLQJ<HDUV
IRU FDVVDYD SURGXFWLRQ OLIH F\FOH DVVHVVPHQW DQG FDUERQ
IRRWSULQWVKRXOGEHLQYHVWLJDWHG >@5HVHDUFKSURMHFWV LQWKH
SDVW VKRZ WKDW WKHUH DUH PRGHUDWH QXPEHU RI VWXGLHV
FRQFHUQLQJ WKH HQYLURQPHQWDO LPSDFWV RI VWDUFK SURGXFWLRQ
SURFHVV$OVRPRVWRIOLIHF\FOHDVVHVVPHQWVWXGLHVRQVWDUFK
SURGXFWIRFXVRQWKHHQHUJ\LVVXHVVXFKDVELRHWKDQRO>@RU
ZDWHUIRRWSULQWRIVWDUFKFXOWLYDWLRQ>@+RZHYHURQO\DIHZ
VWXGLHV HQFRPSDVV WKH HQYLURQPHQWDO LPSDFWV RI VWDUFK
SURGXFWVE\XVLQJOLIHF\FOHDVVHVVPHQW/&$PHWKRGRORJ\
EHVLGHV WKH\ GLG QRW FRQIRUP WR 7KDLODQGV FDUERQ IRRWSULQW
DVV
HVVPHQW PHWKRGRORJ\ 7KH FDVVDYD VWDUFK SURGXFWLRQ
LQGXVWU\FDQFDXVHDYDULHW\RIHQYLURQPHQWDOHIIHFWVVXFKDV
ZDVWHZDWHU IURP VWDUFK SURGXFWLRQ ODQGXVH FKDQJH HWF $V
LQFUHDVLQJ FRQFHUQV RI FOLPDWH FKDQJH WKH JRYHUQPHQW DQG
FRPSDQLHV KDYH EHHQ LQWHUHVWHG LQ HVWLPDWLQJ JUHHQKRXVH
JDVHV HPLVVLRQV RI SURGXFWV $QG PDQ\ LQGXVWULHV UHJXODUO\
XVHFDVVDYDVWDUFKDVDUDZPDWHULDODQGWHQGWRDSSO\FDUERQ
IRRWSULQW UHVXOWV IRU IXUWKHU DFWLRQ 7KHUHIRUH WKH
HQYLURQPHQWDO LPSDFWV DVVHVVPHQW RI FDVVDYD VWDUFK
SURGXFWLRQ VKRXOG EH FRQVLGHUHG LQ RUGHU WR HYDOXDWH DQG
LGHQWLI\ KRWVSRWV WR UHGXFH WKH HQYLURQPHQWDO LPSDFWV E\
XVLQJ OLIH F\FOH DVVHVVPHQW DQG FDUERQ IRRWSULQW
PHWKRGRORJ\ ,Q DGGLWLRQV LQ WKH SDVW WKHUH DUH RQO\ D IHZ
UHVHDUFKHVVWXG\LQJGDWDGHYLDWLRQIRUHQYLURQPHQWDOLPSDFWV
DVVHVVPHQW HVSHFLDOO\ FXOWLYDWLQJ GDWD 7KHUHIRUH LQ WKLV
VWXG\WKHSULPDU\REMHFWLYHZDVWRHYDOXDWHDQGFRPSDUHWKH
FDUERQIRRWSULQWRIFDVVDYDVWDUFKSURGXFWLRQXVLQJOLIHF\FOH
DVVHVVPHQW PHWKRGRORJ\ WR FRPSDUH WKH UHVXOWV IURP WKH
GLVWLQFW GDWD QRW LGHQWLILHG DV VDPSOH DQG WR DFKLHYH WKLV
JRDO IDFWRULHV ORFDWHG LQ 1RUWK(DVWHUQ 7KDLODQG ZHUH
VHOHFWHG
2. Materials and method
/LIH F\FOH DVVHVVPHQW /&$ LV D ZLGHO\ DFFHSWHG
PHWKRGRORJ\IRUHVWLPDWLQJWKHHQYLURQPHQWDOLPSDFW UHODWHG
WR WKH VHOHFWHG SURGXFW RU VHUYLFH 7KLV DSSURDFK LV PRVW
DSSOLFDEOHWRXQGHUVWDQGWKHW\SHVVRXUFHVDQGORFDWLRQVRI
LPSDFWV DFURVV WKH VXSSO\ FKDLQ >@ )RU WKH LPSDFW WKH
FDUERQIRRWSULQWKDVEHFRPHRQHRIWKHNH\HQYLURQPHQWDO
SURWHFWLRQLQGLFDWRUV>@&DUERQIRRWSULQWLVEDVHGRQD/&$
PHWKRGRORJ\ EXW RQO\ IRFXVHV RQ D VLQJOH LVVXH ZKLFK LV
JOREDO ZDUPLQJLPSDFW &DUERQ IRRWSULQW LV GHILQHG DV WKH
WRWDODPRXQWRIJUHHQKRXVHJDVHPLVVLRQVERWKGLUHFWO\DQG
LQGLUHFWO\ HPLWWHG IURP SURGXFWLRQ SURFHVVHV ZLWKLQ D
VHOHFWHG V\VWHP ERXQGDU\ $FFRUGLQJ WR WKH ,62 VWDQGDUGV
,62/&$VWXG\KDVIRXUSKDVHVQDPHO\JRDODQG
VFRSH GHILQLWLRQ  OLIH F\FOH LQYHQWRU\ DQDO\VLV  OLIH
F\FOHLPSDFWDVVHVVPHQWDQGLQWHUSUHWDWLRQ>@
*RDODQGVFRSHRIWKHVWXG\
7KH REMHFWLYHV RI WKH VWXG\ ZHUH WR SUHVHQW D FDUERQ
I
RRWSULQWHYDOXDWHDQGFRPSDUHWKHJOREDOZDUPLQJLPSDFWRI
FDVVDYD VWDUFK SURGXFWLRQ LQ  IDFWRULHV ORFDWHG LQ 7KDLODQG
7KHVHUHVXOWVZHUHXVHGWRLGHQWLI\WKHKRWVSRWVRUVRXUFHVRI
WK
HHQYLURQPHQWDOORDGLQHDFKOLIHF\FOHVWDJH,62
JXLGHOLQHV >@ DQG 7KDLODQG 1DWLRQDO *XLGDQFH RQ &DUERQ
)RRWSULQ
W&DOFXODWLRQIRU3URGXFWV>@ZHUHXVHGDVWKH/&$
P
HWKRGRORJ\,3&&PHWKRGRORJ\>@ZDVDOVRXVHGIRU
L
PSDFWDVVHVVPHQW0RUHRYHUUHVXOWVPLJKWEHXVHGIRUSROLF\
PD
NHUV LQ GHFLVLRQPDNLQJ WR LPSURYH WKH HQYLURQPHQWDO
SHUI
RUPDQFH RI WKH LQGXVWU\ 'DWD KDV EHHQ REWDLQHG IRU WKH
\HDUDVDEDVLVZKHUHYHUSRVVLEOH
)XQFWLRQDOXQLWDQGV\VWHPERXQGDU\
7KH SURGXFW UHVXOWV DUH UXQ EDVHG RQ D XQLW RI WKHLU
I
XQFWLRQ )XQFWLRQDO XQLW LV D PHDVXUH RI WKH IXQFWLRQRI WKH
VWXGLHG V\VWHP DQG SURYLGHV D UHIHUHQFH XQLW WR ZKLFK WKH
LQ
YHQWRU\ GDWD FDQ EH UHODWHG >@ 7KHUHIRUH WKH IXQFWLRQDO
X
QLWLQWKLV VWXG\ ZDVVHWWR EHNJRIGU\QDWLYHVWDUFK
H[FOXGLQJSDFNDJLQJ
7KLVVWXG\IRFXVHVRQ WK
H SRWHQWLDO RI WKH HQYLURQPHQWDO
LPSDFWVIURPWKHQDWLYHVWDUFK7KHV\VWHPERXQGDU\LQFOXGHV
SODQW FXOWLYDWLRQ WUDQVSRUWDWLRQ RI FDVVDYD WR IDFWRU\ DQG
VWDUFK SURFHVVLQJ VR LW ZDV FDOOHG ÄIURP FUDGOH WR IDFWRU\
JDWH,QIRUPDWLRQFROOHFWHG IRUWKLVVWXG\FDPH PDLQO\ IURP
SULP
DU\GDWDLQWHUYLHZV7KHSURFHGXUHRIOLIHLQYHQWRU\/&,
LVVXPPDUL]HGLQ7DEOH7KHVWDUFKSURFHVVLQJ LVVKRZQLQ
)LJ
7DEOH3URFHGXUHRIOLIHF\FOHLQYHQWRU\
/LIHF\FOHVWDJH
'DWD
'DWDVRXUFHDQGFROOHFWLQJPHWKRG
3ODQWFXOWLYDWLRQ
)XHOXVH
)HUWLOL]HUXVH
+HUELFLGHXVH
7UDQVSRUWDWLRQ
&DVVDYDIDUPHUV/LWHUDWXUH>@
&DVVDYDIDUPHUV/LWHUDWXUH>@
&DVVDYDIDUPHUV/LWHUDWXUH>@
&DVVDYDIDUPHUV/LWHUDWXUH>@
7UDQVSRUWDWLRQ
7\SH RI YHKLFOH
DQGGLVWDQFH
6WDUFKIDFWRU\
3URFHVVLQJ
&KHPLFDO
'LHVHO
(OHFWULFLW\
:DWHU
6WDUFKIDFWRU\
6WDUFKIDFWRU\
6WDUFKIDFWRU\
6WDUFKIDFWRU\
'DWDFROOHFWLRQ
7KH OLIH F\FOH LQYHQWRU\ DQDO\VLV LV DQ LQYHQWRU\ RI LQSXW
DQG
RXWSXWGDWDRIWKHVHOHFWHGV\VWHPERXQGDU\7KHGDWDIRU
WKLVDVVHVVPHQWDUHIURPFDVVDYDVWDUFKLQGXVWULHVLQ1RUWK
(DVWRI7KDLODQG7KHGDWDZHUHVHSDUDWHGLQWRWZRPDLQSDUWV
FXOWLYDWLRQ GDWD DQG SURGXFWLRQ GDWD &XOWLYDWLRQ GDWD LV
GLYLGHGLQWRGDWDGHULYHGIURPFRXQWU\GDWDEDVHDSSOLHGZLWK
IDFWRULHVDQGGDWDIURPUHDOVXUYH\DSSOLHGZLWKWKHRWKHU
REWDLQHG IURP  IDUPHUV VXSSO\LQJ FDVVDYD IRU WKH WKLUG
IDFWRULHV HTXLYDOHQW WR  RI WRWDO IDUPHUV VXSSO\LQJ
FDVVDYD IRU WKH IDFWRU\ 3URGXFWLRQ GDWD RI  IDFWRULHV KDYH
EHHQFRUUHFWHGIURPUHDOVXUYH\
3ODQW FXOWLYDWLRQ 1RUPDOO\ FDVVDYD SODQWDWLRQV DUH
IHUWLOL]HG 7KH UHFRPPHQGHG 13. FKHPLFDO IHUWLOL]HU
IRUPXODRIRUVKRXOGEHXVHGDWWKHUDWHRI
WRNJSHUP
IRUFOD\ORDPRUSHEEOHFOD\DQGDW
WKH UDWH RI  WR  NJ SHU  P
IRUVDQG\ORDPDQG
VDQG\VRLO7KHXVDJHRIRUJDQLFIHUWLOL]HUWRLQFUHDVHRUJDQLF
PDWWHULQVRLOVKRXOGEHDERXWWRNJSHUP

