BookPDF Available

Abstract

Material produzido para a formação de professores do 1o ao 3o ano do Ensino Fundamental.
Ministério da Educação
Secretaria de Educação Básica
Diretoria de Apoio à Gestão Educacional
Pacto Nacional
pela Alfabetização
na Idade Certa
EDUCAÇÃO ESTATÍSTICA
Brasília 2014
Caderno 07
PNAIC_MAT_Caderno 7_pg001-080.indd 1 21/3/2014 10:03:06
Dados Internacionais de Catalogação na Publicação (CIP)
Centro de Informação e Biblioteca em Educação (CIBEC)
Brasil. Secretaria de Educação Básica. Diretoria de Apoio à Gestão
Educacional.
Pacto Nacional pela Alfabetização na Idade Certa: Educação
Estatística / Ministério da Educação, Secretaria de Educação Básica,
Diretoria de Apoio à Gestão Educacional. – Brasília: MEC, SEB, 2014.
80 p.
ISBN 978-85-7783-140-1
1. Alfabetização. 2. Alfabetização Matemática. 3. Educação
Estatística
MINISTÉRIO DA EDUCAÇÃO
Secretaria de Educação Básica – SEB
Diretoria de Apoio à Gestão Educacional – DAGE
Tiragem 362.388 exemplares
MINISTÉRIO DA EDUCAÇÃO
SECRETARIA DE EDUCAÇÃO BÁSICA
Esplanada dos Ministérios, Bloco L, Sala 500
CEP: 70.047-900
Tel: (61) 2022-8318 / 2022-8320
PNAIC_MAT_Caderno 7_pg001-080.indd 2 21/3/2014 10:03:06
Sumário
EDUCAÇÃO ESTATÍSTICA
05 Iniciando a Conversa
07 Aprofundando o Tema
07 A pesquisa como eixo estruturador da Educação Estatística
17 Classificação e Categoria
21 Construção e interpretação de gráficos e tabelas
39 O ensino de combinatória no ciclo de alfabetização
51 Probabilidade nos primeiros anos escolares
57 Compartilhando
72 Para Saber Mais
72 Sugestões de Leituras
73 Sugestão de Vídeo
74 Sugestões de Sites
75 Sugestão de Jogos Online
76 Sugestões de Atividades para os Encontros em Grupos
77 Atividades para Casa e Escola
78 Referências
PNAIC_MAT_Caderno 7_pg001-080.indd 3 21/3/2014 10:03:07
CADERNO 7 | EDUCAÇÃO ESTATÍSTICA
Organizadores:
Carlos Roberto Vianna, Emerson Rolkouski
Autores:
Claudia Lima, Cristiane de Arimatéa Rocha, Cristiane Azevedo dos Santos
Pessoa, Gilda Lisbôa Guimarães, Izabella Alencar Freire Guimarães de Oliveira,
José Ivanildo Felisberto de Carvalho, Veronica Gitirana Gomes Ferreira
Comitê Gestor:
Adilson Oliveira do Espírito Santo, Liane Teresinha Wendling Roos, Mara Sueli
Simão Moraes
Consultores:
Alexandrina Monteiro, Alina Galvão Spinillo, Antonio José Lopes, Celi Espasandin
Lopes, Cristiano Alberto Muniz, Gilda Lisbôa Guimarães, Maria da Conceição
Ferreira Reis Fonseca, Maria Tereza Carneiro Soares, Rosinalda Aurora de Melo
Teles
Pareceristas ad hoc:
Adail Silva Pereira dos Santos, Adriana Eufrasio Braga Sobral, Ana Marcia Luna
Monteiro, Carlos Eduardo Monteiro, Cecilia Fukiko Kamei Kimura, Clarissa
Araújo, Gladys Denise Wielewski, Iole de Freitas Druck, Lilian Nasser, Maria José
Costa dos Santos, Paula Moreira Baltar Bellemain, Paulo Meireles Barguil, Rute
Elizabete de Souza Rosa Borba
Leitores Críticos:
Camille Bordin Botke, Enderson Lopes Guimarães, Flavia Dias Ribeiro, Helena
Noronha Cury, Laíza Erler Janegitz, Larissa Kovalski, Leonora Pilon Quintas,
Luciane Ferreira Mocrosky, Luciane Mulazani dos Santos, Marcos Aurelio
Zanlorenzi, Maria do Carmo Santos Domite, Michelle Taís Faria Feliciano, Nelem
Orlovski
Apoio Pedagógico:
Laíza Erler Janegitz, Nelem Orlovski
Revisão:
Célia Maria Zen Franco Gonçalves
Projeto gráfico e diagramação:
Labores Graphici
PNAIC_MAT_Caderno 7_pg001-080.indd 4 21/3/2014 10:03:07
5
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Iniciando a Conversa
ler, interpretar e fazer uso das informações expressas na forma de ícones, •
símbolos, signos e códigos em diversas situações e em diferentes configurações
(anúncios, gráficos, tabelas, rótulos, propagandas), para a compreensão de
fenômenos e práticas sociais;
formular questões que gerem pesquisas e observações para coletar dados •
quantitativos e qualitativos;
coletar, organizar e construir representações próprias para a comunicação •
de dados coletados (com ou sem o uso de materiais manipuláveis ou de
desenhos);
Com o conteúdo deste Caderno busca-se inserir a criança no universo da
investigação, a partir de situações de interesse próprio, realizando coletas de dados e
apresentando-os em gráficos e tabelas. Gráficos e tabelas, além de serem ferramentas
para apresentação de dados, são recursos para a elaboração de problematizações
relativas a outros eixos dos Direitos de Aprendizagem.
Considera-se como fundamental na atitude investigativa a preocupação em
formular questões, elaborar hipóteses, escolher amostra e instrumentos adequados
para a resolução de problemas, a coleta dos dados, a classificação e representação
dos mesmos para uma tomada de decisão. É nesse sentido que a pesquisa pode ser
pensada como o eixo principal da formação estatística dos alunos de todos os níveis
de ensino.
Nesse contexto de aprendizagem está presente a necessidade de desenvolver a
contagem de possibilidades, denominada combinatória. Partindo-se de estratégias
das próprias crianças é possível introduzir formas variadas de organizar os dados,
como, por exemplo, as tabelas de dupla entrada. Temos, ainda, o raciocínio
probabilístico, que embora no ciclo de alfabetização não precise ser sistematizado,
pode ser iniciado a partir de situações lúdicas desenvolvendo conceitos simples,
auxiliando a criança a identificar eventos com maior ou menor chance de ocorrer.
O objetivo deste caderno é apresentar a Educação Estatística, fornecendo ao
professor elementos que permitam o planejamento de práticas pedagógicas que
auxiliem a criança a reconhecer e produzir informações, em diversas situações e
diferentes configurações, ou seja:
PNAIC_MAT_Caderno 7_pg001-080.indd 5 21/3/2014 10:03:07
6
EDUCAÇÃO ESTATÍSTICA
ler e interpretar listas, tabelas simples, tabelas de dupla entrada, gráficos;•
elaborar listas, tabelas simples, tabelas de dupla entrada, gráfico de barras •
e pictóricos para comunicar a informação obtida, identificando diferentes
categorias;
produzir textos a partir da interpretação de gráficos e tabelas;•
problematizar e resolver situações a partir das informações contidas em tabelas •
e gráficos;
reconhecer e diferenciar situações determinísticas e probabilísticas;•
identificar a maior ou menor chance de um evento ocorrer.•
Importante sublinhar que a Educação Estatística vai ocorrer no duplo contexto
da Alfabetização Matemática e do letramento em Língua Portuguesa.
Nesse sentido, os objetivos acima discriminados devem estar imersos, e contribuir
nesse processo. Esses objetivos podem e devem ser pensados na perspectiva de
trabalho com crianças de seis a oito anos. As próximas páginas mostram passos que
podem ser dados nesta direção.
PNAIC_MAT_Caderno 7_pg001-080.indd 6 21/3/2014 10:03:07
7
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Aprofundando o Tema
A PESQUISA COMO EIXO ESTRUTURADOR DA
EDUCAÇÃO ESTATÍSTICA
Verônica Gitirana
Ao olhar para a história da educação, observamos que alguns conteúdos deixam
de constar na grade curricular, enquanto outros são deslocados ou introduzidos. De
modo geral, tais mudanças são ocasionadas por:
mudanças na sociedade, que mostram que determinados conteúdos e •
procedimentos tornam-se necessários (leitura de mapas e vistas) ou obsoletos
(expressões numéricas enormes para serem feitas com lápis e papel);
estudos na área da Psicologia, que revelam que determinados conteúdos •
somente podem ser aprendidos em anos mais avançados (a divisão de frações
que fazia parte do currículo da antiga quarta série, em alguns currículos é
recomendada somente para os ciclos finais do Ensino Fundamental) ou que
poderiam ser aprendidos por alunos mais jovens (antigamente o estudo de
sequências era um assunto somente para o Ensino Médio e hoje trabalhamos
sequências elementares com crianças).
Antes da década de 80, a Estatística e assuntos correlatos, como probabilidade
e a análise combinatória, eram propostos apenas para os anos finais do Ensino
Fundamental e Ensino Médio. No entanto, devido a importância destes conceitos
para o exercício da cidadania, e estudos da área da Psicologia que apontam a
possibilidade de poderem ser trabalhados com crianças menores, indica-se a inserção
da Educação Estatística já nos anos iniciais.
No entanto, pelo fato de não termos aprendido tais conceitos na escola, é
comum que nós professores façamos diversos questionamentos.
Basta trabalhar
com construção e
interpretação de
gráficos e tabelas?
O que ensinar de
estatística a uma
criança em processo de
alfabetização?
Posso trabalhar
estatística com outras
ciências ou com o
cotidiano?
Ricardo Luiz Enz
PNAIC_MAT_Caderno 7_pg001-080.indd 7 21/3/2014 10:03:08
8
EDUCAÇÃO ESTATÍSTICA
A Estatística cumpre o papel de auxiliar as investigações nas quais muitos
dados estão presentes, buscando tratar, quantitativamente, as situações para que
informações sejam geradas e apresentadas de forma planejada. A pesquisa é um
dos eixos estruturadores da abordagem da Estatística na escola.
Antes de tratar grande quantidade de dados com muitos cálculos, a Estatística
importa-se em decidir as questões que devem ser feitas, os dados a coletar, as
estratégias de classificação das respostas. Enfim, investigar-se alguma coisa.
Aprender a fazer pesquisa favorece, não somente a formação estatística do
cidadão, como, também, a formação científica. A Estatística tem importância
numa perspectiva interdisciplinar, para a formação do cidadão em outras áreas
do conhecimento, pois as questões a serem investigadas são geradas nos diversos
campos de conhecimento.
O que queremos investigar?
A criança chega à escola cheia de questionamentos. A curiosidade é uma qualidade
da criança que, por falta de valorização, vai, ao longo dos anos, desaparecendo.
A Educação Estatística ajuda a valorizar o desenvolvimento dessa curiosidade.
Se uma criança questiona: “qual o bicho de estimação preferido dos meus
colegas?”, em vez de cortar sua curiosidade, o professor pode direcioná-la para o
desenvolvimento de uma investigação.
A princípio, as crianças poderiam fazer perguntas a dois ou três colegas,
satisfazendo sua curiosidade inicial. Cabe ao professor, incentivar para que a pergunta
seja aprimorada, buscando um resultado que valha para todo um grupo de sujeitos
(uma população), por exemplo, toda a turma.
Além disso, pode-se provocar a curiosidade com novas questões: o grupo
de meninos terá a mesma preferência que o grupo de meninas? Ou ainda, se
investigarmos a preferência do grupo de professores teremos o mesmo resultado
que para o grupo das crianças?
Que população iremos investigar?
É preciso, portanto, discutir que grupo se quer investigar, ou seja, a população a
ser estudada. Adultos, crianças, adolescentes, os alunos da escola, os alunos da sala,
as crianças da cidade, etc. A população precisa fazer parte da questão da pesquisa
a ser realizada.
Para o desenvolvimento de uma pesquisa feita pelas crianças é importante
PNAIC_MAT_Caderno 7_pg001-080.indd 8 21/3/2014 10:03:08
9
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Hipóteses dessa natureza exigiriam que coletássemos informações referentes: a
gênero (menino ou menina), ao motivo pelo qual gostam de tais animais e sobre
a quantidade de crianças que moram na casa. Trata-se, portanto, de variáveis que
podem ser estudadas.
É importante explorar a relação entre as questões, hipóteses e dados a serem
coletados, por meio do trabalho com investigações estatísticas sobre assuntos de
interesse das crianças.
Quem fará parte da pesquisa?
Após a definição da população a ser investigada é preciso decidir se todos serão
pesquisados ou apenas uma parte da população uma amostra. Certamente que
não defendemos que se ensine às crianças sobre teorias de amostragem, no entanto,
algumas ideias podem ser introduzidas, de acordo com o que se deseja saber.
É preciso assegurar que as variáveis identificadas sejam levadas em conta no
momento de escolher uma amostra. Por exemplo, se uma variável que consideramos
no problema dos bichos de estimação preferido das crianças é o gênero, não
podemos selecionar uma amostra somente de meninas, ou mesmo cuja maioria seja
composta de meninas.
que a população seja passível de ser investigada, pelas próprias crianças. Portanto,
é importante limitar a população para que se consiga envolver todos do grupo
escolhido ou conseguir uma parte dela que possa melhor representar esse grupo.
Levantando hipóteses
A partir do momento em que as crianças enunciam sua dúvida, pode-se incentivá-
las a elaborar possíveis respostas. Por exemplo, para a pergunta: “qual o bicho de
estimação preferido dos meus colegas?” várias hipóteses de respostas, que
certamente dependerão do contexto de cada região, serão dadas: cachorro, gato,
galinha, coelho, etc.
Para além dessas primeiras aproximações, é importante observar que:
“Uma criança pode achar que as meninas gostam mais de gatos, pois são
mais dóceis e os meninos dos cães por serem mais ágeis.”
“Outra criança poderia ter como opinião que as crianças que têm muitos
irmãos gostam mais de cachorros, pois fica mais divertido.”
PNAIC_MAT_Caderno 7_pg001-080.indd 9 21/3/2014 10:03:08
10
EDUCAÇÃO ESTATÍSTICA
Uma amostra com melhor representatividade não necessariamente depende
apenas do tamanho da amostra. Porém, como estamos trabalhando com os anos
iniciais, é importante começar uma investigação que possa ser feita com toda a
população: um censo.
Lembrando de nossa questão de investigação, qual o bicho de estimação
preferido dos meus colegas? e de nossas hipóteses, temos as seguintes variáveis
importantes:
o nome da criança – para que nenhuma criança seja esquecida ou para que •
nenhuma responda duas vezes;
o gênero da criança devido à hipótese da diferença de preferência entre •
meninos e meninas;
o bicho de estimação preferido – pois é a questão chave da pesquisa;•
o porquê é preferido – devido à primeira hipótese levantada;•
a quantidade de crianças que moram na casa.•
Apesar de nesse texto estarmos considerando cinco variáveis distintas, é
importante iniciar o estudo com menos, considerando apenas uma das hipóteses.
Incluímos, aqui, as cinco variáveis, devido à necessidade de discutir os diferentes
tipos: nominais (ordinais ou não) e numéricas.
Nominal: é uma variável qualitativa na qual os valores se enquadram em
categorias. Por exemplo, tipo de filme: amor, aventura, comédia.
Ordinal: é uma variável qualitativa na qual os valores se enquadram em
categorias que assumem algum tipo de ordenação. Por exemplo: pequeno, médio,
grande.
Numérica: é uma variável quantitativa na qual os valores são numéricos. Por
exemplo: 15 Kg, 2 m, 1 l.
Como coletar os dados?
É importante decidir qual o método de coleta dos dados: a) cada aluno
entrevistará um colega e anotará a resposta em um formulário; b) será construído
um questionário para que cada um preencha; c) será feita a coleta de dados de
forma coletiva na sala de aula. O professor faz um quadro na lousa (planilha de
dados) e anotará as respostas apresentadas por cada um dos alunos. Isto dependerá
do nível de letramento em que as crianças se encontram. Em qualquer dos casos,
alguns cuidados são importantes:
a) construir previamente as perguntas a serem feitas;
b) decidir se cada questão será aberta, fechada ou semi-aberta;
PNAIC_MAT_Caderno 7_pg001-080.indd 10 21/3/2014 10:03:08
11
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
c) para as questões abertas: garantir que todos saibam os critérios que são
levados em conta na variável;
d) para as variáveis numéricas: como as grandezas serão medidas;
e) para as questões fechadas ou semiabertas: gerar a categorização prévia das
variáveis.
