Available via license: CC BY-NC-ND 3.0
Content may be subject to copyright.
The eects of changes in the sagial plane
alignment of running-specic transtibial prostheses
on ground reaction forces
Shuichi Tominaga, PO
1, 2)*
, KeiSyoKu SaKuraba, MD, PhD
1)
, Fumio uSui, PO
3)
1)
Department of Sports Medicine, Graduate School of Medicine, Juntendo University: 2-1-1 Hongo,
Bunkyo-ku, Tokyo 113-8421, Japan
2)
Faculty of Health Sciences, Department of Rehabilitation, University of Human Arts and Sciences,
Japan
3)
Prosthetics and Orthotics Support Center, Tetsudo Kosaikai Foundation, Japan
Abstract. [Purpose]Toverifytheeffectsofsagittalplanealignmentchangesinrunning-specictranstibialpros-
thesesongroundreactionforces(GRFs).[SubjectsandMethods]Eighttranstibialamputeeswhousedrunning-spe-
cicprosthesesduringsprintingparticipated.ThesprintmovementswererecordedusingaVicon-MXsystemand
GRFmeasuringdevices.Theexperimentlevelsweresetasregularlyrecommendedalignment(REG;thenormal
alignmentforthesubjects)anddorsiexionorplantarexionfromtheREG.[Results]Thesubjectswereclassied
intofast(100-mpersonalbest<12.50s)andslow(100-mpersonalbest≥12.50s)groups.Inbothgroups,therewere
nosignicantdifferencesinthecenterofgravityspeed;further,thedifferenceinthestancetimewassignicantin
theslowgroupbutnotinthefastgroup.Signicantdifferenceswereobservedinthesteplengthforthefastgroup,
whereasthestancetimeandstepratesignicantlydifferedintheslowgroup.TheGRFimpulseshowedsignicant
differencesintheverticalandbrakingdirectionsinbothgroups.[Conclusion]TheGRFsareaffectedbysagittal
planealignmentchangesinrunning-specicprostheses.Moreover,ourresultssuggestthatthechangeinGRFs
alongwiththealteredsagittalplanealignmentinuencedthesteplengthandsteprate.
Key words:Transtibialamputee,running-specicprosthesis,groundreactionforce
(This article was submitted Dec. 1, 2014, and was accepted Jan. 11, 2015)
INTRODUCTION
Studies on able-bodied runners have been conducted
fromvariousviewpointsincludingkinematicsofthelower
limbjointanglesandchangesinangularspeed
1, 2)
,kinetics
of ground reaction forces (GRFs) and joint torque
3)
, and
physiological aspects such as the muscular activities of
lowerlimbs
4)
.Recently,therehavebeenanincreasingnum-
berofstudiesonamputeesprinters.Prince
5)
examined the
characteristicsof9transtibialamputees,includingthepeak
values of the GRF and impulse. According to their study, the
impulseexpressedthedifferencebetweenthesoundfootand
theprostheticfootbetterthanthepeakvalue,andtheasym-
metry varied depending on the properties of the foot section
oftheprosthesis.Grabowski
6)
examinedbilateralamputee
sprinters and reported that the GRFs needed to maintain
maximum speed when using running-specic transtibial
prosthesesweresignicantlysmallerthanthoseneededby
able-bodied runners. Brüggemann et al.
7)
and Weyand et
al.
8)
reported that improving the GRF value of prostheses
contributedtoimprovingtheperformanceofamputeesprint-
ers.Inaddition,Grabowski
6)
reportedarelationshipbetween
impulseandsteprate;theyfoundthatrunningatahighstep
ratecouldbeachievedbyreducingtheimpulseinthevertical
directionwhilesprintingatone’smaximumspeed.However,
todate,therehavebeennoreportscomparingGRF,steprate,
andsteplengthduringrunningbetweenamputeesprintersat
lowandhighcompetitionlevels,andwespeculatethatthe
knowledge necessary for improving running performance
can be obtained by elucidating the characteristics of high
competition level-amputee sprinters.
The recent improvements in the competitiveness of am-
puteesprintersareremarkable,withtheworldrecords(asof
April18,2014)fortrackandeldsports(T43class)being
10.57sfor100m,20.66sfor200m,and45.39sfor400m.