0RUHRYHUWKHIHUWLOL]HUVKDOOEHXVHGRQO\RQFHWRPRQWKV
464 Phairat Usubharatana and Harnpon Phungrassami / Procedia CIRP 29 ( 2015 ) 462 – 467
DIWHUSODQWLQJ>@&DVVDYD LV UHFRPPHQGHG WREH KDUYHVWHG
PRQWKVDIWHUSODQWLQJ
)LJ6WDUFK3URFHVVLQJ>@
7UDQVSRUWDWLRQ )UHVKO\ KDUYHVWHG FDVVDYD VKDOO EH
WUDQVSRUWHG
IURPWKHSODQWLQJDUHDVWRWKHFROOHFWLRQFHQWHURU
IDFWRU\ ZLWKLQ  GD\V WR SUHYHQW WKH ULVN RI PLFURRUJDQLVPV
FDXVLQJ ORZHU SHUFHQWDJH RI VWDUFK >@ 7UDQVSRUWDWLRQ RI
FDVVDYD URRWV WR WKH VHOHFWHG IDFWRULHV XVHV YDULHW\ RI WUXFNV
VXFK DV IRXUZKHHO WRQ WUXFN VL[ZKHHO WRQ WUXFN WHQ
ZKHHO WRQ WUXFN DQG XS WR WZHQW\ZKHHO WRQ WUXFN ,Q
FDVHRIVPDOOSURGXFWLRQIDUPHUVWKHFDVVDYDURRWVDUHVROGWR
WUDGHUV 2Q WKH RWKHU KDQG FDVVDYD URRWV DUH VROG GLUHFWO\ WR
WKHIDFWRU\E\ODUJHSURGXFWLRQIDUPHUV7KHDYHUDJHGLVWDQFH
IURPIDUPVWRIDFWRU\LVUHFRPPHQGHGWREHDURXQGWR
NP>@+RZHYHULQWKLVVWXG\WKH DYHUDJHGLVWDQFHV
IURPSODQWDWLRQWRIDFWRU\$)$IDFWRU\%)%DQGIDFWRU\
&)&DUHNPNPDQGNPUHVSHFWLYHO\
6WDUFKSURFHVVLQJ,QSUDFWLFHWKHSURFHVVLQJPHWKRGKDV
VWHSVDVIROORZVDQGVKRZQLQ)LJ
 :HLJKW IUHVK FDVVDYD URRWV WR GHWHUPLQH WKH VWDUFK
SHUFHQWDJH ,Q JHQHUDO WKH VWDUFK SHUFHQWDJH LV 