O nome da criança (o nome completo ou apenas o primeiro, desde que seja
possível identificar cada participante) é uma questão geralmente aberta e utilizada
apenas para controle da pesquisa.
O gênero da criança é uma variável binária, menino ou menina. As variáveis
binárias são as nominais que têm apenas duas categorias: sim ou não; feminino ou
masculino. É uma variável que não se ordena, não como dizer quem é maior. Essas
categorias são mais rapidamente dominadas pelas crianças, ressaltamos, portanto,
que são as mais adequadas para o início dos trabalhos com os alunos do ciclo de
alfabetização.
O bicho de estimação preferido é uma variável nominal que certamente
terá uma grande quantidade de categorias. Porém, é importante estabelecer o
que se quer obter nesse tipo de pergunta, pois uma criança pode responder que
é o cachorro, a outra que é o pastor alemão e a outra que é Mimi. Vejamos que
nessas três possíveis respostas, temos critérios diferentes de classificação do bicho
de estimação: na primeira trata-se do que normalmente chamamos de classificação
do animal, na segunda a raça, e na terceira o nome dado ao animal.
Para gerar uma pesquisa estatística é importante se definir qual o critério que vai
classificar as respostas, mesmo quando se utiliza uma pergunta aberta do tipo: Qual
o bicho de estimação que você prefere? Muitas vezes, quando não se delimitam
critérios anteriormente, alguns dados não são passíveis de serem aproveitados.
Por exemplo, se a resposta for Mimi, não conseguiríamos utilizar este dado, pois
estamos, provavelmente, interessados na espécie do bicho de estimação.
O processo de geração de uma classificação da variável é sempre necessário.
Por ser algo bastante importante, recomendamos a leitura do artigo Classificação
e Categorização”. Aqui fazemos algo mais rápido. Algumas pesquisas optam por
utilizar uma classificação prévia, apresentando, ao sujeito pesquisado, categorias
previamente definidas para que ele apenas escolha entre elas. Por exemplo:
Gato
Cachorro
Peixe
Coelho
Qual dos bichos de estimação abaixo você prefere?
PNAIC_MAT_Caderno 7_pg001-080.indd 11 21/3/2014 10:03:08
12
EDUCAÇÃO ESTATÍSTICA
Se por um lado, esse tipo de questão facilita a coleta dos dados, por outro,
limita as escolhas. Por exemplo, algum aluno poderia gostar de criar patinhos ou
alguns outros animais. Muitos optam em transformar numa questão semiaberta,
incluindo um item do tipo:
Outros, especificar: ..................................................
A variável “do porquê” é sempre uma questão difícil de ser classificada a partir
de questões abertas, portanto, vamos optar por uma classificação prévia e uma
questão semiaberta.
Por que você prefere esse tipo de bicho de estimação?
São alegres
São companheiros
São brincalhões
São fofos
São calmos
Outros, especificar: ..................................................
A quantidade de crianças que mora em casa é outra variável. Antes de
qualquer coisa, precisamos novamente definir o que vai ser considerado como morar
na casa. Por exemplo: nas famílias em que o pai, a mãe ou o responsável estão em
um segundo relacionamento, pode haver crianças que estão parte da semana na
casa, e parte fora. ainda famílias em que uma criança estuda em regime de
internato, chegando a casa somente nos finais de semana. É preciso definir o que
será, portanto, considerado como morar em casa, para que cada um não tenha uma
decisão diferente.
Após tal decisão, consideramos que a quantidade de crianças que mora na
casa é um número natural maior ou igual a um, já que ao menos o próprio aluno
mora na casa. No entanto, podemos recategorizar como uma variável ordinal,
como:
Quantas crianças moram em sua casa?
1 a 3 (poucas) 4 a 6 (bastante) 7 ou mais (muitas)
Essa recategorização permite juntar as crianças quando as quantidades ficam
muito dispersas mantendo a possibilidade de ordenar, mas não permite operar com
os números, como no cálculo de médias e medianas (cujos conceitos não se aplicam
para o ciclo de alfabetização).
PNAIC_MAT_Caderno 7_pg001-080.indd 12 21/3/2014 10:03:08
13
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Os dados precisam ser coletados, e organizados numa planilha de dados (ver o
texto de gráficos e tabelas desse caderno).
Simulamos uma planilha deste tipo com 20 crianças entrevistadas.
N. Nome Gênero Bicho favorito Porquê
Crianças
em casa
1 Ana Feminino Coelho São alegres 1
2 Beatriz Feminino Cachorro São calmos 6
3 Carlos Masculino Cachorro São companheiros 1
4 Cláudia Feminino Gato São fofos 3
5 Clementino Masculino Coelho São alegres 5
6 Dário Masculino Gato São calmos 1
7 Diogo Masculino Cachorro São brincalhões 3
8 Maria Claudia Feminino Cachorro São fofos 4
9 Manoel Masculino Gato São calmos 2
10 Marcelo Masculino Gato São companheiros 2
11 Natanael Masculino Coelho São fofos 3
12 Patrick Masculino Gato São alegres 4
13 Pedro Masculino Cachorro São alegres 1
14 Pietra Feminino Cachorro São companheiros 1
15 Raquel Feminino Gato São fofos 2
16 Rita Feminino Coelho São alegres 3
17 Rui Masculino Cachorro São calmos 7
18 Selma Feminino Cachorro São brincalhões 2
19 Tereza Feminino Gato São fofos 6
20 Zélia Feminino Coelho São calmos 8
Como apresentar os dados
Após a coleta e organização dos dados, vem uma etapa de análise estatística.
Precisamos buscar as medidas estatísticas que permitam responder à questão
posta:
“Qual bicho de estimação favorito dos alunos da turma?”
Em dados nominais, a frequência absoluta é uma das medidas estatísticas
utilizadas e que exige apenas a contagem. É importante selecionar um tipo de
gráfico ou um tipo de tabela que melhor auxilie a responder às questões.
PNAIC_MAT_Caderno 7_pg001-080.indd 13 21/3/2014 10:03:08
14
EDUCAÇÃO ESTATÍSTICA
A primeira pergunta a responder é: Qual o bicho de estimação favorito?
Precisamos de uma tabela de frequência da variável bicho de estimação favorito
ou de um gráfico para exibir a frequência absoluta dos bichos. O gráfico pode
ser feito com figurinhas, ou em papel quadriculado, para facilitar a visualização e
compreensão da criança.
As crianças podem receber retângulos e “colar” na coluna acima do animal
preferido, tomando os devidos cuidados para não danificar o quadro com colas não
laváveis.
Arquivo dos autores
As crianças podem registrar na folha quadriculada esta produção coletiva:
Arquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 14 21/3/2014 10:03:10
15
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Pode-se então criar uma tabela com as informações do gráfico:
Após construírem cada gráfico ou tabela, é importante discutir com os alunos,
que informações se podem obter dessas representações. Uma série de perguntas
podem ser feitas a partir do gráfico: O que significa não ter nenhum quadradinho
acima do peixinho? Qual o bicho mais escolhido?
O tratamento dos dados deve estar atrelado às perguntas geradas. Portanto,
uma pergunta a ser discutida é relativa à hipótese de que as meninas gostam mais
de gatos e os meninos de cães.
Podemos fazer uma tabela somente das meninas e outra somente dos
meninos.
0
1
2
3
4
5
Peixe
Bichos de estimação
preferidos
6
7
8
Quantidade de
meninos
Cachorro Gato Coelho
Frequência de crianças por bicho preferido
Bicho de estimação preferido Quantidade de crianças
Cachorro 8
Gato 7
Peixe 0
Coelho 5
Frequência de meninos por bicho preferido
Bicho de estimação favorito Quantidade de meninos
Cachorro 4
Gato 4
Peixe 0
Coelho 2
PNAIC_MAT_Caderno 7_pg001-080.indd 15 21/3/2014 10:03:11
16
EDUCAÇÃO ESTATÍSTICA
Frequência de meninas por bicho preferido
Bicho de estimação favorito Quantidade de meninas
Cachorro 4
Gato 3
Peixe 0
Coelho 3
0
1
2
3
4
5
Peixe
Bichos de estimação
preferidos
6
7
8
Quantidade de
meninas
Cachorro Gato Coelho
Isto permitirá que as crianças vejam que, nesses dados organizados, há, dentre os
meninos da turma, um equilíbrio entre os que preferem cachorros e gatos. dentre
as meninas, mais meninas que preferem cachorro, o que derruba a hipótese
levantada.
Uma outra possibilidade é pedir que as crianças utilizem cores diferentes de quadra-
dinhos para meninos e meninas e assim construir um gráfico que possa distingui-los.
Explore com as criaas o máximo de informações que possam tirar dos gráficos.
Interpretando os dados
É importante apresentar os dados tratados por meio de gráficos e tabelas que
tenham relação com as perguntas levantadas, e dizer o que se pode interpretar a partir
deles. Uma tendência comum das crianças é fugir dos dados e falar o que acham,
mesmo que os dados digam outra coisa. É preciso buscar que elas sejam críticas e
contrastem o que pensam com o que os dados dizem. Fazer uma apresentação para
comunicar os resultados e, se for o caso, tomar decisões.
Este artigo teve como objetivo apresentar discussões acerca da pesquisa como
eixo estruturador do ensino de Estastica, ressaltando as possibilidades para o ciclo
de alfabetização. O texto seguinte aborda a classificação e a categorização, aspectos
essenciais na Educação Estatística e em várias outras áreas da Matemática.
PNAIC_MAT_Caderno 7_pg001-080.indd 16 21/3/2014 10:03:11
17
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
CLASSIFICAÇÃO E CATEGORIZAÇÃO
Verônica Gitirana
A classificação está na base de várias atividades humanas. Todo objeto, ou ser,
pertence a uma ou a várias classes. Uma bola está na classe dos brinquedos, por
exemplo, mas está também na classe dos objetos com formato de uma esfera. Nas
Ciências isto não é diferente. Todo conceito é por si uma classe. Ao definir um
conceito, estamos diante das características necessárias para um elemento ser parte
dessa classe (conceito). O uso dessas características nos permite decidir se certo
objeto é ou não parte de uma classe.
A todo momento as pessoas precisam gerar classificações que sejam
compreensíveis para elas e para outros. Em casa, para organizar os armários da
cozinha, estamos diante de uma atividade em que a classificação é essencial.
Quando a classificação não segue critérios bem definidos, fica a cargo da
memória lembrar onde encontrar cada objeto. Quando se tem os critérios bem
definidos, basta saber a que classe o objeto procurado pertence. Em geral essa
classificação é feita sem muitos cuidados de explicitação, tanto que quando chega
uma visita em casa e ela resolve guardar os objetos, tudo fica fora do lugar que você
costumava guardar.
Quando for a um mercado perceba como as coisas são classificadas em grandes
grupos, por exemplo: alimentícios e não alimentícios. E, depois, em grupos menores,
e esses em grupos ainda menores
1
:
1
O diagrama mostra apenas uma pequena exemplificação do complexo processo do sistema de classificação dos mer-
cados.
Hortifrutigranjeiros
Cereais
Perecíveis
Não-perecíveis
Alimentícios
Não-alimentícios
Produtos
PNAIC_MAT_Caderno 7_pg001-080.indd 17 21/3/2014 10:03:11
18
EDUCAÇÃO ESTATÍSTICA
Diante de tudo isso é importante, desde cedo, trabalhar com a criança práticas
de classificação. Temos então, duas possiblidades de atividades: uma é a geração
de uma classificação a partir de dados, e a outra é colocar os dados (objetos) nas
classes corretas de classificações previamente elaboradas.
No caso da geração de uma classificação, é preciso estudar as características
dos dados (ou objetos) e escolher os critérios que serão utilizados para definir cada
classe. Uma classificação pode ser feita com um ou mais critérios, porém,
neste texto, discutiremos essencialmente a geração de classificações a partir
de um único critério – a categorização.
Para facilitar o entendimento deste texto, utilizaremos como exemplo,
a classificação de 10 figuras geométricas não prototípicas
2
a seguir:
2
Figuras não prototípicas são aquelas que não representam protótipos (modelos) nas salas de aula.
A B C D E
F G H I J
Uma das dificuldades dos alunos é definir um critério para a criação das
categorias. Por exemplo, um aluno poderia, em uma primeira categoria, usar como
critério o fato de ter autointersecção, juntando as figuras como “figuras que têm
autointersecção” e “figuras que não têm autointersecção”.
Figuras com autointersecção
C D E IF
É importante salientar
que esse exemplo
é apenas para ns
didáticos e para
uso do professor.
Exemplos adequados
para o trabalho em
sala de aula do ciclo
de alfabetização são
descritos mais adiante.
PNAIC_MAT_Caderno 7_pg001-080.indd 18 21/3/2014 10:03:14
19
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Figuras sem autointersecção
JA B G H
A compreensão dessas categorias exige que se reconheça a propriedade da
autointersecção. Tendo conhecimento da propriedade, ao apresentarmos então
uma nova figura, a criança deve ser capaz de saber em que grupo colocá-la.
Cada categoria pode sofrer novas partições. Ao olhar as figuras que estavam no
“grupo das figuras sem autointersecção”, a criança observou que poderia separá-
-las em figuras somente com segmentos de reta ou figuras com curvas e segmentos
de reta. Nesse sentido, produziriam mais duas categorias:
Figuras com curvas e segmentos de reta
Figuras somente com segmentos de reta
B H
A G J
Entretanto, observando isoladamente as figuras D e E, elas poderiam também
ser colocadas na categoria das figuras com curvas e segmentos de reta.
Em Estatística, e em várias situações da vida cotidiana, é importante gerar
categorizações em que um mesmo dado seja alocado sempre em apenas uma
categoria.
PNAIC_MAT_Caderno 7_pg001-080.indd 19 21/3/2014 10:03:17
20
EDUCAÇÃO ESTATÍSTICA
Em nosso exemplo, uma primeira categorização poderia ser ter, ou não, auto
intersecção (qualquer que seja ela - entre seus segmentos ou curvas ou de uma curva).
Geraríamos então uma categorização binária – tem ou não tem autointersecção.
Uma outra possibilidade de categorização seria ter apenas curvas, ter curvas e
segmentos, ter somente segmentos.
É importante observar que a categoria ter apenas curvas, incluirá somente a
figura F, dentre as 11 figuras desenhadas anteriormente. Uma categoria com uma
única figura muitas vezes sofre resistências dos alunos. É como se eles resistissem a
falar de um grupo com um único elemento ou mesmo de um grupo sem elementos.
Veja que na Estatística as categorias lançadas em uma pesquisa, muito comumente
têm frequência zero, ou seja, dentre a população pesquisada, não apresentam
componentes.
Um dos aspectos importantes nas atividades de classificação é indagar: classificar
para quê? É o conteúdo dessa resposta que valida a classificação realizada.
Trabalhos com classificações a partir de situações do cotidiano devem ser
incentivadas. Uma atividade bastante divertida é pedir às crianças que tirem seus
calçados e dividam-se em dois grupos. Cada grupo classifica seus calçados conforme
um critério estabelecido pelo grupo e caberá ao outro grupo descobrir o critério
utilizado.
Nesse artigo foram abordadas a classificação e a categorização. A seguir serão
discutidos aspectos referentes a construção de gráficos e tabelas.
PNAIC_MAT_Caderno 7_pg001-080.indd 20 21/3/2014 10:03:17
21
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
CONSTRUÇÃO E INTERPRETAÇÃO
DE GRÁFICOS E TABELAS
Gilda Guimarães
Izabella Oliveira
A pesquisa como atividade regular na formação do aluno pode ser definida como
o conjunto de atividades orientadas e planejadas para a busca de um conhecimento
novo. Considera-se como fundamental na atitude investigativa a preocupação em
formular questões, elaborar hipóteses, escolher amostra e instrumentos adequados
para a resolução de problemas, a coleta dos dados, a classificação e representação
dos mesmos para uma tomada de decisão. O tema deste artigo trata desse último
tópico: a representação dos dados.