Amputee sprinters exceed the range of disabled athletes
andarecatchingupwithgeneralathletes.Itisobviousthat
extensiveadjustmentsintherunning-specicprostheseswill
needtooccurinordertokeepupwiththehighcompetitive-
ness of amputee sprinters. Accordingly, one report indicated
the possibility that the maximum sprint speed can be im-
provedconsiderablydependingonthelengthandproperties
of the prosthesis
9)
. One such property is the alignment of the
running-specicprosthesis;therefore,alteringthealignment
J. Phys. Ther. Sci.
27: 1347–1351, 2015
*Correspondingauthor.ShuichiTominaga(E-mail:
shuichi_tominaga@human.ac.jp)
©2015TheSocietyofPhysicalTherapyScience.PublishedbyIPECInc.
Thisisanopen-accessarticledistributedunderthetermsoftheCre-
ativeCommonsAttributionNon-CommercialNoDerivatives(by-nc-
nd)License<http://creativecommons.org/licenses/by-nc-nd/3.0/>.
Original Article
J. Phys. Ther. Sci. Vol. 27, No. 5, 20151348
of running-specic prostheses may help improve running
performance through the modulation of GRF during running.
Accordingly,thepurposeof thisstudywastoelucidate
the effects of changes in the sagittal plane alignment of
running-specic prostheses on the GRF, step length, and
stepratein transtibialamputeesprinters.Wehypothesized
that changes in the sagittal plane alignment of the running-
specic transtibial prosthesis will lead to changes in the
GRF. Furthermore, we also hypothesized that the stance
time,steprate,andsteplengthwouldchangeuponaltering
the alignment.
SUBJECTS AND METHODS
Subjects
Eightunilateraltranstibialamputeesparticipatingintrack
andeldsportsusingspecialprostheticfeetforrunning(7
males, 1 female) were included in the study. None of the
testsubjectshadamputatedlegsduetoangiogenicdiseases
or had an abnormality in the stump skin.All participants
belongedtoclubteamsfortrackandeldsportsandwere
training regularly. Their 100-m personal best (PB) ranged
between 12.30 and 17.90s (mean ± standard deviation,
14.85±2.31s).Theanalysiswasconductedbydividingthe
testsubjectsintofast(100-mPB<12.50s)andslowgroups
(100-mPB≥12.50s)toreducetheinuenceof speed on
GRF, owing to the fact that the GRF, the main outcome
measureofthisstudy,inuencestherunningspeed.Thesub-
jectsweredividedinto2groupsaccordingtotheirrunning
performancetoreducetheinuenceofthespeedonGRF.In
addition,thecutoffof12.50swasbasedontheParalympics
participation“B”standardrecord.
Thephysicalcharacteristicsoftheparticipantsareshown
in Table 1. The running-specic prosthetic feet were the
Cheetah(Össur,Reykjavík,Iceland)in2subjects,Flex-Run
(Össur)in2subjects,andKATANA(IMASENEngineering
Corp.,Kakamihara,Japan)intheremaining4subjects.Fur-
thermore,participants4and8ranbyattachingtheFlex-Run
totheirdailyprosthesissockettoformatranstibialprosthesis
(Table1).Consentwasobtainedfromeachparticipantafter
explainingthepurposeofthestudyandtherisksthatmaybe
involved.ThisstudywasapprovedbytheResearchEthics
Committee,FacultyofHealthandSportsScience,Juntendo
University(JUSE25-20)andcompliedwiththeguidelines
setoutintheDeclarationofHelsinki(1983).
Methods
Theexperimentwasconductedonastraightindoor15-m
track after the subjects had warmed up sufciently. They
restedbrieybetweenthetrials,asneeded,inordertoelimi-
natetheeffectsoffatigue.Reectivemarkerswereattached
totheparticipantsonthetopofthehead,shoulders,elbows,
hands,hipjoints,heels,andtoes,aswellasontheinsideand
outsideoftheknees,feet,andmetacarpophalangealjoints.