 5HPRYHVDQGDQGLPSXULW\LQWKHURWDU\VFUHHQHU
 3XWFDVVDYDURRWVLQWRWKHSHHOLQJDQGFOHDQVLQJGHYLFH
DQGWKHQFKRSWKHURRWV
 3XW IUHVK FOHDQ FDVVDYD LQWR WKH 5DVSHU DQG WKH
'HFDQWHUWRUHPRYHSURWHLQ
 3DVVWKHVOXUU\WKURXJKWKHVFUHHQWRUHPRYHILEHU7KH
ILEHULVVROGIRUDQLPDOIHHG
 6HSDUDWHWKHILQHILEHUDQGLPSXULW\E\FHQWULIXJH
 'U\WKHVWDUFKE\SDVVLQJLWWKURXJKWKHKRWDLUGU\HU
 3DVVWKHVWDUFKWKURXJKWKHVLIWHUDQGSDFNLQWRVDFNV
,QWKLVVWXG\WKHORFDWLRQRIVHOHFWHGIDFWRULHVLVLQWKH1RUWK
(DVWRI7KDLODQGZKHUHPRVWFDVVDYDLVSODQWHG
$OORFDWLRQPHWKRG
$OORFDWLRQ PHWKRGV DUH UHTXLUHG ZKHQWZRRU PRUHSURGXFWV
RU
FRSURGXFWV VKDUH WKH VDPH SURGXFWLRQ SURFHVV 7KHUH DUH
VHYHUDOSURFHVVHVLQWKLVVWDUFKSURGXFWLRQWKDWJHWFRSURGXFWV
VXFK DV FDVVDYD SHHO DQG ILEHU )RU WKH SUHVHQW DQDO\VLV WKH
FRQWULEXWLRQRIFRSURGXFWVRUYDOXDEOHZDVWHVZDVHVWLPDWHGRQ
WKH EDVLV RI PDVV DOORFDWLRQ %\ IROORZLQJ 7KDLODQG 1DWLRQDO
*XLGDQFH RQ &DUERQ )RRWSULQW &DOFXODWLRQ IRU 3URGXFWV WKLV
VWXG\ H[FOXGHG WKH UHVXOW RI HFRQRPLFDO DOORFDWLRQ DQG
VHQVLWLYLW\RIXVLQJGLIIHUHQWPHWKRGRIDOORFDWLRQ
,PSDFWFDWHJRU\DQGFKDUDFWHUL]DWLRQ
)RU WKH DVVHVVPHQW OLIH F\FOH LQY
HQWRU\ /&, UHVXOWVLQ WKLV
VWXG\DUHFODVVLILHGLQWRRQO\JOREDOZDUPLQJLPSDFWFDWHJRULHV
7KH FDUERQ IRRWSULQWDV*+* HPLVVLRQV H[SUHVVHG DV *:3 LQ
 \HDU WLPH KRUL]RQ LV PDLQO\ IRFXVHG RQ &2
 &+
 1
2
+)&V3)&VDQG6)
7KHFKDUDFWHUL]DWLRQLPSDFWLQYROYHVWKH
TXDQWLILFDWLRQRIWKHHPLVVLRQVSRVVLEOHLPSDFWV 7KH*:3RI
&2
LV  IRU &+
LW LV  DQG IRU 1
2 LW LV  7RWDO *+*
HPLVVLRQH[SUHVVHGDVNJ&2
HZHUHGHWHUPLQHGDV
LL
()GDWD$FWLYLW\&) u
¦
ZKHUH
$
FWLYLW\GDWD
L
 OLIHF\FOHLQYHQWRU\YDOXHRILXQLW
()
L
 HPLVVLRQIDFWRURILNJ&2
HXQLW
7KH HPLVVLRQ IDFWRUV () LQ WKLV VWXG\ XVHG 7KDLODQG
1DWLR
QDO *XLGDQFH RQ &DUERQ )RRWSULQW &DOFXODWLRQ IRU
3URGXFWV >@ DV WKH PDLQ () (FRLQYHQW GDWDEDVH RU RWKHU
LQWHUQDWLRQDOSXEOLVKHUVZHUHDOVRXVHGLI7KDLODQG1DWLRQDO()
GDWDEDVHZHUHQRWDYDLODEOH%DFNJURXQGGDWDRQSURGXFWLRQRI
FKHPLFDOV DQG IHUWLOL]HUV DUH LPSRUWHG (PLVVLRQV GXH WR
IHUWLOL]HU XVDJH DQG IXHO FRPEXVWLRQ ZHUH TXDQWLILHG XVLQJ WKH
FDOFXODWLRQ PHWKRG >@ 7KDLODQG 1DWLRQDO () GDWDEDVH ZHUH
XVHGIRUEDFNJURXQGGDWDRIWUDQVSRUWDWLRQHOHFWULFLW\JDVROLQH
GLHVHOIXHORLODQG/3*DVVKRZQLQ7DEOH
3. Results and discussion
 /LIHF\FOHLQYHQWRU\RISODQWFXOWLYDWLRQ
7KH FDVVDYD FDUERQ IRRWSULQWV ZHUH HYDOXDWHG IURP 
IDFWRULHV DORQJ ZLWK WKHLU IDUP FRQWDFWV 7KH /&, GDWD IRU
SODQWDWLRQ $ 3$ DQG SODQWDWLRQ % 3% FDPH IURP WKH
OLWHUDWXUH UHYLHZ GXH WR ODFN RI LQIRUPDWLRQ +RZHYHU GDWD
ZHUH FROOHFWHG WKURXJK VLWHYLVLW DQG TXHVWLRQQDLUHV VXSSRUWHG
E\ WKH IDFWRU\ IRU SODQWDWLRQ & 3& 7KH  TXHVWLRQV DW WKH
SODQWDWLRQVLWHVUHODWHGWRGDWDDERXWFKHPLFDOIHUWLOL]HURUJDQLF
IHUWLOL]HUV SHVWLFLGH IXHO HOHFWULFLW\ DQG \LHOG 7KH V\VWHP
ERXQGDU\ZDVWKH³FUDGOHWRIDUPJDWH´DVLWZDV WKHILUVWSDUW
RI WKH OLIH F\FOH 7KH DYHUDJH RI LQSXW DQG RXWSXW LQ HDFK
465
Phairat Usubharatana and Harnpon Phungrassami / Procedia CIRP 29 ( 2015 ) 462 – 467
SODQWDWLRQ LV VKRZQ LQ 7DEOH  1RWH WKDW WKH ODQGXVH FKDQJH
ZDVQRWLQFOXGHGLQWKLVVWXG\
7DEOH7KDLODQG1DWLRQDO'DWDEDVHHPLVVLRQIDFWRUV>@
6RXUFH
8QLW
NJ&2
HXQLW
(OHFWULFLW\
N:K