A Estatística tem como um de seus objetivos organizar e resumir grandes
quantidades de dados mediante o uso de medidas e representações que mostrem,
de maneira sintética, o perfil dos dados coletados, as tendências e relações entre
as variáveis. A partir de gráficos e tabelas podemos nos informar sobre os mais
variados assuntos e, a partir dos dados, refletir sobre o que eles indicam sobre
a temática. Assim, o trabalho com estatística pode ser facilmente integrado com
qualquer área de conhecimento ou disciplina. Nesse sentido, é fundamental que
os dados utilizados nessas representações sejam reais, pois somente dessa forma
poderão subsidiar reflexões sobre fenômenos naturais ou sociais.
É fundamental que haja muito cuidado na apresentação dos dados, tanto na
forma de gráficos, quanto de tabelas. Além disso, deve-se fazer uma interpretação
criteriosa daquilo que é apresentado.
Tipos de Gráficos e sua construção no ciclo de alfabetização
Os gráficos evidenciam uma visão geral dos dados e favorecem compreensão
visual das informações. Entretanto, essa facilidade aparente na interpretação de
um gráfico pode gerar alguns equívocos. Escalas incorretas geram análises erradas.
Portanto, é fundamental que os alunos analisem um gráfico apoiando-se sobre os
fatores que o motivaram e não sobre a sua aparência. Tais habilidades podem ser
construídas desde o ciclo de alfabetização.
Existem diferentes tipos de gráficos que podem ser trabalhados nos anos iniciais:
pictograma, barras, linha e setor. É importante que as crianças tenham oportunidade
de conhecer diferentes tipos de representações gráficas para serem capazes de
reconhecer a mais adequada aos seus objetivos. Para tal, é preciso compreender as
especificidades dessas representações.
PNAIC_MAT_Caderno 7_pg001-080.indd 21 21/3/2014 10:03:17
22
EDUCAÇÃO ESTATÍSTICA
0
2
4
6
8
10
Homem
12
14
16
Aranha LeopardoCanguru
Um gráfico de barras, tanto horizontal como vertical, permite estabelecer
comparações de frequências ou porcentagem. No caso das crianças pequenas
(Educação Infantil e 1.
o
ciclo), devemos trabalhar apenas com as frequências. Também
é preciso enfatizar que todas as barras devem ter a base com a mesma medida e que
a separação entre elas deve ser uniforme.
No caso da figura a seguir, é apresentado o título que anuncia o tema (salto em
distância). Os eixos estão nomeados (animais e distância) e a fonte onde os dados
foram coletados está expressa abaixo do gráfico. Nesse gráfico, a escala utilizada foi
de 2 em 2.
No ciclo de alfabetização, o trabalho com gráficos pode iniciar pela construção
desse tipo de representação utilizando materiais manipuláveis como tampinhas de
garrafa PET, caixinhas de fósforo, etc. Fazê-los com esses materiais auxilia também
no trabalho com alunos com deficiência visual.
O processo de construção de gráficos pode fazer parte da rotina semanal das
crianças em diferentes situações. No início do ano, por exemplo, pode-se fazer um
gráfico dos aniversários das crianças.
Arquivo dos autores
SALTO EM DISTÂNCIA
Fonte: Guia dos curiosos.
DISTÂNCIAS EM METROS
ANIMAIS
PNAIC_MAT_Caderno 7_pg001-080.indd 22 21/3/2014 10:03:18
23
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Como salientado no texto: A pesquisa como eixo estruturador da Educação
Estatística”, é imprescindível que o gráfico não seja um mero adorno em sala de aula
e que as crianças sejam incentivadas a planejar e interpretar as informações que ali
estão apresentadas. Além disso, é importante relembrar que gráficos são, também,
importantes recursos para auxiliar os alunos a construírem a noção de número
de forma contextualizada, além de funcionarem como disparador de situações
problema, notadamente, no campo das operações.
A figura a seguir apresenta um gráfico de setores. Este tipo de gráfico permite
que comparemos as partes em relação ao todo, cada parte ou setor é uma fração do
todo. Para sua interpretação, os alunos precisam compreender a função da legenda,
do título, da fonte dos dados, assim como a relação entre parte e seu todo.
Fonte: Psquisa em sala de aula.
Crianças pequenas são capazes de comparar o tamanho dos pedaços, mas é
importante considerar que a comparação entre as frações de um círculo é mais
complexa que a comparação entre alturas de uma barra. Entretanto, as crianças
pequenas não conseguem construir gráficos como esse com precisão, pois é preciso
encontrar o ângulo central correspondente à frequência que se deseja representar.
Por exemplo, se precisamos representar uma frequência de 50%, o ângulo central
correspondente é de 180
o
, ou seja, metade do círculo.
Meninos e Meninas do 2.
o
Ano A
Meninos
Meninas
PNAIC_MAT_Caderno 7_pg001-080.indd 23 21/3/2014 10:03:19
24
EDUCAÇÃO ESTATÍSTICA
Por outro lado, é possível obter aproximações razoáveis
3
, como mostram os
exemplos a seguir:
1) Em uma situação em que se deseja um gráfico de meninos e meninas, pode-se
colocar as crianças em roda, fazendo um círculo no centro da roda e unindo as
extremidades.
3
De fato, são apenas aproximações. O intuito de trazermos essas possibilidades é fazer com que a criança possa
participar da construção desses tipos de gráficos e não apenas contemplá-los. Tais representações poderão ser feitas
com exatidão e compreensão somente mais tarde, quando conceitos de ângulo e proporcionalidade estiverem
consolidados.
2) De forma semelhante, com várias
tampinhas de PET, estabelece-se
que cada tampinha equivale a
duas crianças e faz-se uma roda
com as tampinhas, procedendo-
se da mesma forma que o caso
anterior.
Arquivo dos autores
Ricardo Luiz Enz
MENINAS MENINOS
PNAIC_MAT_Caderno 7_pg001-080.indd 24 21/3/2014 10:03:20
25
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
3) Utilizando uma escala adequada, previamente preparada pelo professor, pode-se
utilizar vários setores circulares dentro de pratinhos de festa ou de pizza. Nesse
caso, prepara-se 20 setores circulares recortados. Meninos recebem setores
verdes e meninas recebem setores amarelos e juntos montam o gráfico.
Os dados apresentados acima não são adequados para serem apresentados
em um gráfico de linhas. Os gráficos de linhas geralmente apresentam dados de
determinados eventos no decorrer de um espaço de tempo. Veja o exemplo.
Arquivo dos autores
0
200
400
600
800
1000
1200
Km
2
08/2011 a 01/2012
DEGRADAÇÃO FLORESTAL NA AMAZÔNIA LEGAL DE
AGOSTO DE 2011 A JANEIRO DE 2013
08/2012 a 01/2013
Mato Grosso Pará Rondônia Amazonas
Fonte: Imazon/SAD.
Fonte: Imazon/SAD
O gráfico acima é inadequado para o trabalho com crianças de 6 a 8 anos. O
eixo vertical apresenta uma variável expressa em km
2
, além dos números indicarem
quantidades ainda incompreensíveis para estes alunos. Todavia, o critério que
adotamos neste texto, até o momento o leitor deve ter reparado –, foi o de apresentar
um gráfico de “vida real” (das crianças), o que não é o caso do apresentado acima,
seguido de um gráfico escolar. Nesta situação, qual seria um exemplo de gráfico de
linhas de “vida real das crianças”?
PNAIC_MAT_Caderno 7_pg001-080.indd 25 21/3/2014 10:03:21
26
EDUCAÇÃO ESTATÍSTICA
4
O geoplano é um material que constitui-se de uma placa de madeira, marcada com uma malha quadriculada
ou pontilhada. Em cada vértice dos quadrados formados fixa-se um prego, onde se prenderão elásticos, usados
para “desenhar” sobre o geoplano. De modo geral esse material é utilizado para o trabalho com a Geometria e é
particularmente indicado para alunos com deficiência visual.
De forma geral, esse gráfico é utilizado para representar evoluções de uma
determinada situação no decorrer do tempo. Uma possibilidade de levar as crianças
a construírem esse tipo de gráfico é a utilização do Geoplano
4
e barbantes. Na
situação abaixo, as crianças construíram um gráfico de linhas mostrando a evolução
da coleção de figurinhas (que juntaram em montinhos de 10) durante o primeiro
semestre.
Da mesma forma que nos gráficos de barras, é fundamental colocar os nomes
dos eixos, escala, título e fonte.
Arquivo dos autores
COLEÇÃO DE FIGURINHAS NO 1.
O
SEMESTRE DE 2013
Fonte: Pesquisa em sala de aula.
MONTINHOS DE FIGURINHAS
MESES
PNAIC_MAT_Caderno 7_pg001-080.indd 26 21/3/2014 10:03:21
27
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Dentre os gráficos, o pictograma é o mais indicado para o trabalho com as
crianças pequenas. Seja por sua simplicidade, seja pelo apelo visual que oferece.
Nesses gráficos utilizamos ícones para representar os dados. Um ponto importante
que deve ser considerado é o tamanho e o espaçamento entre os ícones. Esse tipo
de gráfico é mais utilizado quando queremos representar quantidades pequenas ou
em casos em que se trabalha com múltiplos de uma quantidade.
Na situação abaixo, as crianças representaram os gols da copa de 2010.
Eventualmente, pode ser necessário criar uma escala para representar os dados
que temos. Porém, além de simplesmente se introduzir uma escala, os alunos devem
perceber e compreender a necessidade de criá-la.
TABELA DE GOLS DA COPA DE 2010
Fonte: <http://futpedia.globo.com/campeonato/copa-
do-mundo>.
Arquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 27 21/3/2014 10:03:22
28
EDUCAÇÃO ESTATÍSTICA
As crianças ficaram sabendo que, recentemente, foram divulgados todos os gols
das copas desde o ano de 1994. Juntamente com a professora, conseguiram a
seguinte tabela:
TABELA DE GOLS DAS ÚLTIMAS 5 COPAS DO MUNDO
Fonte: <http://futpedia.globo.com/campeonato/copa-do-mundo>.
Os alunos observaram que seria muito trabalhoso fazer mais de 100 bolinhas
para representar os gols realizados pelos países campeões. Decidiram, portanto, que
cada bolinha valeria 10 gols. Obtiveram, assim, a seguinte representação:
GOLS DAS ÚLTIMAS 5 COPAS DO MUNDO
Arquivo dos autores
= 10 gols
Note: não conseguimos contar as bolinhas na figura, mas o importante é que as
crianças recortaram e contaram cada bolinha que foi colada no gráfico.
Fonte: <http://futpedia.globo.com/campeonato/copa-do-mundo>.
PNAIC_MAT_Caderno 7_pg001-080.indd 28 21/3/2014 10:03:24
29
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Assim, cada figura pode valer 1 unidade, 10 unidades, 1000 unidades, etc. Nessas
situações, é necessário considerar a compreensão que os alunos têm do sistema de
numeração em relação à noção de agrupamento ou da ideia multiplicativa que está
por trás dessa compreensão, por exemplo, quando um ícone vale 5 ou 10 elementos.
Vale ressaltar que uma interessante discussão é resolver o que fazer quando temos
que representar com uma bolinha que vale 10 gols, apenas 3 gols. Ainda que a
representação seja imprecisa, as crianças podem perceber que precisam, nesse
caso, colar no gráfico, menos de meia bolinha.
Algumas dificuldades
Construir um gráfico, em geral, é mais difícil do que interpretar, pois para
construir é preciso conhecer as especificidades da representação e, principalmente,
estabelecer a escala que será utilizada. Como tem se mostrado em pesquisas, a escala
tem sido o maior desafio para os alunos ao construírem e interpretarem um gráfico.
Uma explicação possível para essa dificuldade é a pouca reflexão sistematizada sobre
escalas que vem ocorrendo na escola.
Vejamos algumas das dificuldades de crianças na construção de escalas:
Aluno A Aluno B
Fonte: Silva (2012)
Pesquisando sobre os programas mais assistidos pelos colegas, dois alunos
construíram os gráficos acima. Podemos ver que ambos apresentam incompreensão
em relação à escala. O aluno A, preocupou-se em representar uma barra
correspondente ao número 1, outra com o número 12 e assim por diante, mas não
se preocupou em colocar os números na sequência numérica e nem que os espaços
entre os mesmos fosse proporcional a sua grandeza. O aluno B coloca os números
na sequência, mas também não compreende a função da escala, uma vez que
existe duas vezes o número 5. Também não considera a proporcionalidade entre os
valores. Assim, os alunos devem ser levados a compreender que a proporcionalidade
que deve existir entre os intervalos de uma escala, é algo que deve ser respeitado e
é importante para a compreensão do mesmo.
O conceito de escala é gradativamente trabalhado a partir deste ciclo. nas
primeiras construções com pictogramas ou gráfico de barras, atentemos para
algumas características que devem ser respeitadas com vistas a não se criar obstáculos
ao aprendizado futuro.
PNAIC_MAT_Caderno 7_pg001-080.indd 29 21/3/2014 10:03:25
30
EDUCAÇÃO ESTATÍSTICA
Interpretando Gráficos
Até aqui, refletimos a respeito da construção de gráficos. Agora, analisaremos
outro tipo de atividade desenvolvida em sala de aula, a interpretação deles. Construir
e interpretar são duas atividades distintas, porém complementares.
Para interpretar um gráfico é fundamental que se analise a informação numérica
proposta nele para não se deixar enganar por sua aparência geral. Os gráficos podem
ser usados para evidenciar ou ocultar a origem e validade das informações.
Desde o início da escolarização, os alunos são capazes de compreender aspectos
da variabilidade entre os dados apresentados em um gráfico, o que pode ser
potencializado se eles vivenciarem na escola situações de ensino que os desafiem a
analisar e refletir sobre dados tratados estatisticamente.
Diante de um gráfico, vários tipos de questões podem surgir. Podemos, por
exemplo, perguntar sobre pontos extremos do gráfico (ponto máximo e mínimo),
pedir a localização da frequência de uma categoria ou a categoria de uma frequência,
a localização de acréscimos, decréscimos ou ausência de variação. Questões como
essas levam os alunos a procurar a resposta no próprio gráfico relacionando suas
informações. As respostas a essas questões estão expressas no gráfico. Entretanto,
muitas vezes, queremos tomar decisões a partir dessas informações e para isso,
temos que fazer uma extrapolação dos dados apresentados, realizando aquilo que
é chamado de inferência informal.
A inferência informal é um processo criativo, indutivo, no qual o aluno gera
uma hipótese provisória, observando padrões nos dados. Essa é uma abordagem
poderosa para desenvolver o raciocínio estatístico dos alunos.
***
Além da possibilidade de permitir inferências, a interpretação dos gráficos exige,
por vezes, a leitura de dados que não estão explícitos na escala, como ocorre na
situação a seguir. Observe o gráfico:
Fonte: Guia dos curiosos
EXPECTATIVA DE VIDA DE ANIMAIS
0
5
10
15
20
25
Porco
30
35
40
Cavalo VacaCoelho Aranha
ANOS
ANIMAIS
PNAIC_MAT_Caderno 7_pg001-080.indd 30 21/3/2014 10:03:25
31
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
A partir da leitura do gráfico
5
, podemos perguntar, por exemplo:
a) Qual o animal que tem a expectativa de vida de 10 anos? (valor explícito na
escala)
b) Qual o animal que tem a expectativa de vida de 7 anos? (valor implícito na
escala)
Novamente chamamos a atenção sobre a escala. Na questão “a”, o valor 10
anos solicitado está expresso na escala. na questão “b” o valor 7 anos não está
apresentado de forma explícita, o que leva o aluno a ter que identificar o valor que
está no meio da região entre 5 e 10 anos.
Os alunos demonstram bom desempenho quando o valor solicitado em
uma interpretação está explícito na escala. Porém, quando o valor está implícito,
apresentam dificuldades, pois isso exige deles a compreensão da proporcionalidade
entre os valores explícitos.
É fundamental propor um trabalho sistematizado com representações gráficas,
considerando os diferentes tipos de gráficos e as diferentes unidades escalares,
aliando esse trabalho à compreensão de diferentes grandezas, principalmente a
grandeza comprimento, discutindo as unidades de medidas e suas subunidades,
para que, de fato, possamos formar cidadãos críticos frente às diversas estratégias
utilizadas para mascarar, omitir ou manipular as informações. Esse trabalho inicia-
se, da forma elementar como exemplificamos, no ciclo de alfabetização, e deve
acompanhar o aluno em toda a sua vida escolar.