Further, markers were placed on the prosthetic socket, at
apositioncorrespondingtotheunderlyingkneecenter,on
thecarbon-berfoot keel,eitheratthesameheightasthe
lateralmalleolusoftheintactlimbwhenstandingontip-toe
oronthetopsurfaceofthekeel,2cmproximaltothemost
distal point
10, 11)
. For the experiment, a 3-dimensional opti-
cal position measuring instrument (Vicon-MX series T10
camerasystem;Vicon Motion Systems, LosAngeles,CA,
USA)wasusedtorecordthesprintmovementswithinthe
analysisblockatasamplingfrequencyof250Hz.TheGRFs
duringthefootcontacttimewerealsomeasuredbyusing4
GRFmeasuringdevices(40cm×60cm,BP400600-2000;
Advanced Mechanical Technology, Inc., Watertown, MA,
USA) at a sampling frequency of 1,000Hz. The data for
body coordinates and GRF while sprinting were synchro-
nized within theViconsystem usingsynchronous signals.
Three experiment levels were set up by plantarexing or
dorsiexing the running-specic prosthetic feet: the regu-
larlyrecommendedalignment(REG),thenormalalignment
foratestsubject;alevelof4°dorsiexionfromtheREG
(DOR);andalevelof4°plantarexionfromtheREG(PLA)
(Fig. 1).Thesubjectsperformedapproximately10trialsfor
eachcondition.Datafromthetrialsinwhichtheprosthetic
Table 1.Characteristicsoftheparticipants
Gender
(M/F)
Age
(years)
Height
(m)
Total
mass
(kg)
Stump
length
(cm)
RSP
Mass
(kg)
RSP
(model)
100 m
PB
(sec)
Fast
M 48 1.67 81.9 12.5 1.7
Cheetah
12.30
M 43 1.62 65.0 15.2 1.517
Cheetah
12.36
M 27 1.70 60.0 14.5 1.664
KATANA
12.43
Slow
M 44 1.78 75.9 17.0 1.143
Flexrun
14.28
M 49 1.70 63.0 32.5 1.932
Cheetah
15.80
F 50 1.61 52.5 13.5 1.51
KATANA
16.51
M 38 1.72 92.0 17.4 1.795
KATANA
17.20
M 21 1.80 60.0 10.0 1.501
Flexrun
17.90
Average 40.0 1.70 68.8 16.6 1.595 14.85
SD 10.7 0.07 13.2 6.9 0.238 2.31
Maximum 50.0 1.80 92.0 32.5 1.932 17.90
Minimum 21.0 1.61 52.5 10.0 1.143 12.30
RSP:Running-specicprostheses
Fig. 1. The experimental levels
Three levels were set up by plantarexing and dorsiexing the
special foot section of the prosthesis for running: the regularly
recommendedalignment(REG),denedasthenormalalignment
foratestsubject;alevelof4°dorsiexionfromREG(DOR);and
alevelof4°plantarexionfromREG(PLA).
1349
footcameincontactwiththeGRFmeasuringdeviceswere
adoptedandanalyzed.Thenumberofanalyzedtrialsissum-
marizedinTable1.
Thecoordinatesforeachjointandthebody’s centerof
gravity(COG)werecalculatedbasedonthepositionsofthe
bodymarkersobtainedbytheViconsystem.Thecoordinate
data for 250-Hz were smoothed with a cutoff frequency
of8Hz
12)
usingaquaternarylow-passdigitallter
13)
. The
GRF data at 1,000Hz were subjected to residual analysis
and smoothed with a cutoff frequency of 30Hz using a
quaternarylow-passdigitallter
12)
.
Therunning speed was consideredtobethe maximum
speedfor the body’sCOG during the stancephaseonthe
prosthetic side. Based on the GRF measured, the time at
whichgroundcontactbeganwassetaszero,andthetime
atwhichitendedwassetasT
contact
.Thesteplengthwasde-
nedasthedistancefromthetiptoemarkeroftheprosthetic
foottotheheelmarkerofthesoundfoot.Thestepratewas
calculatedbasedonthetimeofinitialcontactofthesound
leg from the toe off of the prosthetic foot. The maximum val-
ueswerecalculatedforthehorizontalGRF(Fy)andvertical
GRF (Fz) during the foot contact time. Subsequently, the
formulasbelowwereusedtocalculatetheimpulseforthe
GRF,anditshorizontal(Impulse
y
) and vertical components
(Impulse
z
).