*DVROLQH
NJ

'LHVHO
NJ

)XHORLO
NJ

/3*
NJ

7UDQVSRUWDWLRQ
)RXUZKHHOWRQWUXFN
)XOOORDG
1RORDG
6L[ZKHHOWRQWUXFN
)XOOORDG
1RORDG
7HQZKHHOWRQWUXFN
)XOOORDG
1RORDG
7ZHQW\ZKHHOWRQWUXFN
)XOOORDG
1RORDG
WNP
NP
WNP
NP
WNP
NP
WNP
NP








7DEOH/LIHF\FOHLQYHQWRU\RIWRQFDVVDYDURRW
3$DQG3%
3&
,QSXW
2UJDQLFIHUWLOL]HUNJ
1LWURJHQIHUWLOL]HUNJ
3KRVSKRUXVIHUWLOL]HUNJ
3RWDVVLXPIHUWLOL]HUNJ
3DUDTXDWNJ
*O\SKRVDWHNJ
'LHVHONJ
2WKHUFKHPLFDOVNJ
2XWSXW
&2
IURPGLHVHOFRPEXVWLRQNJ
1
2IURPQLWURJHQIHUWLOL]HUNJ
1
2IURPRUJDQLFIHUWLOL]HUNJ






















5HPDUN'DWDIURP3$DQG3%EDVHGRQWKHOLWHUDWXUHUHYLHZ>@'DWDIURP
3&EDVHGRQILHOGYLVLWV
 /LIHF\FOHLQYHQWRU\RIVWDUFKSURGXFWLRQ
7KH UHVXOWV RI JDWH WR JDWH LQYHQWRU\ IRU WKUHH VHOHFWHG
IDFWRULHVDUHSUHVHQWHGLQ7DEOH7KH/&,GDWDIRUIDFWRU\$
)$ IDFWRU\ % )% DQG IDFWRU\ & )& ZHUH FROOHFWHG
WKURXJK VLWHYLVLW 7KHQ WKHVH UHVXOWV ZHUH FRPSDUHG WR WKH
DYHUDJHGDWDRIIDFWRULHVDVVKRZQLQWKHUHIHUHQFH>@7R
GHWHUPLQH WKH FDUERQ IRRWSULQW WKH WUDQVSRUWDWLRQ RI FDVVDYD
URRWVIURPWKHSODQWDWLRQZDVLQFOXGHGLQWKLVVWXG\(PLVVLRQ
IDFWRUV ZHUH HVWLPDWHG IURP WKRVH VSHFLILHG LQ WKH 7KDLODQG
1DWLRQ()GDWDEDVH7KHGDWDXWLOL]HGDUHVKRZQLQ7DEOH
:DWHUFRQVXPSWLRQ
7
KH ZDWHU FRQVXPSWLRQV RI )$ )% DQG )& ZHUH 
P
WRQ VWDUFK  P
WRQ VWDUFK DQG  P
WRQ VWDUFK
UHVSHFWLYHO\ $V VKRZQ LQ 7DEOH  WKH DYHUDJH ZDWHU
FRQVXPSWLRQ LV  P
WRQ DQG LQ WKH UDQJH RI 
P
WRQ VWDUFK 2WKHU VWXG\ IRXQG WKDW WKH H[WUDFWLRQ SURFHVV
FRQVXPHV PXFKRI ZDWHUWKDW FDQUHDFK IURP  P
WRP
SHUWRQURRWV>@
(OHFWULFLW\
7
KH HOHFWULFLW\ FRQVXPSWLRQV RI )$ )% DQG )& ZHUH
 N:KWRQ VWDUFK  N:KWRQ VWDUFK DQG 
N:KWRQ VWDUFK UHVSHFWLYHO\ $V VKRZQ LQ 7DEOH  WKH
DYHUDJHHOHFWULFLW\FRQVXPSWLRQLVN:KWRQVWDUFK7KH
HOHFWULFLW\RI)&LVUHODWLYHO\KLJKEHFDXVHFRQYH\RUV\VWHPLV
XVHG WR PRYH WKH FDVVDYD URRWV WR WKH ZDVKHU UDWKHU WKDQ
XVLQJD GLHVHOWUXFN+RZHYHUWKHGLHVHOFRQVXPSWLRQRI )&
ZDVORZHUWKDQRWKHUV
6XOIXU
6X
OIXULVXVHG LQ WKH SURFHVVWRSUHYHQWORVV RI VWDUFK E\
PLFURRUJDQLVPVDQGDOVRWREOHDFKWKHVWDUFK>@7KHDYHUDJH
VXOIXUFRQVXPSWLRQLVNJWRQVWDUFKDV VKRZQLQ7DEOH 
6RGLXP ELVXOIDWH LV UHFRPPHQGHG IRU XVH UDWKHU WKDQ VXOIXU
EHFDXVHRIORZHUWR[LFLW\,WZDVIRXQGWKDW)$DQG )%XVHG
OHVVVXOIXUFRPSDUHGWRWKHDYHUDJHGDWD
)XHOIRUERLOHU
+LJ
K HQHUJ\ FRQVXPSWLRQ LV XVHG LQ WKH GU\LQJ SURFHVV
)XHORLOELRJDVRUELRPDVVFDQEHXVHGDVVRXUFHVRIHQHUJ\
7KHDYHUDJHIXHORLOXVHGLVNJWRQVWDUFKRUDERXW
0-WRQVWDUFK7KHHQHUJ\XVHGIRUWKHERLOHUVRI)$)%DQG
)&ZHUH0-WRQVWDUFK0-WRQVWDUFKDQG
 0-WRQ VWDUFK UHVSHFWLYHO\ $OWKRXJK ELRPDVV ZDV
XVHGDV WKHPDLQHQHUJ\VRXUFH IRU)&WKHFDUERQQHXWUDOLW\
RI ELRPDVV LV XQLYHUVDOO\ DFFHSWHG LQ JUHHQKRXVH JDV
FDOFXODWLRQ
7DEOH/LIHF\FOHLQYHQWRU\RIWRQVWDUFKSURGXFWLRQJDWHWRJDWH
)$
)%
)&
>@
&DVVDYDURRWVNJ
6XOIXUNJ
+\GURJHQSHUR[LGHNJ
3KRVSKRULFDFLGNJ
6RGLXPELVXOIDWHNJ
6RGLXPFDUERQDWHNJ
(OHFWULFLW\N:K
:DWHUP

*DVROLQHNJ
'LHVHONJ
)XHORLONJ
/3*NJ
%LRJDVIRUERLOHU1P

%LRPDVVNJ












































1$
1$
1$
1$


1$
1$

1$
1$
1$
466 Phairat Usubharatana and Harnpon Phungrassami / Procedia CIRP 29 ( 2015 ) 462 – 467
)LJ&RQWULEXWLRQRIFDUERQIRRWSULQWRI3$DQG3%
)LJ&RQWULEXWLRQRIFDUERQIRRWSULQWRI3&
 /LIHF\FOHUHVXOWVDQGGLVFXVVLRQ