Trabalhando com Tabelas
Atualmente, o termo tabela é utilizado para nomear várias coisas, tais como:
uma lista de compras, um rol de dados, um quadro, um banco de dados, etc. Todas
essas “tabelas” têm, entre elas, uma característica em comum são apresentadas
dentro de uma moldura.
Entretanto, no campo da Estatística, uma tabela é uma organização matricial
composta por linhas e colunas, cujas interseções são denominadas de células, nas
quais se encontram dados que podem ser números, palavras, frases, etc. Em uma
tabela, nas linhas está apresentada uma variável e nas colunas outra(s) variável(is)
relacionadas.
Da mesma forma que os gráficos, a tabela deve conter um título, um cabeçalho,
o corpo e a fonte. No título é preciso informar a época à qual se refere, o local
onde ocorreu o evento e o fenômeno que é descrito. No cabeçalho especifica-se
o conteúdo das colunas, ou seja, os descritores. No corpo são apresentadas as
informações e a fonte indica a pessoa ou entidade responsável pelo levantamento
dos dados.
5
Adaptado de Cavalcanti (2010).
PNAIC_MAT_Caderno 7_pg001-080.indd 31 21/3/2014 10:03:25
32
EDUCAÇÃO ESTATÍSTICA
Quadros e tabelas
Para podermos entender porque tantas coisas diferentes são chamadas de
tabela* analisaremos o que se vê com maior frequência.
a) Planilha de dados ou banco de dados é caracterizada por apresentar dados
brutos que não receberam nenhum tratamento estatístico.
Aluno Mascote
João Cachorro
José Gato
Maria Passarinho
... ...
Desenho animado Cor da roupa Tamanho Sexo
Bob Esponja Amarelo Pequeno Masculino
Sherek Verde Grande Masculino
Super homem Azul Grande Masculino
Mônica Vermelha Medio Feminino
b) Tabela de Distribuição de Frequência (TDF) é utilizada para verificar como
se distribuem os dados nas categorias das variáveis qualitativas ou nas faixas
ou classes, para o caso de variáveis contínuas e discretas que assumem muitos
valores.
Distribuição de Frequência por categorias
Jogo preferido N.
o
de alunos
Bola 3
Boneca 2
Bicicleta 2
Outro 3
Nenhum 15
Total 25
*
Nota dos Organizadores: Tal como em outras situações, não é errado referir-se a estas coisas como “tabelas” no dia
a dia. O que se chama a atenção aqui é que no campo da Estatística estes exemplos não mostram o que é entendido
por tabela.
PNAIC_MAT_Caderno 7_pg001-080.indd 32 21/3/2014 10:03:25
33
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Distribuição de Frequência por pontos
N.
o
de animais de estimação N.
o
de famílias
0 35
1 100
2 42
3 20
4 5
Total 202
Distribuição de Frequência por intervalos
Peso (em Kg) N.
o
de alunos
20 – 25 2
26 – 30 4
31 – 35 13
36 – 40 9
41 – 45 2
Total 30
Distribuição de Frequência de dupla entrada
Tipo de filme
Feminino Masculino Total
N.
o
% N.
o
% N.
o
%
Comédia 7 38,9 6 40,0 13 39,4
Ação 11 61,1 9 60,0 20 60,6
Total 18 100,0 15 100,0 33 100,0
Tabelas em livros didáticos
Um dos materiais mais utilizados pelos professores é o livro didático. Assim,
é importante vermos como eles vêm apresentando para os alunos o que é uma
tabela.
Várias são as atividades propostas nos livros didáticos que utilizam tabelas.
Entretanto, um grande número delas não são propriamente tabelas, como no
exemplo a seguir:
PNAIC_MAT_Caderno 7_pg001-080.indd 33 21/3/2014 10:03:25
34
EDUCAÇÃO ESTATÍSTICA
Exemplo 1
Fonte: Autor
Nesse exemplo, o enunciado solicita que a tabela seja completada. Porém, nessa
situação não temos duas variáveis a serem cruzadas. É apresentada uma organização
espacial de números igual a de uma tabela, com o objetivo de levar os alunos a
realizarem contas e não de cruzarem variáveis.
Exemplo 2
Outro tipo de atividade apresentada nos livros didáticos é a de preenchimento
de um quadro estruturado. Nessa atividade o objetivo principal não é discutir a
representação em tabela, mas sim levar os alunos a operar sobre os dados.
Exemplo 3
Outro tipo de atividade que aparece é a construção de tabelas (exemplo 3).
Infelizmente, esse tipo de atividade é bem pouco explorado nos livros didáticos.
Entretanto, é fundamental que os alunos sejam levados a construir tabelas, definindo
descritores/critério, o título e a nomeação de categorias.
+ 5 7 9 11 13 15
14 19 21
15
16
5 7 9 11 13 15
34 29 27 25
35
38
Número de visitantes do zoológico durante
uma semana
Dia da semana Número de visitantes
segunda-feira e terça-feira
fechado (para descanso
dos animais)
quarta-feira 146
quinta-feira 215
sexta-feira 325
sábado 422
domingo 424
Calcule o número de
visitantes que foram ao
zoológico nos dias:
a) quarta, quinta e sexta.
b) quinta, sexta e sábado.
c) sábado e domingo.
d) sábado, domingo e
quarta.
Completar as tabelas.
Faça uma pesquisa.
Entreviste 3 pessoas mais velhas e 3 colegas da classe para saber quantos irmãos
vivos cada um tem. Organize os dados de sua pesquisa em uma tabela e, depois,
construa um gráfico de colunas.
PNAIC_MAT_Caderno 7_pg001-080.indd 34 21/3/2014 10:03:25
35
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Uma combinação equilibrada de todas essas atividades no livro didático
favoreceria uma aprendizagem mais consistente da estatística nos anos iniciais. A
escola deve superar a prática da sucessão de tarefas relacionadas a aspectos isolados
do tratamento de informações. Um trabalho isolado faz com que os alunos percam de
vista o processo como um todo. Favorecer uma diversidade de atividades em relação
a tabelas e gráficos é um dos papéis importantes do professor na Alfabetização
Matemática.
Os alunos precisam aprender a representar dados em uma tabela, mas,
principalmente, devem ser capazes de construir tabelas como uma maneira de
organizar dados. A introdução da estatística não deve estar focada somente no uso
das representações e sim, numa formação estatística necessária para a vida.
Construção de tabelas
O que fazem alunos dos anos iniciais quando são solicitados a representar dados
em tabelas?
Uma das representações que costumamos encontrar é a seguinte:
Essa é uma lista enquadrada e não uma tabela, porque ela não respeita os
critérios necessários para que se caracterize como uma tabela: interseção entre
linhas e colunas, cada uma com uma variável, que formam as células.
E por que chamamos de tabela? Porque ela se parece com o que é entendido
no dia a dia como sendo tabela: ela tem linhas e tem colunas. Mas, nem tudo
que é organizado em linhas e colunas é uma tabela quando estamos falando de
Estatística.
Outro tipo de dificuldade é saber a função das linhas e colunas. Na figura a
seguir, temos a representação em tabela feita por um aluno do 3.
o
ano que foi
solicitado a classificar personagens de acordo com seu habitat e registrar na tabela.
Esse aluno criou o desenho da tabela, foi pareando os elementos e escrevendo nas
linhas, como nas linhas dos cadernos, ignorando as colunas. Depois ainda faz um
Vivem na água Vivem na terra
Bob esponja Mikey
Pequena sereia Sherek
Nemo Garfield
Super Homem
HABITAT DOS PERSONAGENS
PNAIC_MAT_Caderno 7_pg001-080.indd 35 21/3/2014 10:03:25
36
EDUCAÇÃO ESTATÍSTICA
Chueque os padrinhos mágicos
O gafio e o bobs ponja
E a turma da Monica
2 grupo
Superome e peque sereia
Io Nemo e o frajola
1 grupo
Bobe esponja o Nemo e o home aranha
A turma da Monica e o
Gafio e o padrinho mágico
2 grupo Chueque piupiu a pequena
sereia e superome
traço, fora das linhas, para realizar uma segunda tentativa de classificar os elementos
em dois grupos. O aluno tentou usar o seu quadro como elemento classificador, em
lugar de usá-lo para registrar uma classificação já feita.
Representação de Dados de um aluno de 3.
o
ano em uma
tabela.
A seguir, podemos observar a dificuldade em realizar o registro, em tabela, de
outro aluno de 3.
o
ano. Embora sem sabermos o enunciado do problema evidencia-
-se, também, a incompreensão em relação à função das linhas e colunas.
Personagens
1 grupo
PNAIC_MAT_Caderno 7_pg001-080.indd 36 21/3/2014 10:03:26
37
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Outro tipo de registro utilizado é uma tabela cruzada formando pares com
marcas em X na intersecção dos mesmos.
Representação feita por aluno.
Silva (2012)
a figura ao lado mostra uma
tabela na qual podemos perceber
que o aluno compreende bem a
função das linhas e colunas.
Representação feita por um aluno de 3.
o
ano.
PNAIC_MAT_Caderno 7_pg001-080.indd 37 21/3/2014 10:03:27
38
EDUCAÇÃO ESTATÍSTICA
Esses resultados demonstram a importância do trabalho sistemático com
a construção de tabelas
*
pelos alunos, pois isso não é desenvolvido de forma
espontânea. Dessa forma, os professores devem trabalhar com os alunos o que
representam linhas e colunas, e a função que essas têm na compilação dos dados.
O trabalho com representações em gráficos e tabelas deve fazer parte da rotina
escolar, uma vez que permite que o aluno compreenda o mundo natural e social a
partir de ferramentas matemáticas. Ainda dentro da Educação Estatística, encontra-
se o ensino de combinatória, assunto do próximo artigo.
*
Nota dos Organizadores: Em outras ocasiões apontamos para o cuidado ao uso de algumas palavras. Dissemos, por
exemplo, que não iríamos nos preocupar com a questão da palavra “peso”, que em Física tem um uso específico e que
torna “errado” o uso que se faz dela no dia a dia. O mesmo fizemos para a palavra “forma” em Geometria. Aqui, em
relação a “tabela” vale a mesma observação e cuidado: no dia a dia a palavra tem um sentido mais geral e vai continuar
a ser utilizada e compreendida sem que isso cause danos à comunicação entre as pessoas. No entanto, no contexto da
Educação Estatística, cabe ao professor ficar alerta para utilizar a palavra de forma adequada, tal como foi sugerido
neste artigo. Mais uma vez é importante destacar: isso não deve ser tomado como objeto de avaliação, muito menos
de qualquer forma de “punição” para os alunos.
PNAIC_MAT_Caderno 7_pg001-080.indd 38 21/3/2014 10:03:27
39
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
O ENSINO DE COMBINATÓRIA NO
CICLO DE ALFABETIZAÇÃO
Cristiane Azevêdo dos Santos Pessoa
Uma das primeiras aprendizagens matemáticas da criança consiste em contar
os elementos de diferentes conjuntos e enumerá-los para determinar quantos são.
Conhecida como a arte de contar, a Combinatória, como um tipo de contagem,
exige que seja superada a ideia de enumeração de elementos isolados para se passar
à contagem de grupos de objetos, tendo como base o raciocínio multiplicativo.
De acordo com Pessoa e Borba (2009), a Combinatória nos permite quantificar
conjuntos ou subconjuntos de objetos ou de situações, selecionados de um conjunto
dado. A partir de determinadas estratégias, pode-se saber quantos elementos ou
quantos eventos são possíveis numa dada situação, sem necessariamente ter que
contá-los um a um. Na Combinatória contam-se, através de uma ação sistemática,
baseando-se no raciocínio multiplicativo, grupos de possibilidades. Isso deve ser feito
por meio de uma estratégia que atenda aos requisitos desses tipos de problemas,
como a constituição de agrupamentos, a determinação de possibilidades e sua
contagem.
A Combinatória exige o trabalho com o pensamento hipotético-dedutivo, base
para o conhecimento científico, através do qual os alunos precisarão superar o senso
comum imediato, o real material, e pensar naquilo que pode ser possível. Para isso, é
preciso levantar hipóteses, pensar em estratégias para solução, manipular variáveis,
enumerar possibilidades. No caso da Combinatória, nenhuma estratégia está pronta
imediatamente ao se deparar com o problema, ela precisa ser construída, e isso
coloca o aluno frente a um problema a ser resolvido.
Apesar de fazer parte do campo conceitual das estruturas multiplicativas, estes
não são problemas multiplicativos comuns, são mais complexos e não costumam ser
resolvidos via uma multiplicação direta. Antigamente, a Combinatória era assunto
exclusivo do Ensino Médio, momento em que era tratada com uma desnecessária
quantidade de fórmulas.
Observaremos que, no ciclo de alfabetização, as crianças poderão se utilizar de
diversas representações para a resolução de problemas, tais como listagem, árvore
de possibilidades, tabelas, quadros, diagramas, etc.
PNAIC_MAT_Caderno 7_pg001-080.indd 39 21/3/2014 10:03:27
40
EDUCAÇÃO ESTATÍSTICA
Pensando nas características dos problemas combinatórios...
Os problemas combinatórios normalmente trabalhados na Educação Básica
são de quatro tipos: arranjo, combinação, permutação e produto cartesiano. Uma
característica comum a todos os tipos de problemas é a necessidade de esgotar as
possibilidades para se chegar à resposta. Além dessa característica, os problemas de
arranjo, combinação e permutação se assemelham ou se diferenciam pela forma de
escolher os elementos (se todos ou apenas alguns) e pela forma de ordená-los. O
problema do tipo produto cartesiano é caracterizado pela escolha dos elementos.
Vejamos alguns exemplos de problemas e suas características.
Nesse problema também temos um conjunto a partir do qual são ordenados
elementos. Escolha: de um grupo maior (no caso deste problema, Amanda, Lívia e
Gisele), é preciso formar subgrupos com duas meninas de cada vez.
Ordenação: a dupla Amanda e Lívia é igual a dupla Lívia e Amanda, ou seja, a
ordem em que os elementos são colocados não gera novas possibilidades. Essa é a
diferença entre um problema de Arranjo e um de Combinação.
Combinação: No pula-pula do parque podem entrar duas crianças de cada vez.
Amanda, Lívia e Gisele estão aguardando a vez. De quantas maneiras diferentes
elas podem formar grupos para brincar no pula-pula?
No problema acima temos um conjunto de três pessoas, do qual são ordenados
os elementos. Escolha: do grupo maior, são formados subgrupos, no caso deste
problema, há um conjunto de três elementos (Joana, Mário e Vitória) e, a partir
dele, deverão ser formados subgrupos com dois elementos cada um, sendo um
deles o representante e o outro o vice.
Ordenação: a dupla Joana (representante) e Mário (vice-representante) é diferente
da dupla Mário (representante) e Joana (vice-representante), pois ser o representante
ou o vice-representante é diferente, ou seja, a ordem em que os elementos são
colocados gera novas possibilidades.
Arranjo: Para representante de turma da sala de aula, candidataram-se 3 pessoas
(Joana, Mário e Vitória). De quantas maneiras diferentes poderão ser escolhidos o
representante e o vice-representante?
Permutação: Na estante da minha casa fotos do meu pai, da minha mãe e do
meu irmão, sendo um total de 3 porta-retratos. De quantas formas diferentes posso
organizar esses porta-retratos de modo que eles fiquem lado a lado?
Ver na p. 44 a solução
de um aluno de 3.
o
ano
para este problema.
PNAIC_MAT_Caderno 7_pg001-080.indd 40 21/3/2014 10:03:27
41
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Nesse problema, temos um conjunto do qual são usados todos os elementos,
(no caso, os três porta-retratos), para serem ordenados de maneiras distintas. Assim,
fazer o grupo de porta-retratos MÃE, PAI, IRMÃO é diferente de formar o grupo
de porta-retratos MÃE, IRMÃO, PAI, ou seja, a ordem em que os elementos são
colocados gera novas possibilidades.
Produto cartesiano: Para a festa de São João, na escola, tem 2 meninos (Pedro e
João) e 4 meninas (Maria, Luíza, Clara e Beatriz) que querem dançar quadrilha.
