ArticlePDF Available

Kashiwadia gen. nov. (Physciaceae, lichen-forming Ascomycota), proved by phylogenetic analysis of the Eastern Asian Physciaceae

Authors:

Abstract

The new genus Kashiwadia S. Y. Kondr., L. Lokös et J.-S. Hur, gen. nov. for the Eastern Asian species Physcia orientalis Kashiw. being in isolated position in the genus Physcia after morphological and anatomical characters as well as showing closer relation to the Heterodermia branch (than to the Physcia branch) in phylogenetic tree of the Physciaceae based on results of ITS1/ITS2 nuclear ribosomal and positioning in separate branch after 12S SSU mitochondrial DNA sequences and combined data set is proposed. Description of new genus and new combination is provided.
0236–6495/$ 20.00 © 2014 Akadémiai Kiadó, Budapest
Acta Botanica Hungarica 56(3–4), pp. 369–378, 2014
DOI: 10.1556/ABot.56.2014.3–4.12
KASHIWADIA GEN. NOV. (PHYSCIACEAE, LICHEN-FORMING
ASCOMYCOTA), PROVED BY PHYLOGENETIC ANALYSIS
OF THE EASTERN ASIAN PHYSCIACEAE
S. Y. Kondratyuk1, L. Lkös2, J. A. Kim3, M.-H. Jeong3
A. S. Kondratiuk4, S.-O. Oh3 and J.-S. Hur3
1M. H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine
E-mail: ksya_net@ukr.net
2Department of Botany, Hungarian Natural History Museum
H-1476 Budapest, Pf. 222, Hungary; E-mail: lokos@bot.nhmus.hu
3Korean Lichen Research Institute, Sunchon National University
315 Mae-gok dong, Sunchon, 540-742, Korea; E-mail: jshur1@sunchon.ac.kr
4‘Institute of Biology’ Scientific Educational Centre, Taras Shevchenko National
University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
(Received 10 January, 2014; Accepted 5 April, 2014)
The new genus Kashiwadia S. Y. Kondr., L. Lkös et J.-S. Hur, gen. nov. for the Eastern Asian
species Physcia orientalis Kashiw. b eing in isolated position in the genus Physcia after mor-
phological and anatomical characters as well as showing closer relation to the Heterodermia
branch (than to the Physcia branch) in phylogenetic tree of the Physciaceae based on results
of ITS1/ITS2 nuclear ribosomal and positioning in separate branch after 12S SSU mitochon-
drial DNA sequences and combined data set is proposed. Description of new genus and
new combination is provided.
Key words: Heterodermia, Kashiwadia, Physcia orientalis, Physciaceae
INTRODUCTION
The genus Physcia (Schreber) Michaux includes foliose members of the
family Physciaceae with atranorin containing thallus and lobes mainly more
of 3 mm wide, upper cortex of which always paraplectenchymatous and lower
cortex mainly prosoplectecnhymatous, and bacilliform conidia longer of 4 m,
after segregation of the genera Physconia Poelt, Phaeophyscia Moberg, Phys-
ciella Essl. and Hyperphyscia Müll. Arg. (Esslinger 1986, Hafellner et al. 1979,
Moberg 1977, Poelt 1965).
Physcia orientalis Kashiw. was described in 1985 and it was placed into
the genus Physcia without any special discussion (Kashiwadani 1985), while
all genera of foliose members of the Physciaceae were known at that time and
P. orientalis is somewhat different after morphological and anatomical char-
acters.
Acta Bot. Hung. 56, 2014
370 KONDRATYUK, S. Y., LKÖS, L., KIM, J. A. et al.
During revision of Eastern Asian material of Physciaceae (Kondratyuk et
al. 2013) we have had a chance to include several collections of Physcia orienta-
lis to our comparative analysis. Material of this taxon was included into phy-
logenetic analysis of the members of the Physciaceae after ITS1/ITS2 nrDNA
and 12S SSU mtDNA.
Unfortunately molecular data on the Physciaeae are very scarce at the
moment. The most diverse molecular data are hitherto available in the Gen-
Bank for the member of the genus Heterodermia (Bhattacharya et al. 2002, Cres-
po et al. 2004, Helms et al. 2003, Hu and Chen 2003, Lücking et al. 2008, Oh et
al. 2006, Orock et al. 2012, Wei et al. 2008) and the genus Physcia (Helms et al.
2003, Lohtander et al. 2009, Myllys et al. 2001, Simon et al. 2005, Wei and Hur
2007). Data on nr and mtDNA sequences of the members of the genus Anap-
tychia were provided by Grube and Arup (2001), Lohtander et al. (2008), and
Oh et al. (2006). Both data on molecular and mitochondrial DNA sequences
are only for two species of the genus Phaeophyscia (Lohtander 2000, Lohtander
et al. 2008, Miadikowska et al. 2006), and one species of the genus Physconia
(Lohtander et al. 2008) and Tornabea (Gaya et al. 2012, Miadikowska et al. 2006)
(see Table 1). Molecular data on the species of the genus Rinodina are hitherto
provided by a number of research teams (Grube and Arup 2001, Helms et al.
2003, Kaschik 2006, Nadyeina et al. 2010, Wedin et al. 2002).
Molecular data for the Physcia orientalis were for the first time provided
by one of the co-authors of this paper (Wei and Hur 2007, Wei et al. 2008) (Ta-
ble 1).
Within study data on 12S SSU mitochondrial DNA sequences of the Phys-
cia orientalis and some other species of the genus Heterodermia are provided for
the first time.
Separate position of Physcia orientalis within the phylogenetic tree of the
Physciaceae was found and consequently new genus for this taxon is pro-
posed below.
MATERIALS AND METHODS
Table of specimens included into phylogenetic analysis with numbers of
sequences from GenBank (Table 1).