7KH FDUERQ IRRWSULQW RI 3$3% DQG 3& LQFOXGLQJ
WUDQVSRUWDWLRQRIUDZPDWHULDOVZHUHNJ&2
HWRQFDVVDYD
URRW DQG  NJ&2
HWRQ FDVVDYD URRWV UHVSHFWLYHO\ 7KH
GLIIHUHQFH RI LPSDFWV GHSHQGV RQ DPRXQW RI IHUWLOL]HU DQG
DPRXQWRISURGXFW7KHFRQWULEXWLRQVRI HDFKSODQWDWLRQWR
FDUERQ IRRWSULQW DUH VKRZQ LQ )LJ  DQG )LJ  7KH WZR
PDLQVRXUFHVIRUWKHFXOWLYDWLRQSURFHVVDUHWKHUDZPDWHULDO
XVDJHRIRUJDQLFIHUWLOL]HUDQGGLUHFWHPLVVLRQRI1
2IURP
RUJDQLFIHUWLOL]HU
7R HVWDEOLVK FUDGOH WR JDWH IURP SODQWDWLRQ WR
PDQXIDFWXULQJ /&, RI SODQWDWLRQ LQ )$ DQG )% EDVHG RQ
GDWDIURPOLWHUDWXUH3$DQG3%ZKLOHRI)&EDVHGRQVLWH
YLVLWGDWD3&7KHFDUERQIRRWSULQWRIWRQRIVWDUFKIURP
)$ )% DQG )& DUH  NJ&2
H  NJ&2
H DQG 
NJ&2
H UHVSHFWLYHO\ DV VKRZQ LQ )LJ  7KH VWDUFK
SURGXFWLRQ RI )& FDXVHV WKH KLJKHVW FDUERQ IRRWSULQW 7KH
WZRPDLQFRQWULEXWLRQVRI)&DUH FXOWLYDWLRQSURFHVV
RIWRWDO&2
HDQGH[WUDFWLRQSURFHVV RI WRWDO&2
H
7KH PHWKDQH HPLVVLRQ IURP ZDVWHZDWHU WUHDWPHQW SODQW LV
WKH PDLQ FDXVH 8SIORZ DQDHURELF VOXGJH EODQNHW 8$6%
RI )& ZDV XVHG IRU WKH RQO\ KDOI \HDU RI FROOHFWLQJ GDWD
EHFDXVH WKH FRQVWUXFWLRQ RI WKH ZDVWHZDWHU WUHDWPHQW SODQW
KDG EHHQ ILQLVKHG ZKLOH WKH RWKHUV XVHG 8$6% IRU WKH
ZKROH \HDURIFROOHFWLQJGDWD2QWKHRWKHUKDQGIHUWLOL]HU
XVHGLQFXOWLYDWLRQLVVWLOOWKHODUJHVWLPSDFWIRU)$DQG)%
)RU )$ DQG )% DSSUR[LPDWHO\  WR  RI WKH WRWDO
FDUERQIRRWSULQWDVVRFLDWHGZLWKVWDUFKSURGXFWLRQLVGXHWR
FXOWLYDWLRQ $GGLWLRQDOO\ IRU )$  DQG  RI WRWDO
FDUERQ IRRWSULQW ZHUH DWWULEXWHG WR H[WUDFWLRQ SURFHVV DQG
GU\LQJ SURFHVV UHVSHFWLYHO\ )RU )% WKH SHUFHQW
FRQWULEXWLRQ RI H[WUDFWLRQ DQG GU\LQJ SURFHVVHV ZHUH 
DQGUHVSHFWLYHO\











2UJDQLFIHUWLOL]HU
1LWURJHQIHUWLOL]HU
3KRVSKRUXVIHUWLOL]HU
3RWDVVLXPIHUWLOL]HU
3DUDTXDW
*O\SKRVDWH
'LHVHO
2WKHUFKHPLFDOV
&2HIURPGLHVHOFRPEXVWLRQ
12IURPQLWURJHQIHUWLOL]HU
12IURPRUJDQLFIHUWLOL]HU
RQWRWDO&2H











2UJDQLFIHUWLOL]HU
1LWURJHQIHUWLOL]HU
3KRVSKRUXVIHUWLOL]HU
3RWDVVLXPIHUWLOL]HU
3DUDTXDW
*O\SKRVDWH
'LHVHO
2WKHUFKHPLFDOV
&2HIURPGLHVHOFRPEXVWLRQ
12IURPQLWURJHQIHUWLOL]HU
12IURPRUJDQLFIHUWLOL]HU
RQWRWDO&2H
467
Phairat Usubharatana and Harnpon Phungrassami / Procedia CIRP 29 ( 2015 ) 462 – 467
7KHUH DUH RQO\ D IHZ VWXGLHV FRQFHUQLQJ WKH FDUERQ
IRRWSULQW RI FDVVDYD VWDUFK 7R KDUPRQL]H WKH VWXGLHV DQG
PDNHWKHPFRPSDUDEOHWKH IXQFWLRQDOXQLWZDV VHW WREH
WRQRIVWDUFK,WZDVIRXQGWKDWWKHFDUERQIRRWSULQWRIVWDUFK
ZDV  NJ&2
HWRQ VWDUFK >@ 7KH PDLQ FRQWULEXWLRQ LV
WKH DJULFXOWXUDO SURFHVV +RZHYHU WKH V\VWHP ERXQGDU\ RI
DERYH LV WKH FUDGOHWRVKHOI WKDW LQFOXGHG WKH GLVWULEXWLRQ
&DUERQIRRWSULQWRIGU\QDWLYHVWDUFKZDVVWXGLHGDQGLWZDV
IRXQG WKDW WKH ODUJHVW FRQWULEXWRUV ZHUH VWLOO WKH ILHOG
HPLVVLRQV GXULQJ FXOWLYDWLRQ 7KH RWKHU SUHYLRXV ZRUN LQ
WKLVDUHDSUHVHQWHGDFUDGOHWR JDWH FDUERQ IRRWSULQWRIGU\
QDWLYHVWDUFKPDGHIURPZKHDWPDL]HDQGSRWDWREXWQRW D
FDVVDYD7KHFDUERQIRRWSULQWRIVWDUFKZDVNJ&2
HWRQ
VWDUFK>@
%DVHG RQ WKLV VWXG\ DQG WKH SURGXFWLRQ LQ 7KDLODQG LQ
WK
H\HDUWKHRYHUDOOFDUERQIRRWSULQWRIFDVVDYDVWDUFK
LQ7KDLODQGFRXOGEH HVWLPDWHGWR EHDSSUR[LPDWHO\
PLOOLRQWRQVRI&2
H
)LJ7KHFDUERQIRRWSULQWUHVXOWV&XOWLYDWLRQ([WUDFWLRQ
6HSDUDWLRQDQG'U\LQJ
4. Conclusion
,Q WKLV VWXG\ WKH FKDUDFWHULVWLFV RI WKUHH VWDUFK
PDQXIDFWXUHV ZHUH H[DPLQHG 7KH VWXG\ VKRZV WKDW WKH
FDUERQ IRRWSULQW RI VWDUFK SURGXFWLRQ DYHUDJH 
NJ&2
HWRQ QDWLYH VWDUFK LQ WKH UDQJH RI 
NJ&2
HWRQ QDWLYH VWDUFK )HUWLOL]HU XVHG LQ WKH FXOWLYDWLRQ
SURFHVVLVWKH PDLQ*+*VVRXUFH,W ZDVREVHUYHGWKDWWKH
HOHFWULFLW\ XVHG DQG PHWKDQH HPLVVLRQ IURP ZDVWHZDWHU
WUHDWPHQW SODQW JDYH WKH QH[W WZR ODUJHVW FRQWULEXWLRQV WR
*+*HPLVVLRQVDIWHUFXOWLYDWLRQ7KHHVWLPDWHGWRWDO*+*
HPLVVLRQ RI FDVVDYD VWDUFK SURGXFWLRQ LQ 7KDLODQG LQ WKH
\HDUZDVDSSUR[LPDWHO\PLOOLRQWRQVRI&2
H
%LRJDV IURP 8$6% LV UHFRPPHQGHG WR UHSODFH IXHO RLO LQ
WKHVWHDPERLOHU
References
>@)$2)RRGDQG$JULFXOWXUH2UJDQL]DWLRQRIWKH8QLWHG1DWLRQV
6WDWLVWLFV)$25RPH
>@ 1$67'$  1DWLRQDO 6FLHQFH DQG 7HFKQRORJ\ 'HYHORSPHQW
$JHQF\ 0LQLVWU\ RI 6FLHQFH DQG 7HFKQRORJ\ ³6WUDWHJLF 3ODQQLQJ
$OOLDQFH,,,63$,,´
>@7KH7KDL7DSLRFD7UDGH$VVRFLDWLRQZZZWKDLWDSLRFDVWDUFKRUJ
>@ 3DSRQJ 6 0DODNXO 3  /LIHF\FOH HQHUJ\ DQG HQYLURQPHQWDO
DQDO\VLV RI ELRHWKDQRO SURGXFWLRQ IURP FDVVDYD LQ 7KDLODQG
%LRUHVRUXFH7HFKQRORJ\SS
>@ 6LODOHUWUXNVD 7 *KHHZDOD 6+  (QYLURQPHQWDO VXVWDLQDELOLW\
DVVHVVPHQW RI ELRHWKDQRO SURGXFWLRQ LQ 7KDLODQG (QHUJ\  SS