Se todos os meninos dançarem com todas as meninas, quantos pares diferentes
poderão ser formados?
No problema acima, temos dois grupos que se encontram na seguinte situação:
todos os elementos de um grupo (dos meninos) devem ser combinados com todos
os elementos do outro grupo (das meninas). Diferentemente dos outros tipos de
problema, a ordenação não é determinante neste caso.
***
Acreditamos que a percepção dessas características, mesmo que não seja
de forma explícita e consciente, pelo aluno, ajuda a resolver mais facilmente os
problemas e entender seus enunciados.
O trabalho com a Combinatória nos primeiros anos do Ensino fundamental
A Combinatória é um conteúdo que tradicionalmente fazia parte apenas do
currículo do Ensino Médio. No entanto, quase duas décadas, orientações
curriculares indicam a necessidade e importância de se trabalhar esse conteúdo
desde os anos iniciais, a partir da resolução de diferentes tipos de problemas
combinatórios.
Os livros didáticos dos anos iniciais do Ensino Fundamental (desde o primeiro
ano) trazem problemas combinatórios dos diversos tipos: arranjo, combinação,
permutação e produto cartesiano. Barreto, Amaral e Borba (2007) apontam que
esses livros trazem problemas combinatórios, porém, não orientam o professor no
trabalho com esse conteúdo. É necessário, portanto, que em sua formação inicial e
continuada, os professores dos anos iniciais do Ensino Fundamental discutam acerca
desse conteúdo e do trabalho pedagógico que pode ser realizado.
Além disso, pesquisas (SANTOS, et al., 2011; PESSOA; BORBA, 2012) mostram
que crianças a partir de cinco anos de idade são capazes de interpretar problemas
combinatórios. Dois estudos de sondagem foram realizados e, em ambos, foi
investigado o desempenho de alunos da Educação Infantil, com cinco e seis anos
de idade ao resolverem os quatro tipos de problemas combinatórios (arranjo,
PNAIC_MAT_Caderno 7_pg001-080.indd 41 21/3/2014 10:03:27
42
EDUCAÇÃO ESTATÍSTICA
combinação, permutação e produto cartesiano). Todos os problemas tinham um
número total de possibilidades pequeno (até 10) e foram resolvidos por meio de uso
de materiais manipulativos.
Os resultados mostram que as crianças conseguem perceber algumas das
características dos problemas, demonstrando compreensão por meio de suas
estratégias de resolução. Elas percebem mais facilmente as relações de escolha, e
com um pouco mais de dificuldade, as relações de ordem. A dificuldade consiste
em saber se as ordenações poderiam ou não gerar novas possibilidades de acordo
com o que o problema solicitava. O passo mais difícil era o de esgotar todas as
possibilidades.
Pessoa e Borba (2009) realizaram uma pesquisa de sondagem com alunos
da Educação Básica, observando o desempenho dos educandos do 2.
o
e 3.
o
anos
ao resolverem dois problemas combinatórios de cada tipo (arranjo, combinação,
permutação e produto cartesiano). Essa pesquisa apresentou como um de seus
resultados que estas crianças conseguem perceber as características dos problemas
combinatórios. Porém, os alunos do 2.
o
ano ainda apresentam dificuldade em
esgotar todas as possibilidades. Já os alunos do 3.
o
ano conseguem chegar ao final
das resoluções, mesmo quando os resultados são maiores que 20.
Como vimos anteriormente, os documentos oficiais propõem o trabalho com
a Combinatória desde o início da Educação Básica e os livros didáticos utilizam
esses problemas em suas atividades. Além disso, pesquisas vêm confirmando que
crianças com cinco, seis, sete e oito anos de idade demonstram que são capazes
de compreender total ou parcialmente o que os problemas solicitam e desenvolver
estratégias válidas e interessantes que podem servir como base para intervenções de
ensino.
O uso de materiais manipulativos, de situações com contextos próximos das
vivências das crianças, o estímulo às diversas estratégias de resolução, tais como
desenhos, listagens ou árvores de possibilidades e o trabalho com problemas que
tenham número total de possibilidades pequeno podem ser caminhos para o
trabalho com a Combinatória desde cedo nas salas de aula.
Pensando em formas de resolução utilizadas por crianças ao resolverem
problemas combinatórios
O incentivo ao uso de diferentes estratégias ajudará o aluno a melhor representar
seu pensamento em relação à resolução dos problemas combinatórios. Para possíveis
intervenções de ensino, poderemos utilizar as próprias estratégias espontaneamente
desenvolvidas pelas crianças para, a partir delas, trabalhar este conteúdo.
PNAIC_MAT_Caderno 7_pg001-080.indd 42 21/3/2014 10:03:27
43
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Em seguida analisamos algumas soluções de crianças de cinco a oito anos de
idade ao resolverem problemas combinatórios.
Soluções corretas
Solução correta de um problema de permutação realizado por uma aluna do 3.
o
ano do Ensino Fundamental.
A figura acima apresenta a resolução correta de um problema de permutação
realizada por uma aluna do 3.
o
ano do Ensino Fundamental. A aluna parte do
uso da listagem de possibilidades como estratégia, conseguindo esgotar todas as
possibilidades e resolver o problema. Essa estratégia de resolução é a mais utilizada
por alunos de diferentes anos de escolarização e tem se mostrado eficaz quando
feita de maneira sistematizada. Resolver o problema de maneira sistematizada
pode ser entendido da seguinte forma: o aluno lista as possibilidades de forma
organizada, fixando o primeiro elemento e listando todas as possibilidades com
ele, depois fixando o segundo elemento para listar as possibilidades e assim com
todos os elementos do problema. No exemplo acima, a aluna resolve de maneira
sistematizada, pois lista as duas possibilidades para o irmão estar em primeiro lugar,
depois as duas com a mãe em primeiro lugar, e, por fim, as duas possibilidades com
o pai em primeiro lugar.
Fonte: Pessoa (2009)
Solução correta de um problema de produto cartesiano realizado por uma aluna do 3.
o
ano do Ensino Fundamental.
Fonte: Pessoa (2009)
De quantas formas diferentes poderei arrumar as fotos de meu irmão, meu pai e
minha mãe na estante, de modo que elas fiquem lado a lado?
irmão, pai, mãe
irmão, mãe, pai
mãe, pai, irmão
mãe, irmão, pai
pai, mãe, irmão
pai, irmão, mãe
Para a festa de São João da escola, tem 3 meninos (Pedro, Gabriel e João) e 4
meninas (Maria, Luiza, Clara e Beatriz) que querem dançar quadrilha. Se todos os
meninos dançarem com todas as meninas, quantos pares diferentes poderão ser
formados?
1
2
PNAIC_MAT_Caderno 7_pg001-080.indd 43 21/3/2014 10:03:28
44
EDUCAÇÃO ESTATÍSTICA
Na figura anterior pode-se observar que a aluna do 3.
o
ano do Ensino Fundamental
utiliza o desenho como estratégia, demonstrando uma compreensão do que o
problema solicita e utilizando uma forma de resolução alternativa à multiplicação.
Neste nível de ensino – bem como nos demais a estratégia de desenhar a situação
e, por meio do desenho, gerar um procedimento de solução é uma boa forma de
se compreender melhor as relações envolvidas e de traçar um plano de ação frente
à situação a ser resolvida.
Solução correta de um problema de arranjo realizado por um aluno do 3.
o
ano do Ensino Fundamental.
Fonte: Pessoa (2009)
Na figura acima o aluno parece perceber as características do arranjo. Primeiro,
evidencia a compreensão que de um conjunto maior pode-se formar arranjos com
conjuntos menores, de acordo com o solicitado. Nesse caso, a partir de um conjunto
de três elementos, formam-se conjuntos com dois elementos. Evidencia também a
compreensão da outra característica, a de que a ordem dos elementos gera novas
possibilidades, pois, além de formar claramente os arranjos com dois elementos em
cada conjunto, marca as diferentes formações, colocando uma linha em volta das
possibilidades Mário e Vitória; Vitória e Joana; Joana e Mário e deixando sem linha
de marcação as possibilidades Vitória e Mário; Joana e Vitória; Mário e Joana. Por
meio deste procedimento, o aluno, assim, esgota todas as possibilidades e apresenta
as seis combinações desta situação.
Soluções incompletas e incorretas
Solução incompleta de um problema de arranjo realizado por uma aluna do 3.
o
ano do Ensino Fundamental.
Fonte: Pessoa (2009)
Para representante de turma da sala de aula se candidataram 3 pessoas (Joana, Mário e
Vitória). De quantas maneiras diferentes poderão ser escolhidos o representante e o vice-
representante?
As quartas de final da Copa do Mundo serão disputadas pelas seguintes seleções: Brasil,
França, Alemanha e Argentina. De quantas maneiras diferentes podemos ter os três
primeiros colocados?
PNAIC_MAT_Caderno 7_pg001-080.indd 44 21/3/2014 10:03:28
45
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
A figura anterior representa a estratégia de uma aluna que lista as possibilidades,
porém o faz de maneira não sistemática e, assim, não percebe que elas não foram
esgotadas. A aluna parece perceber as características do problema de arranjo,
obedecendo à regra de tirar três elementos dos quatro fornecidos e parece perceber
também que a ordem dos elementos gera possibilidades diferentes, pois observa-se
que um cuidado em modificar as arrumações em cada uma das possibilidades
listadas.
Solução incompleta de um problema de permutação realizado por um aluno do 2.
o
ano do Ensino Fundamental.
Fonte: Pessoa (2009)
Na figura acima, resolvendo um problema de permutação, observamos que
o aluno utiliza a estratégia de listagem de possibilidades e consegue perceber as
características do problema, ou seja, que deve utilizar os quatro elementos, (as letras
A, M, O, R) organizadas de diferentes formas, as quais gerarão novas possibilidades,
mas não consegue esgotar todas, que seriam 24.
Bianca e Diego estão sentados em um sofá de três lugares. Quantos lugares
diferentes eles podem ocupar nesse sofá?
Solução incompleta de um problema de arranjo realizado por uma criança de 6 anos.
Fonte: Santos, Matias e Pessoa (2011)
Quantas palavras diferentes (com ou sem sentido) poderei formar usando as letras
da palavra AMOR?
PNAIC_MAT_Caderno 7_pg001-080.indd 45 21/3/2014 10:03:29
46
EDUCAÇÃO ESTATÍSTICA
Sobre essa resolução, Santos, Matias e Pessoa (2011) discutem que se pode
observar que o aluno, ao resolver o problema utilizando-se de fichas com os desenhos
das crianças para serem coladas, conseguiu perceber as duas características do
problema de arranjo, pois não utilizou todos os elementos do grupo maior, os lugares
do sofá, assim como conseguiu perceber que a ordem e escolha dos elementos
gerou novas possibilidades. Assim, mesmo ela tendo repetido e não conseguido
esgotar todas as possibilidades, podemos perceber, visualizando sua resposta, que
ela entendeu as características do problema.
No pet shop há quatro animais: um cão, um gato, uma tartaruga e um papagaio.
Sofia quer comprar três desses animais para levar para casa. Quais são as diferentes
maneiras que Sofia tem para escolher os animais?
Solução incompleta de um problema de combinação realizado por uma criança de cinco anos.
Fonte: Pessoa e Borba (2012)
Resolvendo o problema através do uso de fichas, a criança percebe a característica
da escolha: de quatro elementos iniciais, ela escolhe três para cada combinação.
Entretanto, repete possibilidades como cão, gato e papagaio em três das organizações
que fez. Assim, parece perceber a característica da escolha (de quatro elementos, vai
formando grupos com três deles), mas a da ordem não está suficientemente clara.
Solução incorreta de problema de permutação realizado por um aluno do 2.
o
ano do Ensino Fundamental.
Fonte: Pessoa (2009)
Na figura acima observa-se que aparentemente não houve compreensão da
lógica do problema. Pode-se inferir que a lógica utilizada pelo aluno foi outra que
não a solicitada, pois colocou palavras iniciadas pela letra “A”.
Quantas palavras diferentes (com ou sem sentido) poderéi formar usando as letras da
palavra AMOR?
PNAIC_MAT_Caderno 7_pg001-080.indd 46 21/3/2014 10:03:29
47
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Podemos perceber que crianças de cinco a oito anos de idade, que estão ou
que entrarão no ciclo de alfabetização, são capazes de desenvolver um raciocínio
combinatório. Elas utilizam estratégias próprias de resolução e algumas conseguem
esgotar todas as possibilidades e outras, mesmo que não consigam, demonstram
que são capazes de entender o que o problema solicita. Há, também, crianças que
não conseguem ainda compreender a lógica dos problemas, mas que, se vivenciarem
um trabalho sistemático poderão desenvolver o pensamento combinatório.
Na resolução das crianças observa-se que uma das maiores dificuldades é
a contagem de todas as possibilidades. Isso ocorre porque o trabalho com a
Combinatória exige organização dos dados de modo particular. Essa organização é
realizada em níveis diferenciados de abstração. Sabendo disso, podemos auxiliar as
crianças na sistematização de suas estratégias e no desenvolvimento de ferramentas
que podem ser úteis.
Inicialmente, observa-se que as crianças apegam-se aos desenhos construindo
todas as possibilidades. Dessa maneira, é muito importante fornecer figuras que
possam ser justapostas, ajudando-as a construir cada uma das possibilidades.
Pode-se brincar de Animal Maluco fornecendo às crianças fichas com partes
de animais. A pergunta surge naturalmente: quantos animais diferentes eu posso
construir?
Arquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 47 21/3/2014 10:03:31
48
EDUCAÇÃO ESTATÍSTICA
Em uma segunda etapa, pode-se construir um pequeno caderninho que ajudará
na contagem dos casos possíveis:
Arquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 48 21/3/2014 10:03:32
49
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Oralmente ou por escrito, deve-se solicitar às crianças que criem nomes para os
animais. Essa é uma maneira lúdica de unir Matemática e Língua Portuguesa. Ao
apresentarem nomes como GIRACACO, ELEURSO poderão justificar oralmente suas
escolhas e suas criações.
Em outro nível de abstração, as crianças usam seus próprios desenhos e os unem
para encontrar a quantidade de combinações.
As crianças podem passar a esquemas mais abstratos, usando, ao invés de desenhos,
apenas risquinhos, bolinhas ou mesmo letras para representar os elementos.
Uma organização similar para a resolução de problemas combinatórios, porém
mais sofisticada, consiste na utilização de árvores de possibilidades. Ela poderá
ser apresentada no ciclo de alfabetização primeiramente de forma pictórica e,
posteriormente, utilizando palavras:
Finalmente, a utilização de tabelas de dupla entrada pode ser sugerida, no início
de forma pictórica e adiante com palavras:
Arquivo dos autoresArquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 49 21/3/2014 10:03:34
50
EDUCAÇÃO ESTATÍSTICA
O desenvolvimento do raciocínio combinatório é um processo longo. É
necessário, portanto, que durante a escolarização os diferentes tipos de problemas
sejam trabalhados e que haja um aprofundamento contínuo para que estratégias
próprias das crianças, mais informais, sejam gradativamente transformadas em
procedimentos e sistematizados.
De acordo com Borba (2013), se problemas variados de Combinatória
forem trabalhados desde os anos iniciais do Ensino Fundamental, por meio de
representações simbólicas apropriadas e que possibilitem uma gradual construção
de procedimentos mais formais, aumenta-se a possibilidade de se chegar ao uso
consciente das fórmulas de Análise Combinatória no Ensino Médio.
O próximo artigo abordará aspectos referentes à probabilidade nos anos
iniciais.
PNAIC_MAT_Caderno 7_pg001-080.indd 50 21/3/2014 10:03:34
51
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
PROBABILIDADE NOS PRIMEIROS ANOS ESCOLARES
Cristiane Rocha
Ivanildo Carvalho
Os currículos de Matemática para os anos iniciais da Educação Básica apontam
para a importância do estudo de probabilidades, uma vez que, em nosso cotidiano,
situações de natureza aleatória sempre estão presentes.
Jogos como dados, bingo, cara ou coroa, entre outros, são experimentos nos
quais não é possível determinar com certeza o resultado que será obtido, ou seja,
são aleatórios, também denominados não determinísticos.