Table 1
Specimens included into phylogenetic analysis with GenBank numbers
Species name Voucher/source ITS1/ITS2 12S mt SSU
Anaptychia bryorum Grube and Arup 2001 AF250781
Anaptychia bryorum Lohtander et al. 2008 EF582777 EF582825
Anaptychia ciliaris Wedin et al. 2002 AY143391 AY143400
Anaptychia ciliaris Figueras et al. (unpubl.) GU247148 GU247182
Acta Bot. Hung. 56, 2014
371
KASHIWADIA GEN. NOV. (PHYSCIACEAE, LICHEN-FORMING ASCOMYCOTA)
Table 1 (continued)
Species name Voucher/source ITS1/ITS2 12S mt SSU
Anaptychia ciliaris Figueras et al. (unpubl.) GU247149 GU247183
Anaptychia crinalis Lohtander et al. 2008 EF582785 EF582833
Anaptychia crinalis Lohtander et al. 2008 EF582786
Anaptychia desertorum Lohtander et al. 2008 EF582784 EF582832
Anaptychia desertorum Lohtander et al. 2008 EF582783 EF582831
Anaptychia elburziana Lohtander et al. 2008 EF582782 EF582830
Anaptychia isidiata Lohtander et al. 2008 EF582781 EF582829
Anaptychia isidiata Lohtander et al. 2008 EF582780 EF582828
Anaptychia palmatula Lohtander et al. 2008 EF582779 EF582827
Anaptychia palmatula Lohtander et al. 2008 EF582826
Anaptychia palmatula Jeon et al. 2009 EU266101
Anaptychia palmatula Hur (unpubl.) DQ394370
Anaptychia runcinata Lohtander et al. 2008 EF582775 EF582823
Anaptychia runcinata Lohtander et al. 2008 EF582776 EF582824
Anaptychia runcinata Figueras et al. (unpubl.) GU247147 GU247181
Coscinocladium gaditanum Crespo et al. 2004 AY449721 AY464075
Coscinocladium gaditanum Crespo et al. 2004 AY449720 AY464074
Coscinocladium gaditanum Crespo et al. 2004 AY464073
Heterodermia boryi Wei et al. 2008 EU045423 *KM397356
Heterodermia boryi Wei et al. 2008 EU045422 *KM397357
Heterodermia boryi Bhattacharya et al. 2002 AJ421419
Heterodermia hypoleuca Jeon et al. 2009 EU266104
Heterodermia hypoleuca Wei et al. 2008 EU045428 *KM397358
Heterodermia hypoleuca South Korea, KoLRI 004837 *KM397352
Heterodermia hypoleuca South Korea, KoLRI 004963 *KM397353
Heterodermia hypoleuca South Korea, KoLRI 005440 *KM397354
Heterodermia japonica Lücking et al. 2008 DQ337322
Heterodermia japonica Wei et al. 2008 EU045432 *KM397359
Heterodermia japonica Hu and Chen 2003 AY498687
Heterodermia japonica South Korea, KoLRI 005528 *KM397355
Heterodermia leucomela Crespo et al. 2004 AY449725
Heterodermia leucomela Lücking et al. 2008 DQ337321
Heterodermia leucomela Helms et al. 2003 AF540520
Heterodermia leucomela Crespo et al. 2004 AY464072
Heterodermia microphylla Wei et al. 2008 EU045433 *KM397360
Heterodermia microphylla Wei et al. 2008 EU045434
Heterodermia obscurata Orock et al. 2012 JQ673457
Heterodermia obscurata Figueras et al. (unpubl.) GU247152
Heterodermia obscurata Figueras et al. (unpubl.) GU247151
Heterodermia obscurata Wei and Hur 2007 EU045435
Heterodermia obscurata Wei and Hur 2007 EU045436
Heterodermia obscurata Lücking et al. 2008 DQ337323
Heterodermia obscurata Orock et al. 2012 JQ673457
Heterodermia obscurata South Korea, KoLRI 001406 *KM397361
Heterodermia obscurata Crespo et al. 2004 AY464071
Heterodermia obscurata Figueras et al. (unpubl.) GU247186
Acta Bot. Hung. 56, 2014
372 KONDRATYUK, S. Y., LKÖS, L., KIM, J. A. et al.
Table 1 (continued)
Species name Voucher/source ITS1/ITS2 12S mt SSU
Heterodermia obscurata Figueras et al. (unpubl.) GU247185
Heterodermia subascendens Wei et al. 2008 EU045442 *KM397363
Heterodermia subascendens Wei et al. 2008 EU045441 *KM397362
Hyperphyscia adglutinata Figueras et al. (unpubl.) GU247155 GU247187
Hyperphyscia adglutinata Figueras et al. (unpubl.) GU247154 GU247188
Hyperphyscia adglutinata Figueras et al. (unpubl.) GU247153 GU247189
Kashiwadia orientalis Wei and Hur 2007 as for
Physcia orientalis EU670210 *KM397365
Kashiwadia orientalis Wei and Hur 2007 as for
Physcia orientalis EU670209 *KM397366
Kashiwadia orientalis Wei et al. 2008 as for
Heterodermia speciosa EU045439 *KM397364
Kashiwadia orientalis Wei et al. 2008 as for
Heterodermia speciosa EU045440 *KM397367
Oxneria alfredii Fedorenko et al. 2009 EU681345 EU680933
Oxneria huculica Fedorenko et al. 2009 EU681346 EU680931
Oxneria ulophyllodes Fedorenko et al. 2009 EU681342 EU680930
Phaeophyscia endococcina Lohtander et al. 2008 EF582753 EF582804
Phaeophyscia endococcina Figueras et al. (unpubl.) GU247168 GU247202
Phaeophyscia orbicularis Figueras et al. (unpubl.) GU247171 GU247205
Phaeophyscia orbicularis Lohtander 2000 AF224452
Phaeophyscia orbicularis Miadikowska et al. 2006 DQ912289
Physcia aipolia Myllys et al. 2001 AF224432
Physcia aipolia Lohtander et al. 2009 EU682190 EU682128
Physcia aipolia Lohtander et al. 2009 AF224391 EU682127
Physcia aipolia Lohtander et al. 2009 EU682126
Physcia alnophila Myllys et al. 2001 AF224380
Physcia alnophila Lohtander et al. 2009 EU682210 EU682153
Physcia alnophila Lohtander et al. 2009 EU682206 EU682152
Physcia alnophila Lohtander et al. 2009 EU682151
Physcia adscendens Lohtander et al. 2009 EU682184 EU682116
Physcia biziana Lohtander et al. (unpubl.) AF224417
Physcia biziana Figueras et al. (unpubl.) EU247212
Physcia caesia Lohtander et al. (unpubl.) AF224388
Physcia caesia Lohtander et al. 2009 EU682197 EU682140
Physcia caesia Lohtander et al. 2009 EU682196 EU682139
Physcia caesia Lohtander et al. 2009 EU682138
Physcia stellaris Lohtander et al. 2009 EU682183 EU682115
Physcia stellaris Simon et al. 2005 AY860536
Physcia stellaris Wei and Hur 2007 EU670220
Physcia subalbinea Lohtander et al. 2009 EU682187 EU682122
Physcia subalbinea Lohtander et al. 2009 EU682188 EU682121
Physcia subalbinea Lohtander et al. 2009 EU682189 EU682120
Physcia tenella Helms et al. 2003 AF540538
Physcia tenella Lohtander et al. 2008 EF582800
Physcia tenella Lohtander et al. 2008 EF582799
Acta Bot. Hung. 56, 2014
373
KASHIWADIA GEN. NOV. (PHYSCIACEAE, LICHEN-FORMING ASCOMYCOTA)
RESULTS
The new genus Kashiwadia shows closer relation to the Heterodermia
branch (than to the Physcia branch) in phylogenetic tree of the Physciaceae
based on results of ITS1/ITS2 nuclear ribosomal DNA sequences (not shown
in the tree (Fig. 1) and it is positioning in separate branch after 12S SSU mito-
chondrial DNA sequences and after combined data set (Fig. 1)).