>@ .RQJERRQ 5 6DPSDWWDJXO 6  7KH ZDWHU IRRWSULQW RI VXJDUFDQH
DQG FDVVDYD LQ QRUWKHUQ 7KDLODQG 3URFHGLD 6RFLDO DQG %HKDYLRUDO
6FLHQFHVSS
>@81(3/LIHF\FOHPDQDJHPHQW$EXVLQHVVJXLGHWRVXVWDLQDELOLW\
8QLWHG1DWLRQDO(QYLURQPHQWDO3URJDPPH*HQHYD
>@&XFHN/.OHPHV--.UDYDQMD=$UHYLHZRIIRRWSULQWDQDO\VLV
WRROVIRUPRQLWRULQJLPSDFWVRQVXVWDLQDELOLW\-RI&OHDQHU3URGXFWLRQ
SS
>@ ,QWHUQDWLRQDO 6WDQGDUGV 2UJDQL]DWLRQ ,62  (QYLURQPHWDO
PDQDJHPHQW/LIH &\FOH $VVHVVPHQW3ULQFLSOHV DQG IUDPHZRUN
,62%6,&(1
>@7*2ZZZWJRRUWK
>@ ,QWHUJRYHUQPHQWDO 3DQHO RQ &OLPDWH &KDQJH ,3&& 
*
XLGHOLQHV IRU 1DWLRQDO *UHHQKRXVH *DV ,QYHQWRULHV
,QWHUJRYHUQPHQWDO3DQHORQ&OLPDWH&KDQJH
>@ .DVPDSUDSUXHW 6 3DHQJMXQWXHN : 6DLNKZDQ 3 3KXQJUDVVDPL +
 /LIH F\FOH DVVHVVPHQW RI PLOOHG ULFH SURGXFWLRQ FDVH VWXG\ LQ
7KDLODQG(XURSHDQ-RI6FLHQWLILF5HVHDUFKSS
>@7KDL$JULFXOWXUDO6WDQGDUG7$6*RRG$JULFXOWXUDO
3UDFWLFHVIRU&DVVDYD1DWLRQDO%XUHDXRI$JULFXOWXUDO&RPPRGLW\DQG
)RRG6WDQGDUGV0LQLVWU\RI$JULFXOWXUHDQG&RRSHUDWLYHV
>@3UDWDQDGHH3HWDO6XSSO\FKDLQDQGORJLVWLFVPDQDJHPHQWIRU
FDVVDYDSURGXFWVLQ7KDLODQG
>@.KRQJVLWL6/LIHF\FOHDVVHVVPHQWRIFDVVDYDURRWDQGFDVVDYD
VWDUFK 0DVWHU WKHVLV &KHPLFDO (QJLQHHULQJ 'HSDUWPHQW .DVHWVDUW
8QLYHUVLW\
>@ &KDYDOSDULW 2 2QJZDQGHH 0  &OHDQ WHFKQRORJ\ IRU WKH
WDSLRFD VWDUFK LQGXVWU\LQ 7KDLODQG -RI &OHDQHU 3URGXFWLRQ  SS

>@6ULWRWK.3LWDFKRPNZDQ.:DQODSDWLW62DWHV&*E&DVVDYD
VWDUFKWHFKQRORJ\WKH7KDLH[SHULHQFH6WDFK6WDUNHSS
>@ *,=  7KH HFRORJLFDO IRRWSULQW RI FDVVDYD DQG PDL]H SRVW
KDUYHVWORVVHVLQ1LJHULD
>@$Q9(YHOLHQ'.DWULHQ%/LIHF\FOHDVVHVVPHQWVWXG\ RI
VWDUFK SURGXFWV IRU WKH (XURSHDQ VWDUFK LQGXVWU\ DVVRFLDWLRQ $$)
VHFWRUVWXG\
7RWDO
)$