Jogo de dados Jogo de bingo Cara ou coroa
Apesar de o ser possível determinar com certeza o resultado que será obtido,
pode-se prever os resultados possíveis e um estudo sobre essas situações permite uma
previsão da distribuição dos resultados quando repetido muitas e muitas vezes.
Os Direitos de Aprendizagem para os anos iniciais indicam a necessidade de
que o aluno compreenda que grande parte dos acontecimentos do cotidiano
são de natureza aleatória e é possível identificar prováveis resultados desses
acontecimentos. O trabalho com as noções de acaso e incerteza, que se manifestam
intuitivamente, deve ocorrer em situações nas quais o aluno realiza experimentos e
observa eventos.
Para entender melhor o que é um trabalho com probabilidade em sala de aula,
vamos partir uma atividade. Suponhamos um globo com sete bolas azuis e três
marrons. Ao somarmos todas as bolinhas, teremos, com certeza, dez bolinhas.
Porém, se sortearmos, sem olhar, uma bolinha do globo, não se saberá, com certeza,
a cor da bolinha que irá sair. É mais provável que a cor da bolinha retirada seja azul,
uma vez que elas são em maior quantidade, mas não podemos garantir que é isso
o que realmente vai acontecer.
Arquivo dos autores
EXPERIMENTOS DE NATUREZA ALEATÓRIA
PNAIC_MAT_Caderno 7_pg001-080.indd 51 21/3/2014 10:03:35
52
EDUCAÇÃO ESTATÍSTICA
EXPERIMENTO DE UM SORTEIO
Nessa situação, para obtermos a bolinha azul no sorteio, teremos 7 possibilidades.
No caso da bolinha marrom, apenas 3 possibilidades num total de 10 bolinhas.
Podemos dizer que a primeira situação é um evento mais provável enquanto que a
segunda é um evento menos provável. Nesse mesmo jogo, seria impossível sortear
uma bola branca. Dizemos que este é um evento impossível.
Entretanto, se todas as bolas marrons tiverem sido sorteadas, a próxima bola,
com certeza, será azul. Nesse caso, temos um evento certo.
Para encontrarmos os resultados prováveis e as chances de que cada um ocorra
é preciso identificar, primeiro, todos os resultados possíveis definir o espaço
amostral.
No lançamento de uma moeda, o espaço amostral se resume a apenas duas
possibilidades: Cara ou Coroa. Essas têm a mesma probabilidade de ocorrer.
Assim temos um espaço amostral equiprovável (todos os eventos – cara e coroa
tem a mesma chance de ocorrer). O mesmo acontece no lançamento de um
dado. Existem seis resultados possíveis (1 a 6) e apenas uma face contendo
cada número.
As crianças podem ter dificuldades em mapear todas as possibilidades do espaço
amostral de um experimento, principalmente, quando este envolver um pensamento
combinatório de resultados distintos, como no apresentado a seguir, envolvendo o
lançamento de dois dados distintos, no qual pode-se obter 36 resultados.
Para que as crianças compreendam as possibilidades de um espaço amostral,
é importante que elas desenvolvam um esquema para conseguir mapear todas as
combinações sem esquecer nenhuma e nem tampouco repetir alguma. Para isso,
pode-se propor que elas utilizem outras representações como quadros e árvore de
possibilidades.
O jogo Cara ou Coroa
do Caderno de Jogos
na Alfabetizão
Matemática auxilia
no desenvolvimento
do conceito de
probabilidade para esta
situação.
10 bolinhas
Globo
Ricardo Luiz Enz
PNAIC_MAT_Caderno 7_pg001-080.indd 52 21/3/2014 10:03:35
53
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Com esse mesmo tipo de situação podemos pensar em um experimento da soma
dos pontos obtidos ao se lançar dois dados distintos. Temos como possibilidades
resultados entre 2 e 12. Porém esses resultados possuem probabilidades diferentes,
sendo um espaço amostral não equiprovável. Para obtermos o 7 como soma,
existem seis chances: 1-6; 2-5; 3-4; 4-3; 5-2; 6-1, dentre 36 possiblidades no
lançamento dos dois dados. Assim, para medir a chance de se obter como
resultado 7 a probabilidade desse evento, calculamos a fração entre o
número de casos favoráveis, pelo número de casos possíveis (6/36 ou 1/6 lê-
se seis chances em trinta e seis ou uma chance em seis). Se quisermos obter as
chances da soma ser 12 há apenas um jeito (6-6), portanto sua probabilidade
será de 1/36 (lê-se: uma chance em trinta e seis). Esses dois eventos tem chances
diferentes de ocorrer.
No problema a seguir ilustramos o uso de uma árvore de possibilidades como
forma de mapear o espaço amostral.
Ana gosta de bombons de caramelo. Em um saco há dois bombons de caramelo e
um de morango. Ana pode pegar, sem olhar, dois bombons do saco. Quais são os
resultados possíveis?
Há vários jogos no
Caderno de Jogos
na Alfabetização
Matemática que
trabalham com esta
situação, dentre eles,
Cubra os Setes e
Travessia do Rio.
C
1
M M
C
2
C
2
C
1
C
1
C
2
M
Ricardo Luiz Enz
ESPAÇO AMOSTRAL DO LANÇAMENTO DE DOIS DADOS
ÁRVORE DE POSSIBILIDADES DOS CARAMELOS
PNAIC_MAT_Caderno 7_pg001-080.indd 53 21/3/2014 10:03:36
54
EDUCAÇÃO ESTATÍSTICA
Este é um tipo de situação na qual os alunos podem pensar que por haver mais
bombons de caramelo, se tem uma maior chance de pegar dois bombons deste
sabor. Na verdade, a representação utilizando a árvore de possibilidades
6
contribui
para a compreensão de que é mais provável pegar uma mistura caramelo e morango
(4 possibilidades) do que de caramelo com caramelo (2 possibilidades). Entretanto,
é impossível tirar duas balas de morango, pois só tem uma.
Vejamos outro exemplo de problema probabilístico.
A Caixa 1 tem 2 fichas pretas e 4 fichas brancas. A Caixa 2 tem uma ficha preta e
2 fichas brancas. Retira-se uma ficha de cada caixa. De que caixa é mais provável
obter uma ficha branca?
6
Ver artigo sobre análise combinatória nesse volume.
CAIXA 1
CAIXA 2
Crianças apresentam dificuldade em comparar essas situações, pois tendem
a considerar apenas a quantidade de possibilidades favoráveis (fichas brancas).
De fato, a caixa 1 tem mais fichas brancas do que a caixa 2, porém, a fração do
número de fichas brancas em relação ao total de fichas em cada caixa é igual (4/6
= 2/3). Assim, é fundamental comparar a quantidade de eventos favoráveis com a
quantidade de eventos possíveis no espaço amostral.
Em sala de aula o trabalho com a probabilidade poderá fazer parte da rotina das
crianças em várias situações:
sorteando-se o ajudante do dia• : de posse de um saco opaco, pode-se
sortear o ajudante do dia. Antes do sorteio, pergunta-se que criança tem mais
chance de ser sorteada. Nesse momento, é comum que elas digam que se trata
Ricardo Luiz Enz
EXPERIMENTOS IGUALMENTE PROVÁVEIS
PNAIC_MAT_Caderno 7_pg001-080.indd 54 21/3/2014 10:03:37
55
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
de fulano ou ciclano, pois esse tem mais sorte. A intervenção do professor
faz-se necessária, pois, de fato, não se pode saber quem será sorteado e o
conceito de chance não tem relação com a ideia de sorte. O importante é que
as crianças percebam que todos têm a mesma chance. Retira-se então o papel
com o nome da criança sorteada, colocando o papel com seu nome em outro
local. No outro dia, faz-se novamente o sorteio. Pergunta-se então à sala se
é possível sair o nome do colega do dia anterior. As crianças devem perceber
que como o papel não está mais no saco, é impossível que ele seja sorteado.
No dia do aniversário da criança, pode-se colocar dois ou mais papeis com o
seu nome dentro do saco e assim, perguntar se ela tem a mesma chance de
ser sorteada em relação às demais.
sorteando-se quem começa no jogo• : em situações de jogo é comum que
as crianças disputem quem começará. O professor poderá intervir no sentido
de sugerir diversos tipos de sorteio, seja nos dados, seja em jogos como par
ou impar, etc.
em atividades de contagens de eventos em experimentos aleatórios• :
é muito importante que a criança vivencie as contagens de experimentos
aleatórios, e o faça em dias diferentes para notar que os resultados mudam
e não são previsíveis. Pedir para que cada criança lance uma moeda 10
vezes, anotando o resultado: cara ou coroa. Eventualmente, junta-se todos
os resultados em uma tabela e ainda pode-se comparar com outras salas.
Atividades como essa ajudam as crianças no desenvolvimento do senso
numérico e também abalam a percepção do senso comum em relação a
sorte.
Pode-se também utilizar-se de gráficos para registrar os resultados. Observe a
seguir um gráfico feito em um ábaco aberto que indica a quantidade de vezes que
um determinado número saiu em um dado.
Arquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 55 21/3/2014 10:03:37
56
EDUCAÇÃO ESTATÍSTICA
Podemos problematizar situações como essa. Por exemplo, observando a roleta
abaixo, qual dos dois gráficos a seguir poderia melhor representar o que se espera
em termos de resultado:
em jogos específicos• : vários jogos se utilizam de dados. Trabalhar e organizar
as possibilidades da soma, subtração e multiplicação dos números dos dados,
ajuda a criança a perceber que, embora pareça, às vezes determinados eventos
não têm a mesma chance de ocorrer. Por exemplo, como comentamos, é
muito mais fácil sair a soma 7, do que a soma 2 em dois dados. É importante
que as crianças joguem antes da discussão, pois, assim elas vão descobrindo
esses fatos e ampliando o seu senso crítico.
Podemos perceber a partir desse texto, aspectos que podem subsidiar o professor
nas aulas dos primeiros anos do Ensino Fundamental. Apresentamos modos de
encaminhar a discussão das noções de certeza, provável e impossível a partir de
experimentos como jogos e brincadeiras (como par ou ímpar, ou zero ou um). Vimos
como é importante desenvolver, pouco a pouco, com as crianças a ideia de mais ou
menos chance, de espaço amostral, assim como de esquemas para o mapeamento
das possibilidades.
Arquivo dos autores
Arquivo dos autores
Arquivo dos autores
PNAIC_MAT_Caderno 7_pg001-080.indd 56 21/3/2014 10:03:38
57
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Compartilhando
Atividade 1 – Interpretando Gráficos
Esta atividade propicia uma reflexão, sobre a possibilidade de discussões de
diferentes temas a partir de informações representadas em vários tipos de gráficos.
A representação em gráficos é uma importante maneira de obter informações e
através da leitura deles podemos nos informar a respeito de vários assuntos.
Em grupos analisem cada um dos gráficos a seguir:
a) Do que tratam?
b) O que podemos compreender da realidade a partir de cada um dos gráficos?
c) Retome o texto “Construção e Interpretação de Gráficos e Tabelas” e
classifique cada um dos gráficos.
d) Procure identificar as variáveis utilizadas. Quais as inadequações de cada uma
delas com relação ao trabalho do 1.
o
ao 3.
o
ano?
e) Elabore uma questão que possa levar seus alunos a construir gráficos deste
tipo.
0
20
40
60
80
100
% da população brasileira
1980
PORCENTUAL DA POPULAÇÃO URBANA – BRASIL – 1980 A 2010
Fonte: IBGE, Censo Demográfico 1980, 1991 e 2010, e Contagem da população 1996.
Anos
1991 1996 2000 1010
PNAIC_MAT_Caderno 7_pg001-080.indd 57 21/3/2014 10:03:38
58
EDUCAÇÃO ESTATÍSTICA
MÉDIA DE FILHOS POR FAMÍLIA SEGUNDO AS GRANDES REGIÕES – 2010
0
1
2
3
4
Média do número
de filhos
Regiões do Brasil
Norte Nordeste Sudeste Sul Centro-Oeste
Fonte: IBGE, censo Demográfico 2010.
FATURAMENTO EM MILHÕES DE REAIS COM VENDA DE BRINQUEDOS
SEGUNDO A ABRINQ DE 2005 A 2012
Fonte: Fabricas Nacionais / Sistema Aliceweb.
PNAIC_MAT_Caderno 7_pg001-080.indd 58 21/3/2014 10:03:39
59
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
0%
10%
20%
30%
40%
60%
1940 1950 1960 1980 2010
PERCENTUAL DE ANALFABETOS DE 15 ANOS DE IDADE OU
MAIS, RESIDENTES NO BRASIL – 1940/2010
50%
1970 1991 2000
56%
50,5%
39,6%
33,6%
25,5%
20,1%
13,6%
9,6%
Fonte: IBGE, Censo Demográfico 1940/2010.
PERCENTUAL DE CRIANÇAS DE 5-6 ANOS COM DENTE DE LEITE
CARIADO DE CADA REGIÃO
2003
2010
0
10
20
30
60
% de crianças por região
Regiões do Brasil
Norte Nordeste Sudeste Sul Centro-Oeste
40
50
Fonte: Ministério da Saúde/SAS.
PNAIC_MAT_Caderno 7_pg001-080.indd 59 21/3/2014 10:03:39
60
EDUCAÇÃO ESTATÍSTICA
Atividade 2 – Realizando uma pesquisa
Iniciando uma Pesquisa (questão e hipótese)
A atividade 1 evidenciou o quanto os dados, quando organizados, podem fornecer
importantes informações. Fazemos estatísticas para investigar questões a partir de
uma grande quantidade de dados. A curiosidade das crianças deve ser valorizada,
provocando-as a fazer o levantamento de questões e a organização de dados.
Vamos realizar uma investigação para vivenciar o trabalho que faremos com nossos
alunos.
Que questão nossos alunos gostariam de investigar?
A população investigada são os professores da turma de formação.
Para começar a investigar a questão é necessário levantar hipóteses, ou seja, tentar
responder à questão justificando o porquê da resposta.
Uma das hipóteses possíveis é:
Os professores que trabalham com o primeiro ano dos anos iniciais acham que
as crianças gostariam de investigar os desenhos animados favoritos, pois é o que
gostam de fazer em seu tempo livre.
Nessa hipótese, classificamos os professores (sujeitos da população a ser investigada)
de acordo com o ano que estão trabalhando (1.
o
, 2.
o
ou 3.
o
ano). Essa será então,
uma das nossas variáveis.
Levantem com a turma outras hipóteses e identifiquem uma variável a ser •
investigada a partir de tal hipótese.
Elaborando o Instrumento de Coleta de Dados
A partir do que estabelecemos anteriormente, temos nossas variáveis e, a partir
delas, podemos construir um questionário em formato de cédula de votação. Agora,
construam seu questionário baseado no modelo sugerido a seguir e vamos fazer
nossa pesquisa.
PNAIC_MAT_Caderno 7_pg001-080.indd 60 21/3/2014 10:03:39
61
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Nome:
Ano escolar em que está trabalhando:
1.
o
ano 2.
o
ano 3.
o
ano
Em sua opinião, das alternativas apresentadas abaixo, qual questão uma criança
do 1.
o
ao 3.
o
ano gostaria mais de investigar:
Qual desenho animado (as crianças) preferem?
Menina salta mais longe que menino?
Qual semente brota mais rápido: feijão ou girassol?
Quantos bichos de estimação as crianças têm em casa?
a) Cada participante responde secretamente e coloca sua resposta em uma sacola.
b) Em duplas elabora-se uma tabela de dupla entrada que permita o cruzamento
do ano que o professor está trabalhando (1.
o
, 2.
o
ou 3.
o
ano) com a frequência das
respostas em cada categoria, para registrar as informações que serão apuradas.
c) A cada resposta anunciada oralmente as duplas vão registrando na tabela. É
importante ao final conferir se todas as respostas foram contadas.
d) Cada dupla preenche a tabela construída.
e) Qual o resultado a que chegaram sobre a pergunta da investigação feita aos
professores? Qual questão uma criança do 1.
o
ao 3.
o
ano gostaria mais de
investigar segundo os professores participantes deste grupo.
f) Refletir com todo o grupo sobre as representações em tabelas considerando:
• afunçãodotítulodatabela;
• afunçãodaslinhas;
• afunçãodascolunas;
• aindicaçãodafontededados;
• apopulaçãoentrevistada;
• tiposdetabela.