Table 1 (continued)
Species name Voucher/source ITS1/ITS2 12S mt SSU
Physciella chloantha Figueras et al. (unpubl.) GU247165 GU247200
Physciella chloantha Figueras et al. (unpubl.) GU247162 GU247199
Physciella chloantha Figueras et al. (unpubl.) GU247163 GU247198
Physconia distorta Figueras et al. (unpubl.) GU247159 GU247193
Physconia distorta Lohtander et al. 2008 EF582763 EF582814
Physconia distorta Lohtander et al. 2008 EF582813
Physconia distorta Jeon et al. 2009 EU266086
Rinodina capensis Kaschik 2006 DQ849296
Rinodina capensis Nadyeina et al. 2010 GU553293
Rinodina capensis Nadyeina et al. 2010 GU553313
Rinodina glauca Nadyeina et al. 2010 GU553315
Rinodina lecanorina Helms et al. 2003 AF540545
Rinodina lecanorina Grube and Arup 2001 AF250810
Rinodina lecanorina Nadyeina et al. 2010 GU553316
Rinodina milvina Helms et al. 2003 AF540546
Rinodina milvina Nadyeina et al. 2010 GU553317
Rinodina milvina Nadyeina et al. 2010 GU553299
Rinodina milvina Nadyeina et al. 2010 GU553320
Rinodina oxydata Helms et al. 2003 AF540548
Rinodina oxydata Kaschik 2006 DQ849312
Rinodina oxydata Kaschik 2006 DQ849310
Rinodina septentrionalis Nadyeina et al. 2010 GU553303
Rinodina septentrionalis Nadyeina et al. 2010 GU553295
Rinodina sophodes Grube and Arup 2001 AF250813
Rinodina sophodes Wedin et al. 2002 AY143426
Rinodina sophodes Helms et al. 2003 AF540550
Rinodina sophodes Nadyeina et al. 2010 GU553321
Rinodina sophodes Nadyeina et al. 2010 GU553304
Tornabea scutellifera Miadikowska et al. 2006 DQ972985
Tornabea scutellifera Figueras et al. (unpubl.) GU247172 GU247206
Tornabea scutellifera Figueras et al. (unpubl.) GU247173 GU247207
Tornabea scutellifera Gaya et al. 2012 JQ301698
*this paper
Acta Bot. Hung. 56, 2014
374 KONDRATYUK, S. Y., LKÖS, L., KIM, J. A. et al.
Fig. 1. Phylogenetic tree of the physcioid lichens based on combined data set (ITS1/ITS2;
12S mt SSU)
Acta Bot. Hung. 56, 2014
375
KASHIWADIA GEN. NOV. (PHYSCIACEAE, LICHEN-FORMING ASCOMYCOTA)
NEW TAXA
Kashiwadia S. Y. Kondr., L. Lkös et J.-S. Hur, gen. nov.
MycoBank no.: MB 809984
Thallus foliose, whitish-grey, lobate; lobes 1–2.5 mm wide, dichotomously branched
to irregular, sorediate, soralia hemispherical. Upper surface convex, smooth, epruinose;
medulla white; underside pale to light brown, rhizines numerous, simple, pale to brown-
ish. Both upper and lower cortex paraplectenchymatous. Apothecia rare, cup-shaped,
1–2 mm diam., disc brown, pruinose; hypothecium slightly yellowish; ascospores thick-
walled, brown, of Pachysporaria-type. Chemistry: Atranorin and zeorin.
Type species: Kashiwadia orientalis (Kashiw.) S. Y. Kondr., L. Lkös et J.-S.
Hur.
Ecology: on bark of trees at various altitudes.
Distribution: It is hitherto known from Eastern Asian countries (rather
common in Japan, while rare in Korea and Taiwan).
Taxonomic notes: From the genus Physcia the genus Kashiwadia differs in
having much narrower thalline lobes, in having both upper and lower para-
plectenchymatous cortical layers, as well as in having closer similarities to the
members of the Heterodermia branch of phylogenetic tree of the family Phys-
ciaceae after ITS1/ITS2 nrDNA and 12S SSU mtDNA sequences.
After having both upper and lower paraplectenchymatous cortical layers
the genus Kashiwadia is similar to the genus Phaeophyscia, but differs from the
latter in having atranorin and zeorin, as well as in having pale to light brown
underside.
Two genera of the foliose members of the Physciaceae, i.e. Heterodermia
Trevisan and Anaptychia Körber, are clearly separated from the other genera
of the family by the cortex being composed of longitudinally arranged hy-
phae, which can be readily recognised in both transverse and longitudinal
sections. However, Heterodermia distinguished from Anaptychia by smooth,
thick-walled spores, the more complex chemistry, including atranorin and the
generally paler coloured thallus. The genus Kashiwadia differs from the genus
Heterodermia in having both upper and lower paraplectenchymatous cortical
layers, in having another type of ascospores, while they show some similari-
ties after molecular data.
Kashiwadia orientalis (Kashiw.) S. Y. Kondr., L. Lkös et J.-S. Hur, comb.
nova [MycoBank no.: MB 809985] – Basionym: Physcia orientalis Kashiw., Mem.
Natn. Sci. Mus., Tokyo 18: 101 (1985).
Kashiwadia orientalis is characterised by the whitish grey thallus, the con-
vex lobes with uneven surface, the hemispherical soralia, the white medulla,
Acta Bot. Hung. 56, 2014
376 KONDRATYUK, S. Y., LKÖS, L., KIM, J. A. et al.
the pale to ochre yellow lower surface of lobes with simple pale rhizines, the
paraplectenchymatous lower cortex, and the ascospores of Pachysporaria-type.
The status of several species groups of the genera Heterodermia, Physconia
and Anaptychia planned to be discussed in our forthcoming paper.