)%





)&












NJ&2H
... The production and application of nitrogen-based fertilizers are responsible for the emission of gases such as nitrous oxide (N 2 O) and methane (CH 4 ) to the atmosphere, which are 298 and 25 times more powerful than carbon dioxide for climate change using a 100-year time frame, respectively. Table 2 underscores the considerable variation in carbon dioxide emissions associated with crop production, subjected to methodological considerations, fertilization rates, and yield levels (Mekonnen et al., 2018;Usubharatana and Phungrassami, 2015). Notably, corn grain cultivation stands out as the most nitrogen-intensive crop with higher field-related N 2 O emissions compared to other crops due to soil microbiological processes of nitrification and denitrification (Pan et al., 2022). ...
... H:(Howeler et al., 2001). I:(Usubharatana and Phungrassami, 2015). J:(de Léis et al., 2017). ...
... Yield and carbon footprint for different starch sources. With data from(Narayanaswamy et al., 2003;Usubharatana and Phungrassami, 2015;Wernet et al., 2016). ...
... According to results, the materials used in the production of plant-based cheeses generally emit fewer greenhouse gases (i.e., pea milk (0.39), coconut and almond milk (0.42), cassava starch (0.59), sunflower oil (0.8), soy milk (0.88), tofu (0.98), tree nuts (1.42), as well as palm oil (1.4-2.0) in kg CO 2 -eq per kg or L) (Braun et al. 2016;Henderson and Unnasch 2017;McClements and Grossmann 2022;Usubharatana and Phungrassami 2015). However, it should be noted that the ingredients used in plant-based cheeses differ in nutritional value from those dairy cheeses, making it challenging to exactly calculate their environmental impacts based on nutritional equivalent. ...
Article
Full-text available
in response to population growth, ethical considerations, and the environmental impacts of animal proteins, researchers are intensifying efforts to find alternative protein sources that replicate the functionality and nutritional profile of animal proteins. in this regard, plant-based cheese alternatives are becoming increasingly common in the marketplace, as one of the emerging dairy-free products. However, the dairy industry faces challenges in developing dairy-free products alternatives that meet the demands of customers with specific lifestyles or diets, ensure sustainability, and retain traditional customers. these challenges include food neophobia, the need to mimic the physicochemical, sensory, functional, and nutritional properties of dairy products, the inefficient conversion factor of plant-based proteins into animal proteins, and high production expenses. Given the distinct nature of plant-based milks, understanding their differences from cow's milk is crucial for formulating alternatives with comparable properties. Designing dairy-free cheese analogs requires overcoming electrostatic repulsion energy barriers among plant proteins to induce gelation and curd formation. innovative approaches have substantially enhanced the physicochemical and sensory properties of these alternatives. Researchers are exploring the application of microalgae as a plant protein source and investigating new microbial fermentation methods to increase protein content in dairy-free products.
... In 2019, Thailand was reported as the 3rd global cassava producer, producing approximately 31 million tons of cassava per year, and the 1st global cassava exporter, with 3.8 to 4.9 million tons of cassava products being exported per year [8,9]. During the cassava starch production process, wastewater and cassava pulp (CP) are generated, and the wastewater can be directly utilized to produce biogas through an integrated anaerobic digestion system [10,11]. However, CP is more difficult to treat and handle. ...
Article
Full-text available
The cassava starch industry plays a pivotal role in Thailand’s economy. A byproduct of this industry, cassava pulp (CP), consists of mainly carbohydrate compounds, comprising up to 80% of a dry weight basis. Given the substantial annual volume of CP generated, it has garnered attention as a second-generation renewable feedstock. To harness its potential and maximize the fermentable sugars conversion, this study used a liquid hot water (LHW) pretreatment coupled with enzymatic hydrolysis of cellulose. The LHW pretreatment effectively solubilized starch and hemicellulose while partially affecting cellulose. As observed under a scanning electron microscope, this solubilization induced hollowing and cracking of the lignocellulose structure, causing the enzyme’s accessible surface area to increase. The enzymatic hydrolysis of cellulose after the LHW pretreatment resulted in a high glucose production rate, but not on the enzymatic hydrolysis of CP1. The glucose production rate between LHW-pretreated CP1 and CP1 showed no significant difference. This enhancement can be attributed to the LHW pretreatment’s benefit to improve enzyme penetration and efficiency. Considering the theoretical fermentable sugars yield in CP, combining LHW pretreatment with enzymatic hydrolysis of cellulose yielded remarkably high conversion ranging from 87 to 99%. This integrated approach represents a promising technique for hydrolyzing CP into fermentable sugars, which can serve as a substrate for further fermentation to produce valuable products. As a result, CP holds immense potential as a second-generation renewable feedstock within the bio-circular-green economy model, thus utilizing this waste contributes to achieving sustainable development goals in Thailand.
... In the world, producing 1000 kg of cassava starch requires approximately 4400 kg of cassava roots, 10.9 m 3 of water, 207.8 kWh of electricity, 1898 MJ of heat for drying the starch, 0.9 kg of chemicals, and 93.1 m 3 of biogas necessary for heat and electricity generation [49]. In Thailand, high energy consumption is used in the drying process; the average electricity consumption is 169.4 kWh/ton starch; the average fuel oil used is 31.5 kg/ton starch or about 1339 MJ/ton starch [50]. The data in the literature on cassava starch production in Vietnam indicate that average electricity consumption is 608 MJ/ton product, and heat consumption is 1033 MJ/ton product [51]. ...
Article
Full-text available
Background Reducing energy consumption and greenhouse gas emissions is a crucial issue in the cassava starch processing industry. In this study, the integrated system combining livestock, cassava cultivation and cassava production in the same area leads to both a zero emission goal and economic efficiency, a typical example of an effective agro-industrial symbiosis. A heat exchange/recovery system was applied including the economizer, heat exchanger tank, biogas tank, and boiler. The economizer attached to the boiler’s chimney transfers heat from exhaust gases for pre-heating feed water entering the boiler. The biogas tank recovers energy from the wastewater of starch production and livestock, and the generated biogas was used as fuel for the boiler. Results The energy and exergy efficiency, energy losses, and exergy destruction for the heat recovery system were analyzed. The specific energy consumption was used to evaluate the overall energy efficiency for a cassava starch factory with a capacity of 20 tons/day. The results show that there is a high potential to recycle waste into energy in the cassava starch industry. The total energy saving and reduced greenhouse gas emissions per year of the cassava starch factory were 0.054%/year and 123,564 kgCO2/per year, respectively. Conclusions Cassava starch factories can save energy and reduce emissions when applying a heat recovery system in the integrated agro-industrial system. Excess heat from the production was used for evaporating (removal of) NH3 in wastewater flow from the biogas tank, and for heating the biogas system to enhance the efficiency of methane production. A biochar filter was attached to the economizer for adsorption of released ammonium, and the biochar after adsorption was combined with sludge from the biogas tank to produce a solid biofertilizer.
Book
Full-text available