0
contact
T
yy
Impulse F dt=
∫
(1)
0
contact
z
T
z
Impulse F dt=
∫
(2)
The differences between the levels were examined by
one-wayanalysisofvariance(ANOVA).Ifthepvaluewas
consideredsignicantuponone-wayANOVA,theTukey’s
multiple comparison test was used to examine the differ-
encesintheaveragevalues.Inalltests,asignicancelevel
smallerthan5%(p<0.05)wasconsideredsignicant.The
statisticalcalculations were conductedusingthe JMPver-
sion10.0.2(SASInstituteInc.,Cary,NC,USA).
RESULTS
Tables1–3showtheanalyzedoutcomesforthefast(100-
m PB < 12.50s) and slow groups (100-m PB ≥ 12.50s).
Sampledataofthewaveformsandanalysisoftheinvesti-
gatedparametersareshowninFig.2.Nosignicantdiffer-
enceswereobservedineithergroupintermsofthe COG
speed.Ontheotherhand,signicantdifferenceswereob-
served in the step length for the fast group and for the stance
timeandsteprateintheslowgroup.Moreover,signicant
differenceswereobservedinsomeGRFparametersforthe
fastgroup,whileonlythepeakvaluesandaveragevaluesof
GRFsignicantly differedin the slowgroup.With regard
totheimpulse,signicantdifferenceswereobservedinthe
vertical direction for both groups; however,nosignicant
differenceswereseeninthefastgroupintermsofthedirec-
tionofpropulsionorstancetime,whereasthesesignicantly
differedintheslowgroup.
Table 2.TheeffectofalignmentchangesontheCOGvelocity,stancetime,steplength,andstep
rate(fastgroupvs.slowgroup)
COGvelocity(m/s) Stance time (s) Step length (m) Steprate(Hz)
Fast DOR (n=27) 6.06±0.17
0.14±0.01
1.69±0.10 3.47±0.24
PLA (n=22) 6.18±0.17
0.14±0.01
1.78±0.08* 3.41±0.22
REG(n=25) 6.07±0.22
0.14±0.01
1.75±0.07 3.40±0.25
Slow DOR (n=47) 5.46±0.61
0.17±0.01
1.47±0.16 3.52±0.33
PLA (n=43) 5.51±0.35
0.16±0.01*
1.46±0.17 3.69±0.27*
REG(n=49) 5.53±0.51
0.16±0.01
1.50±0.15 3.52±0.24*
*:p<0.05
Thenumberofsampleswasatotalofthetrialsthateachsubjectperformedforeachcondition.
Table 3.Theeffectofalignmentchangesonthegroundreactionforces(fastgroupvs.slowgroup)
Peak(N/BW) Impulse(Ns/BW)
Vertical Braking Propulsive Vertical Braking Propulsive
Fast
DOR (n=27) 2.846±0.290 −0.374±0.100 0.303±0.087 0.241±0.013 −0.011±0.005 0.015±0.005
PLA (n=22) 2.685±0.188 −0.319±0.062 0.312±0.086 0.222±0.017
*
−0.006±0.006 0.016±0.004
REG(n=25) 2.825±0.235 −0.370±0.132 0.317±0.082 0.242±0.024 −0.011±0.009
*
0.017±0.005
Slow
DOR (n=47) 2.529±0.246 −0.357±0.069 0.260±0.077 0.254±0.032 −0.013±0.007 0.016±0.005
PLA (n=43) 2.293±0.275
*
−0.302±0.070
*
0.268±0.064 0.230±0.027
*
−0.007±0.004
*
0.019±0.006
*
REG(n=49) 2.487±0.259 −0.355±0.055
*
0.272±0.083 0.246±0.033 −0.011±0.005
*
0.017±0.005
*:p<0.05
Thenumberofsampleswasatotalofthetrialsthateachsubjectperformedforeachcondition.
J. Phys. Ther. Sci. Vol. 27, No. 5, 20151350
DISCUSSION
Thepurposeofthisstudywastoelucidatetheeffectsof
changesinthesagittalplanealignmentofrunning-specic
prostheses on GRF in transtibial amputee sprinters. Eight
participantswereinstructedtosprintwith3differentalign-
ments.Theanalysiswasconductedbydividingthetestsub-
jectsintofast(100-mPB<12.50s)andslowgroups(100-m
PB≥12.50s);whilesignicantdifferenceswereobserved
only in some parameters in the fast group, differences in
numerousparameterswereseenintheslowgroup.Impor-
tantly,signicantdifferenceswereobservedwithregardto
theimpulseintheverticalandhorizontaldirectionsinboth
groups (Table 3). These ndings indicated that the GRFs
are affected by changes in the sagittalplane alignmentof
running-specictranstibialprostheses,thuspartlysupport-
ing our hypothesis in terms of the GRF.