*
Acknowledgements – We are grateful to Dr Edit Farkas (Vácrátót, Hungary) and Dr Josef
Halda (Rychnov, C z ech Republic) for their kind help with some literature. SK and LL are
thankful to Prof. J.-S. Hur and Dr S.-O. Oh for their help and support during their stay in
South Korea in 2013. This work was supported by the Korea National Research Resource
Center Program, the Korean Forest Service Program (KNA 2013) through the Korea Na-
tional Arboretum, (for AK) NRF Postdoctoral Fellowship Program for Foreign Researchers
(2013), and (for LL) the Hungarian Scientific Research Fund (OTKA K81232), as well.
REFERENCES
Bhattacharya, D., Friedl, T. and Helms, G. (2002): Vertical evolution and intragenic spread
of lichen-fungal group I introns. – J. Mol. Evol. 55(1): 74–84.
Crespo, A., Blanco, O., Llimona, X., Ferencová, Z. and Hawksworth, D. L. (2004): Cosci-
nocladium, an overlooked endemic and monotypic Mediterranean lichen genus of
Physciaceae, reinstated by molecular phylogenetic analysis. – Taxon 53(2): 405–414.
Esslinger, T. L. (1986): Studies in the lichen family Physciaceae. VII. The new genus Phys-
ciella. – Mycologia 78: 92–97.
Gaya, E., Högnabba, F., Holguin, A., Molnár, K., Fernández-Brime, S., Stenroos, S., Arup,
U., Søchting, U., Van den Boom, P., Lücking, R., Sipman, H. J. M. and Lutzoni, F.
(2012): Implementing a cumulative supermatrix approach for a comprehensive phy-
logenetic study of the Teloschistales (Pezizomycotina, Ascomycota). – Mol. Phyl. Evol.
63(2): 374–387.
Grube, M. and Arup, U. (2001): Molecular and morphological evolution in the Physciaceae
(Lecanorales, lichenized Ascomycotina), with special emphasis on the genus Rino-
dina. – Lichenologist 33(1): 63–72.
Hafellner, J., Mayrhofer, H. and Poelt, J. (1979): Die Gattungen der Flechtenfamilie Phys-
ciaceae. – Herzogia 5: 39–79.
Helms, G., Friedl, T. and Rambold, G. (2003): Phylogenetic relationships of the Physciaceae
inferred from rDNA sequence data and selected phenotypic characters. – Mycologia
95(6): 1078–1099.
Hu, G. R. and Chen, J. B. (2003): The lichen family Physciaceae (Ascomycota) in China: a
new species of Phaeophyscia. – Mycosystema 22(4): 534–535.
Jeon, H.-S., Lkös, L., Han, K. S., Ryu, J.-A., Kim, J. A., Koh, Y. J. and Hur, J.-S. (2009): Iso-
lation of lichen-forming fungi from Hungarian lichens and their antifungal activity
against fungal pathogens of hot pepper anthracnose. – Plant Pathol. J. 25(1): 38–46.
Kaschik, M. (2006): Taxonomic studies on saxicolous species of the genus Rinodina (Li-
chenized Ascomycetes, Physciaceae) in the Southern Hemisphere with emphasis in
Australia and New Zealand. – Bibl. Lichenol. 93: 1–162
Acta Bot. Hung. 56, 2014
377
KASHIWADIA GEN. NOV. (PHYSCIACEAE, LICHEN-FORMING ASCOMYCOTA)
Kashiwadani, H. (1985): Lichens of Dohgo Island, the Oki Islands. – Mem. Natn. Sci. Mus.,
Tokyo 18: 95–106.
Kondratyuk, S., Lkös, L., Oh, S.-O. and Hur, J.-S. (2013): Revisions on Physciaceae and Telo-
schistaceae in the Korean lichen flora. – Proceedings, 2013 International Meeting of the
Federation of Korean Microbiological Societies, October 17–18, 2013, Seoul, p. 191.
Lohtander, K. (2000): Phylogeny and species delimitation in Roccellaceae and Physciaceae
(Ascomycetes). – Thesis, University of Stockholm, Stockholm, 21 pp.
Lohtander, K., Ahti, T., Stenroos, S. and Urbanavichus, G. (2008): Is Anaptychia mono-
phyletic? A phylogenetic study based on nuclear and mitochondrial genes. – Ann.
Bot. Fennici 45: 55–60.
Lohtander, K., Myllys, L., Kaellersjoe, M., Moberg, R., Stenroos, S. and Tehler, A. (2009):
New entities of Physcia aipolia-P. caesia group (Physciaceae, Ascomycota): an analy-
sis based on mt SSU, ITS, group I intron and betatubulin sequences. – Ann. Bot. Fen-
nici 46: 43–53.
Lücking, R., del Prado, R., Lumbsch, H. T., Will-Wolf, S., Aptroot, A., Sipman, H. J. M.,
Umaña, L. and Chaves, J. L. (2008): Phylogenetic patterns of morphochemical char-
acters and reproductive mode in the Heterodermia obscurata group in Costa Rica.
Systematics and Biodiversity 6(1): 31–41.
Miadikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V.,
Hodkinson, B. P., Kukwa, M., Lücking, R., Hestmark, G., Otálora, M. G., Rauhut, A.,
del, B., Scheidegger, C., Timdal, E., Stenroos, S., Brodo, I., Perlmutter, G. B., Ertz,
D., Diederich, P., Lendemer, J. C., May, P., Schoch, C. L., Arnold, A. E., Gueidan, C.,
Tripp, E., Yahr, R., Robertson, C. and Lutzoni, F. (2006): New insights into classifi-
cation and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from
phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. – My-
cologia 98(6): 1088–1103.
Moberg, R. (1977): The lichen genus Physcia and allied genera in Fennoscandia. – Symb.
Bot. Upsal. 22: 1–108.
Myllys, L., Lohtander, K. and Tehler, A. (2001): Beta-tubulin, ITS and group I intron se-
quences challenge the species pair concept in Physcia aipolia and P. caesia. – Mycolo-
gia 93(2): 335–343.
Nadyeina, O., Grube, M. and Mayrhofer, H. (2010): A contribution to the taxonomy of the
genus Rinodina (Physciaceae, lichenized Ascomycotina) using combined ITS and
mtSSU rDNA data. – Lichenologist 42(5): 521–531.
Oh, S.-O., Jeon, H.-S., Lim, K.-M., Koh, Y.-J. and Hur, J.-S. (2006): Antifungal activity of
lichen-forming fungi isolated from Korean and Chinese lichen species against plant
pathogenic fungi. – Plant Pathol. J. 22: 381–385.