El Primer Congreso Internacional de Valorización de Biomasa Residual se planteó como una estrategia académico-científica para compartir conocimientos de vanguardia en torno a la investigación y el desarrollo de la valorización sostenible de residuos sólidos orgánicos, generando así una oportunidad de congregar a expertos destacados, académicos y profesionales especializados en un foro multidisciplinario que fomentó un diálogo enriquecedor para impulsar colaboraciones futuras y soluciones innovadoras en dicho campo. Cabe destacar que, este congreso se desarrolló en el marco del proyecto Aprovechamiento y valorización sostenible de residuos sólidos orgánicos y su posible aplicación a biorrefinerías y tecnologías de residuos a-energía en el departamento de Sucre (BPIN 2020000100189), que cuenta con financiación desde el Sistema General de Regalías (SGR) y es ejecutado en alianza por la Universidad de Sucre, la Universidad Nacional de Colombia sede Manizales y la Universidad de la Costa – CUC. El evento contó con conferencias magistrales, ponencias orales y presentaciones de póster, acorde a siete líneas temáticas: (1) valorización de residuos sólidos agrícolas, agroindustriales y municipales a través de tecnologías de conversión termoquímica y bioquímica; (2) influencia e impacto de las políticas públicas en la promoción de la explotación de fuentes renovables de energía; (3) modelamiento y simulación de procesos de valorización; (4) captura y aprovechamiento de emisiones de dióxido de carbono; (5) generación de combustibles líquidos para el sector transporte; (6) Análisis de Ciclo de Vida; y (7) aplicación de métodos de Machine Learning en proyectos de valorización de biomasa residual. Se resalta que, las conferencias magistrales estuvieron a cargo de un grupo selecto de científicos colombianos y extranjeros con amplia experiencia y reconocimiento considerable en el ámbito. Por otro lado, la Universidad de Sucre fue el lugar apropiado para este congreso, teniendo en cuenta su trayectoria científica y su compromiso con el desarrollo sostenible del departamento de Sucre. Indudablemente, el hecho que la institución albergara este evento fue sinónimo de su rol como centro de investigación e innovación en sostenibilidad regional, principalmente porque Sucre está ubicado en un sector estratégico de vocación agropecuaria donde se requieren abordar directamente los desafíos y las oportunidades del aprovechamiento de residuos sólidos orgánicos, con el objetivo de promover soluciones que permitan una inserción en el contexto de la economía circular. Finalmente, este libro de resúmenes se presenta a la comunidad científica y a la sociedad en general como un documento derivado del congreso, constituyendo una síntesis conveniente y oportuna del mismo. Por lo tanto, se espera que este producto sea de interés y provecho para quienes tengan interés en lo referido a la valorización de la biomasa residual.
Chapter
Carbon dioxide (CO2) emissions contribute to important impacts in climate change and global warming. The concentration of this gas has increased up to 400 ppm in the last years. The most contributing sectors to the CO2 accumulation in the atmosphere are the manufacturing and energy industries. The most important effect of CO2 releases is the constant increase of the global temperature of the Earth. The United Nations have stablished the Sustainable Development Goals (SDGs) as a strategy to improve the sustainability of society involving different issues such as poverty and human well-being, sustainable production and consumption, and natural resource use. Specifically, CO2 capture, storage, and utilization (CCSU) technologies contribute to the accomplishment of the SDG12 “Responsible consumption and production” and the SDG13 “Climate action”. International organizations have joined and are committed to measure greenhouse gases concentrations and to operate with neutral emissions according to the SDGs by avoiding the Earth warming and ocean acidification. Within the Carbon Capture and Storage (CCS) existing technologies to utilize CO2, post-combustion capture, pre-combustion capture, and oxyfuel combustion have been studied to achieve a clean production. The CO2 can be destined for valorization alternatives at different production scales to produce dimethyl carbonate (DMC), sodium bicarbonate (SB), and glycerol carbonate (GC). Moreover, the CO2 can also be destined as gasifying agent to obtain cold gas rich in carbon monoxide and methane. Regarding the emerging interest to capture and upgrade CO2 and the use of renewable resources (i.e., biomass) to obtain value-added products and energy vectors, this chapter aims to provide a review of the existing alternatives concerning to CO2 capture and utilization. In addition, this chapter analyzes the routes of CO2 transformation and the possible integration with existing biomass upgrading processes in the Colombian context. For this, two study cases are presented. The first study case involves the emitted CO2 upgrading after biogas obtaining and combustion in the starch extraction process using cassava as raw material. The second study case considers the emitted CO2 upgrading from molasses fermentation and sugarcane bagasse combustion in the bioethanol production process. Technical, economic, and environmental performance of the implementation of CO2 valorization to produce DMC and SB was assessed. The results for both study cases show that the obtaining of DMC by the direct synthesis of CO2 and methanol is the most suitable option to be implemented since this product has a high economic value, low capital investment, and high rate of return. As conclusions, post-combustion capture is the most straightforward technology for application in industrial plants. Besides that, the utilization of CO2 in integrated processes allows the mitigation of greenhouse gases emissions and contributes to an energetically viable production of high value-added products.
Chapter
The worldwide agribusiness from sugarcane, beet, cereals, and non-conventional crops as sources of carbohydrates (sugar and starch) are facing important sustainability, competitiveness, and profitability issues. Cassava (Manihot esculenta Crantz) is a multipurpose crop that represents important benefits for human health, animal feed, and economic well-being in subsistence culture. In different regions of the world, the whole plant, root, and by-products (peels, stems, straw, bagasse, leaves, and wastewater) have different uses ranging from agro-industrial use as a starch source, animal feed or medicinal, ornamental, religious, soil regenerator and with potential to produce bioethanol, biofertilizers, bioplastics, biofuels, and numerous bio commodities in a biorefinery without compete with the food security and creates jobs for unskilled labor force. However, it is necessary to use novel analytical tools to evaluate socioeconomic and environmental sustainability for each project based on cassava wastes. Therefore, the life cycle analysis (LCA) is a toolbox that will allow the stakeholder to make decisions for the success of productive projects. This work carried out an analysis of the methodological framework of the LCA and the circular economy (CE) for application to the biorefinery of cassava wastes and by-products, as well as the evaluation of challenges and constraints. Therefore, the efficient use of cassava as raw material can help to minimize waste of biological origin for disposal and the extraction, mining, and petrochemical of mineral and fossil resources and improve the sustainability of the value chain, biodiversity, and economic well-being.
Article
Full-text available
a b s t r a c t The tapioca processing industry is considered to be one of the largest food processing industrial sectors in Thailand. However, the growth of the tapioca starch industry has resulted in heavy water pollution as it generates large amount of solid waste and wastewater with high organic content. This study explores the applicability of clean technology options to improve the environmental performance of tapioca starch-processing plants in Thailand. Eight Tapioca starch plants were selected for an exclusive analysis of the dynamics of clean technology development and adoption. Proposed options mainly involve water reduction and energy conservation. These include reuse and recycling of water, technology modification in the production process, and use of biogas to substitute fuel oil for burners. Implementation of these proposed alternatives to real companies shows that the reduction of starch loss, and water and fuel cost savings can be achieved.
Article
Nowadays, concerns with environmental issues are increasing considerably in every agricultural sector. To preferably avoid, or at least reduce the environmental impacts, food production should involve assessing the environmental impact of the entire food chain. One of the well known methodologies used for the evaluation of the environment is a life cycle assessment (LCA). In this paper we presents, as a case study, the results of an LCA analysis of milled rice production, from rice cultivation to the mill, in order to determine the environmental load of rice production. The results show that the global warming potential of rice production per kg was 2.9269E+03 gCO2-eq, followed by 3.1869 gSO2-eq of acidification and 12.896 gNO3--eq of eutrophication. In this study, 95% of the global warming inputs to the system are associated with the cultivation process, 2% with the harvesting process and 2% with the seeding and milling processes.
Article
Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of ‘cradle to gate’ bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.