PNAIC_MAT_Caderno 7_pg001-080.indd 61 21/3/2014 10:03:39
62
EDUCAÇÃO ESTATÍSTICA
Construindo Gráficos – socializando resultados
a) Entregar uma folha quadriculada para que cada dupla construa um gráfico de
barras referente à pesquisa sobre qual questão uma criança do 1.
o
ao 3.
o
ano
gostaria mais de investigar.
b) A partir de folhas de sulfite coloridas, construir quadrados de mesmo tamanho.
De posse desse material construir um gráfico coletivo. Em seguida, desenhar os
eixos nas parede ou quadro de giz. Cada professor deverá colar o seu quadrado
no local em que votou. Pode-se utilizar cores diferentes de acordo com os anos
de atuação dos professores.
c) Cada dupla deve preparar um texto buscando responder qual foi o resultado a
que chegaram sobre qual questão uma criança do 1.º ao 3.º ano gostaria mais de
investigar para os professores participantes deste grupo.
d) Socializar os resultados.
e) Reflita sobre alguns aspectos que devem ser considerados na análise dos gráficos:
• afunçãodotítulo;
• aindicaçãodafontededados;
• apopulaçãoentrevistada;
• aindicaçãodosnomesdoseixos;
• aidentificaçãodasbarras.
Atividade 3 – Construção de Gráfico
Percentual de venda de alguns tipos de brinquedo nos últimos cinco anos
Tipo de brinquedo 2008 2009 2010 2011 2012
Bonecas e bonecos 20 21 14 18 16
Jogos (tabuleiros, cartas, …) 7 8 14 9 11
Fonte: <http://www.abrinq.com.br>.
a) A partir dos dados acima, elaborem em duplas, um gráfico de linha. Cada dupla
utilizará uma escala diferente, porém, cada quadradinho a ser apresentado no
gráfico deverá corresponder a 1, 5 e 10. As informações sobre a escala serão
apresentadas a cada equipe, individualmente, sem que as outras a escutem.
b) Quando todas as equipes terminarem de construir os seus gráficos, exponham,
no quadro, o trabalho realizado.
PNAIC_MAT_Caderno 7_pg001-080.indd 62 21/3/2014 10:03:39
63
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
c) Em grande grupo discutam:
• asdiferençasentrearepresentaçãodosgráficos;
• ainfluênciadessasdiferençasnarepresentaçãoqueosujeitoconstróisobrea
situação apresentada.
Atividade 4 – Jogo de classificação
Essa atividade propõe a reflexão sobre diferentes critérios que podem ser utilizados ao
classificarmos os mesmos elementos, além de analisar a pertinência dos mesmos.
Material (para cada dupla):
1 caneta ou lápis.•
2 kits iguais, cada um com 15 cartas com imagem de brinquedos (fotocopiar as •
imagens do anexo na página 79).
5 envelopes opacos com espaço para escrever a característica dos grupos de •
brinquedos criados a partir de critério estabelecido pela dupla (fotocopiar as
imagens do anexo na página 80).
Objetivo: Criar uma boa classificação para formar o maior número de pares de
brinquedos por dupla. Um par de brinquedos é aqui considerado no jogo como
duas cartas iguais do brinquedo.
Regras
1.
a
Etapa – Geração de uma classificação a partir dos brinquedos
Cada dupla deve criar um critério para classificar as 15 cartas, em 3, 4 ou 5 classes •
(ou grupos).
Uma vez decidido qual o critério vai utilizar para classificar os brinquedos, a dupla •
escreve no envelope o que caracteriza o grupo e guarda as cartas no envelope
correspondente ao grupo do brinquedo.
A dupla escreve também seus nomes nos envelopes. •
Não pode sobrar carta. •
Os envelopes são entregues ao professor.•
2.
a
Etapa – Classificação dos brinquedos em classes pré-estabelecidas
Material (para cada dupla):
1 kit de15 cartas de brinquedos;•
PNAIC_MAT_Caderno 7_pg001-080.indd 63 21/3/2014 10:03:39
64
EDUCAÇÃO ESTATÍSTICA
5 envelopes com a classificão que outra dupla fez (o professor deve redistribuir o •
envelope de forma a não deixar que nenhuma das duplas recebam o seu próprio);
1 caneta ou lápis.•
Cada dupla deve decidir em qual envelope guardar cada carta de brinquedo do •
kit que receberam, vendo a carta e lendo as descrições nos envelopes.
TODAS as cartas devem ser guardadas em um dos envelopes.•
3.
a
Etapa – Contagem dos pares
O professor desenha na lousa o seguinte quadro para anotar os pontos:•
Nome da
dupla
Envelope que criou
classificação
Envelope que
classificou
Total de
pontos
1.
o
2.
o
3.
o
4.
o
5.
o
1.
o
2.
o
3.
o
4.
o
5.
o
Cada equipe abre um dos envelopes e conta quantos pares de cartas (cartas •
iguais) foram formados e guarda as cartas que ficaram sem par.
Diz ao professor o total de pares de brinquedos formados e o nome da dupla que •
criou a classificação.
O professor anota o número de pares formados tanto para a dupla que criou a •
classificação quanto para a que classificou.
Novamente cada equipe abre um segundo envelope e conta quantos pares foram •
formados. Todos os envelopes devem ser abertos, um de cada vez, e contados
quantos pares há dentro.
Ao final o professor soma os pontos de cada dupla. Cada par gerado conta ponto •
tanto para a dupla que construiu os descritores quanto para a que colocou os
brinquedos nos envelopes com descritores já gerados.
PNAIC_MAT_Caderno 7_pg001-080.indd 64 21/3/2014 10:03:39
65
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Discuta com o grande grupo:
a) Quais as dificuldades sentiram para classificar?
b) O porquê de alguns brinquedos ficarem em envelopes diferentes.
c) Alguma dupla teve dificuldade ao se deparar com brinquedos que pareciam
poder ser encaixados em dois envelopes?
d) Alguma dupla formou uma classe com um único brinquedo?
Atividade 5 – Resolvendo Problemas de Combinatória
Esta atividade busca refletir sobre diferentes tipos de problema de Combinatória e
as diversas estratégias de resolução possíveis.
a) Solicitar que cada participante resolva os problemas abaixo.
1. Uma lanchonete trabalha com dois tipos de pão (francês e de forma) e com
4 tipos de recheio (queijo, presunto, frango e mortadela). Quantos tipos de
sanduíche são fabricados, se cada um pode ter um tipo de pão e um tipo
de recheio?
2. No carro de meu avô podem sentar três pessoas no banco de trás. Hoje,
eu, meu irmão e minha irmã vamos passear com ele de carro. De quantas
formas diferentes poderíamos sentar?
OBS.: O professor deve ter cuidado para não trocar os envelopes entre duas
duplas, uma dupla recebe o da outra e a outra recebe o da primeira. Caso
isto ocorra essas duas duplas empatarão.
Ganha o jogo a dupla que fizer mais pontos.•
Refletindo sobre a atividade:
Esta atividade visa a desenvolver a capacidade de classificar. Em uma primeira
etapa, o grupo irá gerar uma classificação (de 3 a 5 classes) a partir dos dados (os
brinquedos). Uma segunda etapa tem como objetivo validar a classificação feita.
Uma classificação bem feita facilitará que as duplas consigam colocar o mesmo
brinquedo na mesma classe que a dupla que gerou a classificação.
PNAIC_MAT_Caderno 7_pg001-080.indd 65 21/3/2014 10:03:40
66
EDUCAÇÃO ESTATÍSTICA
Resolução de um aluno do 3.
o
ano do Ensino Fundamental.
Fonte: Pessoa e Borba (2009)
3. Para representante de turma da sala de aula se candidataram 3 pessoas
(Joana, Mário e Vitória). De quantas maneiras diferentes poderão ser
escolhidos o representante e o vice representante?
4. Amanda, Lívia e Gisele vão brincar na gangorra do parque. Quantas duplas
diferentes podem ser formadas com essas meninas?
b) Solicitar que, em pequenos grupos, sejam identificadas semelhanças e diferenças
em relação à forma de escolher os elementos e de ordená-los nos problemas
acima.
c) Discutir em grande grupo quais estratégias de solução são mais adequadas para
serem usadas por alunos do 1.
o
, 2.
o
e 3.
o
anos.
Atividade 6 – Analisando a resolução das crianças
Veja as soluções (corretas, incompletas ou incorretas) encontradas por alguns
alunos de 1.
o
, 2.
o
e 3.
o
anos do Ensino Fundamental ao resolverem problemas
combinatórios.
Fonte: Pessoa e Borba (2009)
Resolução de uma aluna do 3.
o
ano do Ensino Fundamental.
As quartas de final da Copa do Mundo serão disputadas pelas seguintes seleções:
Brasil, França, Alemanha e Argentina. De quantas maneiras diferentes podemos ter
os três primeiros colocados?
Para representante de turma da sala de aula se candidataram 3 pessoas (Joana, Mário
e Vitória). De quantas maneiras diferentes poderão ser escolhidos o representante
e o vice-representante?
PNAIC_MAT_Caderno 7_pg001-080.indd 66 21/3/2014 10:03:40
67
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Quantas palavras diferentes (com ou sem sentido) poderei formar usando as letras
da palavra AMOR
Resolução de uma aluna do 2.
o
ano do Ensino Fundamental.
Fonte: Pessoa e Borba (2009)
Felipe tem três figurinhas e quer arrumá-las lado a lado em uma página do seu
álbum. Quais são as formas que ele tem para arrumar essas figurinhas uma ao lado
da outra na página de seu álbum?
Fonte: Pessoa e Borba (2012)
Resolução de um aluno de seis anos.
PNAIC_MAT_Caderno 7_pg001-080.indd 67 21/3/2014 10:03:41
68
EDUCAÇÃO ESTATÍSTICA
Para as suas bonecas, Marina tem roupinhas diferentes. Ela tem duas saias (preta e
cinza) e quatro tops (branco, vermelho, amarelo e verde). Quais são as possibilidades
de Marina vestir conjuntos diferentes de roupas em suas bonecas, usando todas as
saias com todas as blusas?
Fonte: Pessoa e Borba (2012)
Resolução de uma aluna de seis anos.
A mãe levou seus quatro filhos ao parque (Bianca, Sabrina, Diego e Felipe). No
brinquedo pula-pula só podem entrar três crianças por vez. Ajude a mãe a montar
os grupos, de maneiras diferentes, que brincarão no pula-pula.
Fonte: Santos, Matias e Pessoa (2011)
Resolução de um aluno de seis anos.
PNAIC_MAT_Caderno 7_pg001-080.indd 68 21/3/2014 10:03:41
69
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Discuta sobre cada uma das estratégias escolhidas pelos alunos:
• Queacertoseerroselescometeramemcadaumdessesproblemas?
• Qualalunoapresentoumaiordificuldade?Porquê?
• Oquepodeserpropostoparaajudaressesalunosaprogredir?
Atividade 7
Em grupos de 5 professores, vivenciem o jogo abaixo:
Objetivo: Somar a maior quantidade de pontos. Os pontos são obtidos ao acertar
o resultado de um sorteio de tampinhas.
Material: Um saco opaco com 10 tampinhas, sendo 6 azuis e 4 vermelhas.
Quantidade de participantes: 5 participantes.
• Parainiciarapartidaéprecisoquetodosvejamastampinhasquevãosercolocadas
no saco.
• Cadaparticipantedeveanotarnumatabelasuaprevisãoparaacorda1.
a
tampinha
que será sorteada.
• Umdosparticipantesretiraumatampinhadosaco,semolhar.
• Apósaretiradadatampinha,cadaparticipante:
anota na tabela a cor da tampinha sorteada;
marca se acertou;
registra sua pontuação (0 para erro e 1 para acerto).
• Esseprocedimentoserepetiráatéa5.
a
rodada.
• Astampinhassorteadasnãovoltamparaosaco.
• Aofinaldeumarodadaemquetodossorteiam,ospontosobtidossãosomados,
para ver quem venceu o jogo.
Jogada
Previsão do
Resultado
Resultado da cor da
tampinha sorteada
Acerto Pontuação
1.
a
2.
a
3.
a
4.
a
5.
a
Total
PNAIC_MAT_Caderno 7_pg001-080.indd 69 21/3/2014 10:03:42
70
EDUCAÇÃO ESTATÍSTICA
Refletindo sobre o jogo:
• Marquenoquadroabaixoastampinhasqueforamcolocadasnosacoantesda
primeira rodada e preencha a linha da 1.
a
rodada.
• Repitaessasanotaçõesatéaquintarodada.
• Oquevocêpodeconcluir?
Jogada Tampinhas existentes no saco
1.
a
2.
a
3.
a
4.
a
5.
a
Mariana participava do jogo e no momento da 5.
a
jogada seu registro estava assim:
Jogada
Previsão do
Resultado
Resultado da cor da
tampinha sorteada
Acerto Pontuação
1.
a
azul azul c 1
2.
a
azul azul c 1
3.
a
azul vermelha e 0
4.
a
azul vermelha e 0
5.
a
azul
Total
a) Use o quadro abaixo para anotar a quantidade de tampinhas existentes no saco.
Você concorda que Mariana fez uma boa previsão? Ela tem mais chance de errar
ou de acertar? Justifique sua resposta.
Jogada
Tampinhas
existentes no saco
Chances de sair azul Chance de sair vermelha
1.
a
...azuis em 10 tampinhas ...vermelhas em 10 tampinhas
2.
a
...azuis em 9 tampinhas ...vermelhas em 9 tampinhas
3.
a
...azuis em 8 tampinhas ...vermelhas em 8 tampinhas
4.
a
...azuis em 7 tampinhas ...vermelhas em 7 tampinhas
5.
a
...azuis em 6 tampinhas ...vermelhas em 6 tampinhas
PNAIC_MAT_Caderno 7_pg001-080.indd 70 21/3/2014 10:03:42
71
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Vamos agora observar as jogadas realizadas por Caio.
Jogada
Previsão do
Resultado
Resultado da cor da
tampinha sorteada
Acerto Pontuação
1.
a
vermelha vermelha c 1
2.
a
vermelha vermelha c 1
3.
a
azul vermelha e 0
4.
a
azul vermelha e 0
5.
a
Total obtido
b) Nas duas primeiras jogadas, Caio apostou no vermelho e acertou. Na 3.
a
e na 4.
a
jogadas ele apostou no azul, mas saiu vermelho. Na 5.
a
jogada, em qual cor ele
deve apostar? Por quê?
Atividade 8
Nos textos da seção Aprofundando o Tema”, foram dadas diversas sugestões
para a construção de gráficos, trabalhos com combinatória e com probabilidade.
Juntamente com seu grupo elabore uma sequência didática adaptada a sua realidade
para o trabalho com cada um desses temas.
Atividade 9
Escolha um dos jogos do Caderno Jogos na Alfabetização Matemática que trabalhe
com o tema desse caderno. Experiencie o jogo com seu grupo e discuta sobre suas
possibilidades para a sua sala de aula.
PNAIC_MAT_Caderno 7_pg001-080.indd 71 21/3/2014 10:03:42
72
EDUCAÇÃO ESTATÍSTICA
Para Saber Mais
Sugestões de Leituras – Livros
GUIMARÃES, G.; BORBA, R. (Org.). Reflexões sobre o ensino de matemática
nos anos iniciais de escolarização. Biblioteca do Educador Matemático, Coleção
SBEM, v. 6, 2009.
Esse livro é uma iniciativa do Grupo de Trabalho: Educação Matemática nos
Anos Iniciais e apresenta diversas investigações com o objetivo de auxiliar no
desenvolvimento do trabalho de ensino e aprendizagem nas salas de aula nos anos
iniciais de escolarização. Em particular destacamos o capítulo Refletindo sobre a
Educação Estatística na sala de aula de Gilda Guimarães que trata do tema abordado
neste caderno. Para acessar o resumo desta e de outras publicações na área basta
acessar <http://www.sbem.com.br/files/revista14_26.pdf>.
Sugestões de Leituras – Artigos
CAVALCANTI, E.; GUIMARÃES, G. Quem gostaria de receber um livro de presente
de Natal? Educação Matemática em Revista, ano 14, n. 27, ago. 2009.