Orock, E. A., Leavitt, S. D., Fonge, B. A., St. Clair, L. L. and Lumbsch, H. T. (2012): DNA
based identification of lichen-forming fungi: can publicly available sequence data
bases aid in lichen diversity inventories of Mount Cameroon (West Africa). – Lichenol-
ogist 44(6): 833–839.
Poelt, J. (1965): Zur Systematik der Flechtenfamilie Physciaceae. – Nova Hedwigia 9(1–4):
21–32.
Simon, D. M., Hummel, C. L., Sheeley, S. L. and Bhattacharya, D. (2005): Heterogeneity of
intron presence or absence in rDNA genes of the lichen species Physcia aipolia and P.
stellaris. – Curr. Genet. 47(6): 389–399.
Acta Bot. Hung. 56, 2014
378 KONDRATYUK, S. Y., LKÖS, L., KIM, J. A. et al.
Wedin, M., Baloch, E. and Grube, M. (2002): Parsimony analyses of mtSSU and nITS rDNA
sequences reveal the natural relationships of the lichen families Physciaceae and
Caliciaceae. – Taxon 51(4): 655–660.
Wei, X. L. and Hur, J.-S. (2007): Foliose genera of Physciaceae (lichenized Ascomycota) of
South Korea. – Mycotaxon 102: 127–137.
Wei, X. L., Luo, H., Koh, Y. J. and Hur, J.-S. (2008): A taxonomic study of Heterodermia
(Lecanorales, Ascomycota) in South Korea based on phenotypic and phylogenetic
analysis. – Mycotaxon 105: 65–78.
... Josefpoeltia Josefpoeltia boliviensis [current name J. parva] Kondratyuk & Kärnefelt (1997) 7 Kaernefia Kaernefia kaernefeltii Kondratyuk et al. (2013c) 8 Neobrownliella Neobrownliella brownlieae Kondratyuk et al. (2015d) 9 Niorma Niorma hypoglauca Kondratyuk et al. (2013c) 10 Scutaria Scutaria andina Arup et al. (2013) 11 Sirenophila Sirenophila gintarasii Arup et al. (2013) 12 Stellarangia Stellarangia elegantissima Arup et al. (2013) 13 Tassiloa Tassiloa digitaurea Kondratyuk et al. (2015a) 14 Teloschistes Teloschistes flavicans Kondratyuk et al. (2013c) 15 Teloschistopsis Teloschistopsis chrysocarpoides Arup et al. (2013) 16 Villophora Villophora isidioclada Arup et al. (2013) Arup et al. (2013) 9 Gallowayella Gallowayella gallowayii Fedorenko et al. (2012) 10 Golubkovaea Golubkovaea trachyphylla Kondratyuk et al. (2014c as Golubkovia), see also Ahti et al. (2015) 11 Gondwania Gondwania cribrosa Arup et al. (2013) 12 Honeggeria Honeggeria rosmariae Fedorenko et al. (2012, p. 53) 13 Jackelixia Jackelixia elixii Fedorenko et al. (2009, p. 74) 14 Jesmurrayia Jesmurrayia novozelandica Fedorenko et al. (2012, p. 53) 15 Igneoplaca Igneoplaca ignea Kondratyuk et al. (2014c) 16 Langeottia Langeottia ottolangei Kondratyuk et al. (2014c) 17 Martinjahnsia Martinjahnsia resendei Fedorenko et al. (2012) 18 Massjukiella Massjukiella polycarpa Fedorenko et al. (2012) 19 ...
... Josefpoeltia Josefpoeltia boliviensis [current name J. parva] Kondratyuk & Kärnefelt (1997) 7 Kaernefia Kaernefia kaernefeltii Kondratyuk et al. (2013c) 8 Neobrownliella Neobrownliella brownlieae Kondratyuk et al. (2015d) 9 Niorma Niorma hypoglauca Kondratyuk et al. (2013c) 10 Scutaria Scutaria andina Arup et al. (2013) 11 Sirenophila Sirenophila gintarasii Arup et al. (2013) 12 Stellarangia Stellarangia elegantissima Arup et al. (2013) 13 Tassiloa Tassiloa digitaurea Kondratyuk et al. (2015a) 14 Teloschistes Teloschistes flavicans Kondratyuk et al. (2013c) 15 Teloschistopsis Teloschistopsis chrysocarpoides Arup et al. (2013) 16 Villophora Villophora isidioclada Arup et al. (2013) Arup et al. (2013) 9 Gallowayella Gallowayella gallowayii Fedorenko et al. (2012) 10 Golubkovaea Golubkovaea trachyphylla Kondratyuk et al. (2014c as Golubkovia), see also Ahti et al. (2015) 11 Gondwania Gondwania cribrosa Arup et al. (2013) 12 Honeggeria Honeggeria rosmariae Fedorenko et al. (2012, p. 53) 13 Jackelixia Jackelixia elixii Fedorenko et al. (2009, p. 74) 14 Jesmurrayia Jesmurrayia novozelandica Fedorenko et al. (2012, p. 53) 15 Igneoplaca Igneoplaca ignea Kondratyuk et al. (2014c) 16 Langeottia Langeottia ottolangei Kondratyuk et al. (2014c) 17 Martinjahnsia Martinjahnsia resendei Fedorenko et al. (2012) 18 Massjukiella Massjukiella polycarpa Fedorenko et al. (2012) 19 ...
... Polycauliona [s.str.] Polycauliona coralloides Arup et al. (2013) 25 Rusavskia Rusavskia elegans Kondratyuk & Kärnefelt (2003b) 26 Scythioria Scythioria phlogina Kondratyuk et al. (2014c) 27 Shackletonia Shackletonia hertelii Arup et al. (2013) 28 Solitaria Solitaria chrysophthalma Arup et al. (2013) 29 Squamulea Squamulea subsoluta Arup et al. (2013) *Cited papers should be consulted for author names of taxa listed. ...