Generally,therunningspeedofan able-bodied sprinter
isdeterminedbytheproductofthesteprate(thenumberof
stepsperunit)andsteplength;therefore,eitherorboththe
steprateorsteplengthmustbeincreasedinordertoincrease
therunningspeed.Inpreviousstudiesonable-bodiedsprint-
ersrunningbyvaryingconditionofrunningspeeds
13–18)
, it
wasfoundthattherunningspeedincreasedasthesteplength
increasedwhentherunningspeedwaslow,andtherunning
speedincreasedasthesteprateincreasedwhentherunning
speed was high. Since the impulse is the value obtained
byintegratingforcewithtime,theimpulseandsteplength
increaseas a result ofanincrease in thestancetime with
the ground, even if the force applied against the ground is
minimal.Meanwhile,thestancetimeandswingtimeneed
tobereducedinordertoincreasethesteprate,becausethe
stepratesizeisdeterminedbythesumofthestancetimeand
swingtime.Thus,whileanincreaseinstancetimeleadsto
an increase in step length, it has a negative effect on the step
rate.Inotherwords,thereisanegativecorrelationbetween
steprateandsteplength.Itisobviousthatahumanshould
sprintwiththeoptimalcombinationofahighsteprateand
large step length in order to achieve a high running speed
19)
;
therefore, it is assumed that changing either the step rate or
steplength(orboth)contributestoanincreaseinrunning
speed.
Sincechangeswereobservedintheimpulseinboththe
verticalandhorizontaldirectionsfortheGRFinbothgroups
in this study, this indicates that the changes in alignment
affectedthestep length.Hunter et al.
20)
indicated that the
horizontal impulse affects the horizontal moving distance
fortheCOGduringtheswingphase,whichcomprisesstep
length.Indeed, the steplength increased inthe fast group
duringthePLAconditioninthisstudy,andwespeculatethat
thiswascausedbythereductionofthebrakingforceduring
the PLA condition.
Grabowski
6)
demonstrated the relationship between
impulse and step rate, and reported that running at a high
stepratecouldbeachievedbyreducingtheimpulseinthe
verticaldirectionduringhigh-speedsprinting.Inthepresent
study,anincreaseinthestepratewasobservedintheslow
group during the PLA condition, indicating that changes
in alignment affect the step rate. Moreover, a decrease of
the impulse in the vertical direction was observed during
thePLAcondition,andthisresultcorrespondswiththatof
Grabowski’s study. Altering alignment might reduce the
vertical impulse during stance, and we speculate that this
iscausedbyreductionsofthestancetimeduringthePLA
condition. As a result, a higher step rate might increase the
topspeedbyreducingtherequiredverticalimpulseduring
stance, thereby supporting our hypothesis in terms of the
step length and step rate.
However,theresultsofthepresentstudyintermsofthe
COGspeedwerenotstatisticallysignicant(Table2),likely
owingtothefactthattheGRFmeasuringdeviceswerelo-
cated at a 10-m distance from the starting point. Therefore,
it is thought that a difference did not emerge due to the
speed of running, and one of the limitations of this study is
thatthemeasuredrunningdistancewasonly15 m, which
is relatively short and corresponds only to the acceleration
aspectofa100-msprint.Toaddressthisissue,weplanto
conductafuturestudywithalongerrunningdistanceandto
examinethekinematicsandkineticsofalignmentchangesin
each aspect of a 100-m sprint.
Inconclusion,theGRFisaffectedbychangesinthesag-
ittalplanealignmentinrunning-specicprostheses.Atthe
sametime,anincreaseinsteplengthalongwithreductions
ofthebrakingimpulsewereobservedinthefastgroupwith
ahighlevelpersonal-recordinthe100-msprint.Intheslow
group,anincreaseinthestepratewasobservedalongwith
reductionsofthebrakingimpulseandstancetime.