Article
Full-text available
A new genus, Zeroviella S.Y. Kondr. & J.-S. Hur (Xanthorioideae, Teloschistaceae) for the widely distributed in the Palearctic Rusavskia papillifera-group is proposed on the basis of a combined phylogenetic data set based on ITS and LSU nrDNA and 12S SSU mtDNA sequences. A new species from Palearctic, Zeroviella esfahanensis S.Y. Kondr., B. Zarei-Darki & J.S. Hur, is described, illustrated and compared with closely related taxa. Seven new combinations for the genus Zeroviella (Zeroviella coreana (S.Y. Kondr. & J.-S. Hur) S.Y. Kondr. & J.-S. Hur, Z. digitata (S.Y. Kondr.) S.Y. Kondr. & J.-S. Hur, Z. domogledensis (Vězda) S.Y. Kondr. & J.-S. Hur, Z. laxa (Müll. Arg.) S.Y. Kondr. & J.-S. Hur, Z. mandschurica (A. Zahlbr.) S.Y. Kondr. & J.-S. Hur, Z. papillifera (Vain.) S.Y. Kondr. & J.-S. Hur, and Z. ussurica (S.Y. Kondr. & J.-S. Hur) S.Y. Kondr. & J.-S. Hur) are proposed. Additionally, seven new combinations for various genera of the Teloschistaceae (i.e.: Blastenia catalinae (H. Magn.) E.D. Rudolf, Fulgogasparrea brouardii (B. de Lesd.) S.Y. Kondr., Scythioria duritzii (H. Magn.) S.Y. Kondr., Scythioria flavogranulosa (Arup) S.Y. Kondr., Sirenophila cliffwetmorei (S.Y. Kondr. & Kärnefelt) S.Y. Kondr., Squamulea nesodes (Poelt & Nimis) S.Y. Kondr., and Villophora microphyllina (Tuck.) S.Y. Kondr.) are proposed.
... were delimited only by nrITS sequences. -Originally Kashiwadia was described as a monotypic genus including only the East Asian species K. orientalis, a species earlier studied by Kondratyuk et al. (2014b). However, several additional specimens are investigated here. ...
Article
Seven genera new to science, i.e.: Helmutiopsis, Huriopsis, Johnsheardia, Klauskalbia, Kudratovia, Kurokawia and Poeltonia of the Physciaceae are proposed for the ‘Rinodina’ atrocinerea, the ‘Rinodina’ xanthophaea, the ‘Rinodina’ cinnamomea, the ‘Heterodermia’ obscurata, the ‘Rinodina’ straussii, the ‘Anaptychia’ isidiata and the ‘Physconia’ grisea groups consequently that all form strongly supported monophyletic branches in a phylogeny analysis based on a combined matrix of nrITS and mtSSU sequences. Phylogenetic positions of species belonging to the genera Kashiwadia s. l., Leucodermia, Mischoblastia,Oxnerella, Phaeorrhiza s. l., Polyblastidium and Rinodinella s. l. are discussed. Oxnerella afghanica which for the first time recorded as parasitic lichen species from both epiphytic and saxicolous crustose lichens is designated as type species for the genus Oxnerella . Sequences of the recently described Physcia orientostellaris as well as Huriopsis xanthophaea and additional sequences of Kashiwadia aff. orientalis and Mischoblastia aff. oxydata are submitted to the GenBank. The positions of Polyblastidium casaterrinum from Costa Rica, ‘ Rinodina ’ efflorescens from Białowieża, Poland, and ‘ Mischoblastia ’ confragosula from Cambodia in the Physciaceae are confirmed in a phylogeny analysis based on the nrITS sequences. The presence of ‘extraneous mycobiont DNA’ in lichen associations is exemplified with earlier incorrect identifications of Heterodermia, Kashiwadia, Kurokawia,Oxnerella and Poeltonia specimens. Fifty-six new combinations are presented: Helmutiopsis alba (for Rinodina alba Metzler ex Arn.), Helmutiopsis aspersa (for Lecanora aspersa Borrer), Helmutiopsis atrocinerea (for Parmelia atrocinerea Fr.), Huriopsis chrysidiata (for Rinodina chrysidiata Sheard), Huriopsis chrysomelaena (for Rinodina chrysomelaena Tuck.), Huriopsis lepida (for Lecanora lepida Nyl.), Huriopsis luteonigra (for Rinodina luteonigra Zahlbr.), Huriopsis plana (for Rinodina plana H. Magn.), Huriopsis thiomela (for Lecanora thiomela Nyl.), Huriopsis xanthomelana (for Rinodina xanthomelana Müll. Arg.), Huriopsis xanthophaea (for Lecanora xanthophaea Nyl.), Johnsheardia cinnamomea (for Rinodina mniaroea var. cinnamomea Th. Fr.), Johnsheardia herteliana (for Rinodina herteliana Kaschik), Johnsheardia jamesii (for Rinodina jamesii H. Mayrhofer), Johnsheardia reagens (for Rinodina reagens Matzer et H. Mayrhofer), Johnsheardia zwackhiana (for Lecanora zwackhiana Kremp.), Kashiwadia austrostellaris (for Physcia austrostellaris Elix), Kashiwadia jackii (for Physcia jackii Moberg), Kashiwadia littoralis for Physcia littoralis Elix), Kashiwadia nubila (for Physcia nubila Moberg), and Kashiwadia tropica (for Physcia tropica Elix), Klauskalbia crocea (for Heterodermia crocea R. C. Harris), Klauskalbia flabellata (for Parmelia flabellata Fée), Klauskalbia obscurata (for Physcia speciosa (Wulfen) Nyl. *obscurata Nyl.), Klauskalbia paradoxa (for Heterodermia paradoxa Schumm et Schäfer-Verwimp), Kudratovia bohlinii (for Rinodina bohlinii H. Magn.), Kudratovia candidogrisea (for Rinodina candidogrisea Hafellner, Muggia et Obermayer), Kudratovia luridata (for Buellia luridata Körb.), Kudratovia metaboliza (for Rinodina metaboliza Vain.), Kudratovia pycnocarpa (for Rinodina pycnocarpa H. Magn.), Kudratovia roscida (for Lecanora roscida Sommerf.), Kudratovia straussii (for Rinodina straussii J. Steiner), Kudratovia terrestris (for Rinodina terrestris Tomin), Kurokawia bryorum (for Anaptychia bryorum Poelt), Kurokawia isidiata (for Anaptychia isidiata Tomin), Kurokawia mereschkowskii (for Physcia mereschkowskii Tomin), Kurokawia palmulata (for Psoroma palmulatum Michx.), Kurokawia runcinata (for Lichen runcinatus With.), Kurokawia stippea (for Parmelia aquila var. stippea Ach.), Lecania safavidiorum (for Oxnerella safavidiorum S. Y. Kondr., Zarei-Darki, Lőkös et Hur), Leucodermia erinacea (for Lichen erinaceus Ach.), Mischoblastia confragosula (for Lecanora confragosula Nyl.), Mischoblastia destituta (for Lecidea destituta Nyl.), Mischoblastia moziana (for Lecanora moziana Nyl.), Mischoblastia moziana subsp. parasitica (comb. et stat. nova for Rinodina moziana var. parasitica Kaschik et H. Mayrhofer), Mischoblastia ramboldii (for Rinodina ramboldii Kaschik), Mischoblastia vezdae (for Rinodina vezdae H. Mayrhofer), Oxnerella afghanica (for Rinodina afghanica M. Steiner et Poelt), Oxnerella castanomelodes (for Rinodina castanomelodes H. Mayrhofer et Poelt), Physciella nigricans (for Lecanora nigricans Flörke), Poeltonia elegantula (for Physconia elegantula Essl.), Poeltonia grisea (for Lichen griseus Lam.), Poeltonia isidiomuscigena (for Physconia isidiomuscigena Essl.), Poeltonia perisidiosa (for Physcia perisidiosa Erichsen), Poeltonia venusta (for Parmelia venusta Ach.), and Polyblastidium albicans (for Parmelia albicans Pers.) are proposed.
... Situation with the species concept of members of the genus Phaeophyscia as well as the foliose representatives of Physciaceae in the Eastern Asian region is more or less stable aft er careful revision done by Kashiwadani (1975Kashiwadani ( , 1984 and Moberg (1995), and aft er Park (1990) and Hur et al. (2005) in South Korea. However, some novelties were recently published (Hu and Chen 2003, Kondratyuk et al. 2013, 2014, 2015a, b, 2016a. ...
Article
Full-text available
Phaeophyscia esslingeri, a new species for science, is described from South Korea, Eastern Asia, compared with closely related taxa and illustrated with photographs. It is similar to Phaeophyscia hirtella, but diff ers by larger and light grey thallus, wider lobes, apothecia without a corona of dark rhizines around the base, shorter cortical hairs, and wider ascospores. Status of the hairy taxa of the genus Phaeophyscia from Eastern Asia is discussed. A world-wide key to hairy species of the genus Phaeophyscia is also included.
... One such group, which has been subjected to rather few molecular phylogenetic studies, is the family Physciaceae (e.g. Lohtander et al. 2000Lohtander et al. , 2009Wedin et al. 2000;Grube & Arup 2001;Helms et al. 2003;Crespo et al. 2004;Kaschik 2006;Nadyeina et al. 2010;Kondratyuk et al. 2014a). In this family, taxa are delimited mainly on the basis of secondary chemistry, asci and ascospores. ...
Article
Full-text available
The genus Rinodina (Physciaceae), with approximately 300 species, has been subject to few phylogenetic studies. Consequently taxonomic hypotheses in Rinodina are largely reliant on phenotypic data, while hypotheses incorporating DNA dependent methods remain to be tested. Here we investigate Rinodina degeliana/R. subparieta and the Rinodina mniaraea group, which previously have not been subjected to comprehensive molecular and phenotypic studies. We conducted detailed morphological, anatomical, chemical, molecular phylogenetic and species delimitation studies including 24 newly sequenced specimens. We propose that Rinodina degeliana and R. subparieta are conspecific and that chemical morphs within the R. mniaraea group should be recognized as distinct species. We also propose the placement of the recently described genus Oxnerella in Physciaceae.
Book
Full-text available
The former checklists of lichen-forming and allied fungi of Japan were compiled by Sato (1943, 1959-65), Kurokawa (2003), Harada et al. (2004), and Kurokawa & Kashiwadani (2006) that listed 1,639 accepted taxa. This current edition of checklist enumerates 1,906 accepted taxa of lichen-forming and allied fungi of Japan and their synonyms reported in the references (until 31 December 2017) related to Japanese mycobiota. Information of e.g. websites and private self-publications that were not taxonomically authorized are not considered into this checklist. Among the accepted taxa in the current list, the lichen-forming fungi are 1,801 taxa (389 genera 1,764 species 10 subspecies 49 varieties 11 forms) and the allied fungi including lichenicolous, saprophytic and plant pathogenic fungi are 64 genera 105 species. It should be noted that endemic taxa of lichen-forming fungi are 336 taxa (112 genera 335 species 1 subspecies 22 varieties 6 forms) and 307 for endemic species, 1 for endemic subspecies, 22 for endemic variety and 6 for endemic form among them. Those of allied fungi are 10 species (10 genera and 10 species). The number of endemic taxa introduced by Kurokawa (2006) was more than 350 taxa (c. 22%) among 1602 taxa of lichen-forming fungi, and the number is now slightly reduced into 335 taxa (c. 19%) among 1,801 taxa. As pointed out by Kurokawa (2006), a number of crustose species are not necessary endemic to Japan and may be found in the adjacent areas such as China, Korea and Russia in the future. Although 267 taxa were added to the current list after Kurokawa & Kashiwadani (2006), some of them are needed further taxonomic researches because they were newly described or reported based only on reference information and no comparison with reliable specimens.
Article
Ninety years after Zahlbruckner, we present the most recent update to the classification of lichen fungi in the Ascomycota and Basidiomycota to genus level, with species numbers and references to changes compared to the 2010 Outline of Ascomycota and other recent classifications. Updated statistics on global species richness of lichen fungi and species richness at family, order and class level are given. The number of accepted species is 19,387 in 995 genera, 115 families, 39 orders and eight classes. Lichenized Basidiomycota amount to 172 species (0.9% of the total), 15 genera (1.5%), five families (4.3%), five orders (12.8%) and one class (12.5%). The most speciose genera are Xanthoparmelia, Lecanora, Arthonia, Cladonia, Pertusaria, Ocellularia, Graphis, Caloplaca, Usnea and Buellia. The average number of species per genus is 19.5 and 256 genera are monospecific. Using newly defined categories, two genera (Xanthoparmelia, Lecanora) are ultradiverse (more than 500 species), 17 hyperdiverse (201–500 species) and 12 megadiverse (101–200). The largest family is Parmeliaceae, with 2,765 species and 77 genera, followed by Graphidaceae (2,161; 79), Verrucariaceae (943; 43), Ramalinaceae (916; 43) and Lecanoraceae (791; 25). The largest order is Lecanorales, with 6,231 species and 234 genera, followed by Ostropales (3,261; 138), Arthoniales (1,541, 103), Peltigerales (1,301; 67) and Caliciales (1,276; 55). The largest class is Lecanoromycetes, with 15,131 species and 701 genera, followed by Arthoniomycetes (1,541; 103), Eurotiomycetes (1,203; 63), Dothideomycetes (812; 39) and Lichinomycetes (390; 50). A total of 751 out of 995 genera (75%) have molecular data. Fifty-nine genera remain in unresolved positions at the family, order or class level. The phylogenetic position of the 39 orders containing lichenized fungi suggests 20–30 independent lichenization events during the evolution of higher Fungi, 14–23 in the Ascomycota and 6–7 in the Basidiomycota. The following names are validated: Candelariomycetidae Miądl. et al. ex Timdal & M.Westb. subcl. nov., Cystocoleaceae Locq. ex Lücking, B.P.Hodk. & S.D.Leav. fam. nov, Letrouitineae Gaya & Lutzoni subordo nov., Rhizocarpales Miądl. & Lutzoni ordo nov. and Teloschistineae Gaya & Lutzoni subordo nov. Lectotypes are designated for Clathroporinopsis M.Choisy and Protoschistes M.Choisy, making both synonyms of Gyalecta Ach., and Stromatothelium Trevis., making it a synonym of Pyrenula Ach. Members of Cyphobasidiales, which are here interpreted as hyperlichenized fungi, as well as fossil lichen fungi, are added in additional classifications in two appendices.