REFERENCES
1) DillmanCJ:Kinematicanalysesofrunning.ExercSportSciRev,1975,3:
193–218.[Medline] [CrossRef ]
2) TsujiK,SodaN,OkadaN,etal.:Acomparisonofthelowerlimbmuscles
activities betweenwalking andjogging performedatthe same speed. J
PhysTherSci,2012,24:23–26.[CrossRef]
3) MunroCF,MillerDI,FuglevandAJ:Groundreactionforcesinrunning:a
reexamination.JBiomech,1987,20:147–155.[Medline] [CrossRef ]
4) JacobsR,vanIngenSchenauGJ:Intermuscularcoordinationinasprint
push-off.JBiomech,1992,25:953–965.[Medline] [CrossRef ]
Fig. 2. Analysis of parameters
A indicates the maximum value of the ground reaction force in the
verticaldirection.Bindicatestheimpulseforthegroundreaction
forceintheverticaldirection.Cindicatesthemaximumvalueof
thegroundreactionforceinthebrakingdirection.Dindicatesthe
impulseforthegroundreactionforceinthebrakingdirection.E
indicates the maximum value of the ground reaction force in the
direction of advancement. F indicates the impulse for the ground
reaction force in the direction of advancement.
1351
5) PrinceF,AllardP,TherrienRG,etal.:Runninggaitimpulseasymmetries
inbelow-kneeamputees.ProsthetOrthotInt,1992,16:19–24.[Medline]
6) Grabowski AM, Herr HM: Leg exoskeleton reduces the metabolic cost
ofhuman hopping.J ApplPhysiol1985,2009,107:670–678.[Medline]
[CrossRef]
7) BrüggemannGP,ArampatzisA,EmrichF,etal.:Biomechanicsofdouble
transtibialamputeesprintingusingdedicatedsprintingprostheses.Sports
Technol,2009,1:220–227.[CrossRef]
8) WeyandPG,BundleMW,McGowanCP,etal.:Thefastestrunneronarti-
ciallegs:differentlimbs,similarfunction?JApplPhysiol1985,2009,107:
903–911.[Medline] [CrossRef]
9) WeyandPG,SandellRF,PrimeDN,etal.:Thebiologicallimitstorunning
speedare imposedfromthe groundup.JAppl Physiol1985,2010,108:
950–961.[Medline] [CrossRef]
10) BuckleyJG:Biomechanicaladaptationsoftranstibialamputeesprintingin
athletesusingdedicatedprostheses.ClinBiomech(Bristol,Avon),2000,
15:352–358.[Medline] [CrossRef]
11) Hosoda M, Yoshimura O,Takayanagi K, et al.:Human gaitanalysisas
viewedfromA/KandB/Kforceplate/stickgures.JPhysTherSci,1999,
11:79–85.[CrossRef]
12) Arampatzis A, Brüggemann GP, Metzler V: The effect of speed on leg
stiffnessandjointkineticsinhumanrunning.JBiomech,1999,32:1349–
1353.[Medline] [CrossRef]
13) WinterDA:Biomechanicsandmotorcontrolofhumanmovement.Hobo-
ken:Wiley,2009,p370.
14) HayJG:Thebiomechanicsofsportstechniques,4thed.NewJersey:Pren-
tice-Hall,1993,pp396–412.
15) HayJG:Cyclerate,length,andspeedofprogressioninhumanlocomotion.
JApplBiomech,2002,18:257–270.
16) MeroA,KomiPV,GregorRJ:Biomechanicsofsprintrunning.Areview.
SportsMed,1992,13:376–392.[Medline] [CrossRef]
17) MeroA,LuhtanenP,ViitasaloJT,etal.:Relationshipbetweenthemaxi-
malrunningspeed,musclebercharacteristics,forceproductionandforce
relaxationofsprinters.ScandinavianJournalofSportsSciences,1981,3:
16–22.
18) YanaiT,HayJG:Combinationsofcyclerateandlengthforminimizingthe
musclepowerrequirementinhumanrunning.JournalofAppliedNiome-
chanics,2004,20:51–70.
19) KunzH,KaufmannDA:Biomechanicalanalysisofsprinting:decathletes
versuschampions.BrJSportsMed,1981,15:177–181.[Medline] [Cross-
Ref]
20) HunterJP,MarshallRN,McNairPJ:Interactionofsteplengthandsteprate
duringsprintrunning.MedSciSportsExerc,2004,36:261–271.[Medline]
[CrossRef]