Article
Full-text available
Physcia ucrainica sp. n. from the Crimean Peninsula, Ukraine, sharing diagnostic morphological characters of the Physcia adscendens and P. stellaris groups (Physciaceae, Ascomycota) and its transitional position between the mentioned groups in the phylogenetic tree of the Physciaceae based on combined ITS1/ITS2 nrDNA and 12S SSU mtDNA sequences is presented.A few additional, rare for the "Novy Svit" Botanical Reserve area, the Crimean Peninsula, and Ukraine, taxa of lichen-forming and lichenicolous fungi are mentioned as well.
Article
Full-text available
This is the first comprehensive report of foliose genera of Physciaceae from Korea. Of the approximately 250 specimens of these lichens deposited in KoLRI, Korea, examined morphologically, 26 species in 5 genera were identified. Three species are new to Korea: Phaeophyscia hispidula, Pyxine consocians, and Pyxine copelandii. A key to all species in South Korea is followed by brief diagnoses or descriptions of all species now recorded for the country.
Article
Full-text available
Antifungal activity of Korean and Chinese lichen-forming fungi (LFF) was evaluated against plant pathogenic fungi of Botryosphaeria dothidea, Botrytis cinerea, Dia-porthe actinidiae, Pestalotiopsis longiseta, Pythium sp., Rhizoctonia solani, and Sclerotium cepivorum. The LFF were isolated from Cladonia scabriuscula, Melanelia sp., Nephromppsis asahinae, Nephromopsis pallescens, Parmelia ǐaevior, Pertusaria sp., Ramalina conduplicans, Ramalina sinensis, Ramalina sp., Umbïlicaria proboscidea and Vulpicida sp. with discharged spore method. The isolates were deposited in the herbarium of Korean Lichen Research Institute (KoLRI) in Sunchon National University. The LFF of Melanelia sp., P. laevior, Pertusaria sp., R. conduplican and Ramalina sp. exhibited strong antifungal activity against all of the pathogenic fungi examined. Among them, LFF of P. laevior showed more than 90% of inhibition in fungal hyphae growth, compared with control. The results imply that LFF can be served as a promising bioresource to develop novel biofungicides. Mass cultivation of the LFF is now under progress in laboratory conditions for chemical identification of antifungal substances.
Article
ITS, group I intron and partial β-tubulin sequences were used to infer phylogenies of a putative lichen species pair: Physcia aipolia (sexual) and P. caesia (asexual). A jackknife tree obtained from the β-tubulin sequences produced a well-resolved tree, whereas the resolution in the group I intron and in the ITS tree was lower due to homoplasy. The results obtained from the combined group I intron, ITS and β-tubulin data indicate that neither P. caesia nor P. aipolia are monophyletic and suggest that the two taxa are conspecific. Although the combined DNA data suggest the existence of several genetically isolated lineages in the P. aipolia/caesia group, the different lineages were not correlated with any morphological characters. Within one of the lineages, the incongruent placement of one P. aipolia specimen may indicate sexual recombination. A contradictory placement of one P. caesia specimen in different trees suggests that the usually asexual P. caesia is occasionally capable of sexual reproduction. The β-tubulin gene was found to contain enough variation for inferring relationships at the species level. Most of the informative characters were found from intron sequences and third codon positions in the exon regions. All the nucleotide substitutions were synonymous.
Article
Physciella, a new genus in the lichen family Physciaceae, is described and compared to its closest relatives. A combination of characters, including its prosoplectenchymatous, pale lower cortex, its lack of atranorin in the upper cortex, and its short, ellipsoid conidia, distinguish it from Physcia and Phaeophyscia. Four species, Ph. chloantha, Ph. denigrata, Ph. melanchra, and Ph. nepalensis are currently placed in the new genus.
Article
The monophyletic origin of the ascomycete family Physciaceae, its position within the Lecanorales and the phylogenetic structure within the family were investigated using nuclear rDNA sequence analyses. The common origin of the Caliciaceae and Physciaceae as previously shown (Wedin et al 2000) was confirmed. Further it could be shown that the Caliciaceae are nested within the Physciaceae. A unique region in loop 37 of the SSU rRNA secondary structure model was identified, which characterizes the Physciaceae/Caliciaceae. The SSU rDNA sequence data did not support a particular relationship with any other Lecanoralean family. Analyses of ITS rDNA sequences revealed a bifurcation of the Physciaceae/Caliciaceae clade, which was found to be congruent with the distribution of certain morphological characters. The congruence with the ITS phylogeny demonstrated the phylogenetic significance of ascus type, hypothecium pigmentation, ascospore characters and excipulum type. Fine-structure details of ascospores and the structure of excipula were found to be important in the recognition of convergences in these traits. Other previously used characters, i.e., growth habit, certain ascospore types or structure of the upper cortex, were found to be of multiple origins within the Physciaceae. All monophyletic lineages of noncrustose growth habit exhibit uniform ascospore types, indicating a higher evolutionary age of ascospore types than foliose growth habit. The taxonomic segregation of the Physciaceae into the Physciaceae and Caliciaceae is proposed here.
Article
Nine species of the lichen genus Physconia from China's mainland are recognized. They are Ph. chinensis, Ph. detersa, Ph. distorta, Ph. grumosa, Ph. hokkaidensis, Ph. kurokawae, Ph. leucoleiptes, Ph. lobulifera and Ph. muscigena. Of these, Ph. chinensis is described as a new species, Ph. hokkaidensis, Ph. kurokawae, Ph. leucoleiptes and Ph. lobulifera are new to China. Ph. venusta should be excluded from the Chinese lichen flora. The previous reports of Ph. enteroxantha and Ph. grisea from China are uncertain.