Esse relato tem por objetivo socializar produções de estudantes do 2.
o
e 5.
o
ano,
quando solicitados a representarem a variabilidade de livros lidos por algumas
crianças. Após a representação, a fim de fazermos com que os mesmos refletissem
sobre as produções que criaram e tomassem decisões baseadas nos dados
representados, foram propostas questões. No decorrer do texto, as experiências de
cinco crianças são destacadas, a fim de melhor exemplificar o que foi vivenciado. O
trabalho realizado junto a esses estudantes permitiu concluir que crianças dos anos
iniciais do Ensino Fundamental são capazes de compreender questões referentes à
variabilidade de dados representados em gráficos. Entretanto, eles podem tomar
decisões partindo de suas crenças e valores e nem sempre se baseando nos dados
representados.
PNAIC_MAT_Caderno 7_pg001-080.indd 72 21/3/2014 10:03:42
73
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
PESSOA, C.; BORBA, R. Quem dança com quem: o desenvolvimento do raciocínio
combinatório de crianças de 1.
a
a 4.
a
série. ZETETIKÉ, Campinas, v. 17. n. 31, jan/
jun. 2009. Disponível em: <http://www.fae.unicamp.br/revista/index.php/zetetike/
article/download/2622/2364>.
Nesse estudo buscou-se levantar a compreensão de problemas combinatórios por
alunos de 1.
o
ao 4.
o
ano e observar as estratégias por eles utilizadas. Aplicou-se
um teste envolvendo diferentes tipos de problemas (produto cartesiano, arranjo,
combinação e permutação) e analisaram-se os acertos dos alunos, por série e
por tipo de problema. Observaram-se avanços ao longo dos anos, com melhores
desempenhos nos anos posteriores. Os problemas de arranjo e permutação, nos
quais a ordem dos elementos é importante, apresentaram percentuais baixos de
acertos, provavelmente pela dificuldade em levantar todas as possibilidades. As
estratégias variavam da total incompreensão das relações envolvidas, passando pela
compreensão das relações sem esgotamento de possibilidades, até a identificação
do produto que sintetizava a situação. Deve-se reconhecer que o raciocínio
combinatório desenvolve-se dentro e fora da escola, sendo necessário que se
enfatize a necessidade de os alunos levantarem de modo sistematizado todas as
possibilidades de uma situação.
SOUZA, A.C.; LOPES, C.; OLIVEIRA, D. A análise exploratória de dados na infância:
uma conexão entre educação estatística e a literatura infantil. In: COUTINHO, C.
(Org.). Discussões sobre o ensino e a aprendizagem da probabilidade e da
estatística na escola básica. São Paulo: Mercado das Letras, 2013. p.75-98.
Esse artigo tem como objetivo trazer discussões sobre Educação estatística nos
anos iniciais, realizadas no Grupo de Estudos em Educação Estatística. Tais reflexões
são amparadas em uma investigação estatística, disparada pela leitura do livro Meu
Dente Caiu da autora Vivina de Assis.
Sugestão de Vídeo
http://www.youtube.com/watch?v=rbNNP3rhz2g•
Domingo é dia de bater uma bolinha é um vídeo que discute diferentes formas de
classificação de forma divertida.
PNAIC_MAT_Caderno 7_pg001-080.indd 73 21/3/2014 10:03:42
74
EDUCAÇÃO ESTATÍSTICA
Sugestões de Sites
<http://7a12.ibge.gov.br>.
Esse endereço leva ao site do IBGE destinado às crianças de 7 a 12 anos. Aqui você
encontra informações interessantes e curiosas sobre o Brasil e os brasileiros. Tem
também: brincadeiras, mapas, material para pesquisa e muito mais. É importante
ressaltar que no site do IBGE encontram-se as normas da ABNT utilizadas para a
apresentação dos dados estatísticos.
<http://vamoscontar.ibge.gov.br/en/>.
O Vamos Contar é o ponto de encontro do IBGE com os educadores. Esse é um
site pensado para oferecer informações atualizadas sobre o Brasil por meio de
atividades e recursos para as aulas.
<www.ime.usp.br/caem/>.
Trata-se do site do CAEM Centro de Aperfeiçoamento do Ensino de Matemática.
O CAEM é um órgão de extensão do IME – Instituto de Matemática e Estatística
da USP – Universidade de São Paulo. Seu objetivo é prestar serviços de assessoria
a professores de Matemática. Dentre outras atividades, o CAEM oferece vários
tipos de cursos, oficinas, palestras e seminários a professores dos níveis Infantil,
Fundamental e Médio. Com exceção das oficinas, as atividades são gratuitas para
todos os professores.
<http://chc.cienciahoje.uol.com.br/revista>.
No referido site encontramos a revista Ciência Hoje das crianças. Além de diversas
atividades interessantes, é um importante apoio ao professor para atualização de
seus conhecimentos e de seus alunos, com uma linguagem adequada às crianças.
<http://geracaoufpe.blogspot.com.br/p/producoes.html>.
Trata-se do site do Grupo de Estudos em Raciocínio Combinatório GERAÇÃO. Tal
grupo tem o objetivo de desenvolver e divulgar estudos relativos ao conhecimento
de Combinatória.
<http://nemat.gente.eti.br/>.
O site é o endereço do Núcleo de Educação Matemática da Universidade Federal
de Pernambuco NEMAT que tem como objetivo articular professores e alunos da
Universidade Federal de Pernambuco com outras instituições e redes de ensino em
busca do desenvolvimento e da melhoria do ensino da Matemática nos diversos
níveis de escolaridade.
PNAIC_MAT_Caderno 7_pg001-080.indd 74 21/3/2014 10:03:42
75
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Sugestões de Jogos Online
BATALHA NAVAL• É um jogo de estratégia, onde os jogadores devem adivinhar
em que quadrados estão os navios do oponente apresentados em uma tabela de
dupla entrada.
<http://jogosonline.clickgratis.com.br/multiplayer/batalha-aval.
html#ixzz2gNbFbtyP>.
• AKINATOR É um jogo que envolve muitas classificações para que seja descoberto
um personagem.
<http://pt.akinator.com/personnages/propose>.
PNAIC_MAT_Caderno 7_pg001-080.indd 75 21/3/2014 10:03:43
76
EDUCAÇÃO ESTATÍSTICA
Sugestões de Atividades para
os Encontros em Grupos
1.
o
momento (4 horas)
• FazeraleituradeleitedolivroApostando com o
Monstro, do autor Kyoung Hwa Kim.
• Retomadadoencontroanterior.
• Leraseção“IniciandoaConversa”.
• Discutir com o grande grupo sobre o trabalho
que tem sido feito nas escolas sobre Educação
Estatística.
• Fazerasatividades1,2,3e4daseção
“Compartilhando”.
2.
o
Momento (4 horas)
• Fazer a leitura do livro Fugindo das
garras do gato, dos autores Choi
Yun-Jeong e Kim Sun-Yeong, e discutir
as possibilidades pedagógicas desse
livro para o trabalho com Educação
Estatística.
• Fazerasatividades7,8e9daseção
“Compartilhando”.
Reprodução
Reprodução
PNAIC_MAT_Caderno 7_pg001-080.indd 76 21/3/2014 10:03:43
77
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Atividades para Casa e Escola
1. Leitura dos textos da seção “Aprofundando o Tema”.
2. Procurar nos livros didáticos a que tem acesso atividades que desenvolvam
aspectos referentes a cada um dos tópicos destacados: construção e leitura de
gráficos e tabelas, combinatória, noções de probabilidade.
3. Aplicar e registrar as sequências didáticas elaboradas pelo grupo.
4. A partir das ideias do texto PESQUISA COMO EIXO ESTRUTURADOR DA
ABORDAGEM DE ENSINO DA ESTATÍSTICA realizar uma investigação estatística
com os alunos.
PNAIC_MAT_Caderno 7_pg001-080.indd 77 21/3/2014 10:03:43
78
EDUCAÇÃO ESTATÍSTICA
BARRETO, F.; AMARAL, F.; BORBA, R. Como o raciocínio combinatório tem sido apresentado em livros
didáticos de séries iniciais. Caderno de Trabalhos de Conclusão de Curso de Pedagogia, Recife:
UFPE, v. 2, 2007.
BORBA, R. Vamos combinar, arranjar e permutar: aprendendo combinatória desde os anos iniciais de
escolarização. In: ENCONTRO NACIONAL DE EDUCAÇÃO MATEMÁTICA, 13., 2013, Curitiba. Anais
eletrônicos... Curitiba, 2013. Disponível em: <http://sbem.esquiro.kinghost.net/anais/XIENEM/
pdf/2201_2170_ID.pdf>. Acesso em 14 de fevereiro de 2014.
CAVALCANTI, M. R. G. Como adultos e crianças compreendem a escala representada em
gráficos. 122 f. Dissertação (Mestrado em Educação Matemática e Tecnologia) Universidade
Federal de Pernambuco, Recife, 2010.
PESSOA, C.; BORBA, R. Do young children notice what combinatorial situations require? In:
CONFERENCE OF THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY OF MATHEMATICS EDUCATION,
36., Taipei. Proceedings..., v. 1, Taipei, 2012.
______. O desenvolvimento do raciocínio combinatório na escolarização básica. Em Teia Revista de
Educação Matemática e Tecnológica Iberoamericana, Recife: v. 1, n. 1, 2010.
______. Quem dança com quem: o desenvolvimento do raciocínio combinatório de crianças de 1.
a
a
4.
a
série. ZETETIKÉ, Campinas, v. 17, n.31, jan/jun. 2009.
SANTOS, M.; MATIAS, P.; PESSOA, C. O raciocínio combinatório na educação infantil. Caderno de
Trabalhos de Conclusão do Curso de Pedagogia, Recife: UFPE, 2011.
SILVA, D. B. Analisando a transformação entre gráficos e tabelas por alunos do 3.
o
e 5.
o
ano
do ensino fundamental. 125 f. Dissertação (Mestrado em Educação Matemática e Tecnologia)
Universidade Federal de Pernambuco, Recife, 2012.
Referências
PNAIC_MAT_Caderno 7_pg001-080.indd 78 21/3/2014 10:03:43
79
CADERNO
7
EDUCAÇÃO ESTATÍSTICA
Material para ser utilizado na atividade 3 – KIT de 15 Brinquedos Populares
Bola de Gude Cavalo de Pau Dedoche
Quadrado Mágico Bambolê Pipa
Trapezista Jacaré Boneca de Pano
Reco-reco de bambu Patinho Roi roi
Peteca Baralho Carrinho de lata
Gilda Guimarães
PNAIC_MAT_Caderno 7_pg001-080.indd 79 21/3/2014 10:03:46
80
EDUCAÇÃO ESTATÍSTICA
PNAIC_MAT_Caderno 7_pg001-080.indd 80 21/3/2014 10:03:47
... Guimarães y Oliveira (2014) señalan tres tipos de representaciones en tablas: cuadros, banco de datos y tablas propriamente dichas. Para ellas, un cuadro es una configuración rectangular con líneas y columnas que no expresan variables. ...
Article
Full-text available
El objetivo de este artículo es analizar las orientacionescurriculares deBrasil y Andalucía-España con la finalidad de establecer acercamientos y diferencias cuanto al aprendizaje de muestreo.Observamos que las dos guías presentan una perspectiva de lafunción muestral en el contexto de la investigación con datos reales, perono se proponen habilidades como percibir la relación entre muestra y población, pensar sobre la variabilidad yrelación al tamaño muestral y comprender el margen de error.Por otro lado, el currículoespañol proponelos conceptos de representatividad, sesgo y el uso de un lenguaje más adecuado para la interpretación de los datos y comunicación de la información, lo que no ocurre en la orientación brasileña. The aim of this article is toanalyze the curricular guidelines of Brazil and Andalusia-Spain toestablish approaches and divergences regarding the learning of sampling. We observed that although the guidelines present a perspective of the function of the sample in the context of research with real data, skills such as understanding therelationship between sample and population,thinking about the variability in relation to the sample size and understanding the margin of error are not proposed. On the other hand, the Spanish curriculum proposes the concepts of representativeness, bias and the useof a more adequate language for the interpretation of data and communication of information, which does not occur in the Brazilian orientation.
Article
A educação estatística tem sido apontada em documentos curriculares como um eixo a ser estudado desde os anos iniciais do Ensino Fundamental, demandando a capacidade de leitura e interpretação de informações em tabelas e gráficos. A compreensão de ferramentas da estatística possibilita não apenas a maior inserção social do sujeito em lidar com informações e dados variados, como também à formação científica, pois implica o envolvimento com etapas de pesquisa – levantar questões, produzir instrumentos, coletar dados e interpretar. O objetivo dessa investigação foi analisar os conhecimentos sobre gráficos de colunas, de estudantes de uma turma de 3º ano do ensino fundamental, em uma escola pública de João Pessoa – PB, identificando suas principais dificuldades. A metodologia baseou-se na abordagem qualitativa, constando de uma diagnose composta de quatro tarefas que abrangiam gráficos e problematizações. Os resultados indicaram dificuldades na leitura dos componentes dos gráficos, principalmente quando apresentavam informações implícitas e quando se exigia a resolução de situações-problema com significados de composição e comparação do campo aditivo. Concluímos que o trabalho com gráficos nos anos iniciais precisa contemplar escalas variadas, possibilitar a leitura para ‘além dos dados’, por meio da resolução de problemas, articulando-se com as operações aritméticas.
Article
Full-text available
RESUMEN: En este trabajo reportamos los resultados de analizar las actividades sobre tablas estadísticas en libros de texto de tercer curso de Educación Primaria en Chile. Para ello, mediante un análisis de contenido, hemos estudiado aquellas secciones que presentan o hacen referencia a este objeto matemático, en las unidades de tres libros de texto relacionadas con el bloque temático de estadística y probabilidad. Del análisis, y considerando un total de 91 actividades, vemos el predominio de: la habilidad de interpretar y transformar, el contexto personal, la variable de cualitativa nominal, y la forma de trabajo individual. Estos resultados plantean desafíos para los profesores, sobre todo para trabajar diversas de habilidades, el uso de diferentes contextos e incentivar el trabajo en equipo. ABSTRACT: In this paper, we report the results of analyzing the activities on statistical tables in textbooks of the third grade of Primary Education in Chile. To do this, through content analysis, we have studied the units of three textbooks related to the Statistics and Probability Content Standard and we have analized the sections that show or refer to this
Article
Full-text available
En este trabajo reportamos los resultados de analizar las actividades sobre tablas estadísticas en libros de texto de tercer curso de Educación Primaria en Chile. Para ello, mediante un análisis de contenido, hemos estudiado aquellas secciones que presentan o hacen referencia a este objeto matemático, en las unidades de tres libros de texto relacionadas con el bloque temático de estadística y probabilidad. Del análisis, y considerando un total de 91 actividades, vemos el predominio de: la habilidad de interpretar y transformar, el contexto personal, la variable de cualitativa nominal, y la forma de trabajo individual. Estos resultados plantean desafíos para los profesores, sobre todo para trabajar diversas de habilidades, el uso de diferentes contextos e incentivar el trabajo en equipo.
Conference Paper
Full-text available
Resumo Esse artigo tem como objetivo analisar as modificações ocorridas entre as orientações dos Guias do Programa Nacional do Livro Didático para os anos iniciais do Ensino Fundamental, referente ao eixo Tratamento da Informação, entre os anos de 2004 e 2016. De acordo com Sacristán (1998), os Guias podem ser considerados como currículos prescritos que influenciam o ensino. Foram analisadas todas as proposições apresentadas tanto nas considerações gerais como nos demais subitens da apresentação. Foram observados dois momentos de mudanças. O primeiro entre os GUIAS 2004 e 2007, quando o objetivo deixa de ser apenas sobre alguns tipos de representações gráficas e passa a ser uma reflexão sobre a função da estatística, com dados reais, numa perspectiva de pesquisa. A segunda modificação ocorre no Guia de 2016 o qual coloca a pesquisa como eixo estruturador do ensino de estatística, valorizando importância de se vivenciar a pesquisa e todas suas etapas. Palavras-chave: Currículo; Estatística; Guia do PNLD; anos iniciais. INTRODUÇÃO Partindo do pressuposto que o currículo prescrito influencia diretamente o currículo apresentado, é fundamental analisar a relação entre os Guias do Programa Nacional do Livro Didático – PNLD e os livros didáticos avaliados. Esse artigo faz parte de uma pesquisa maior que tem como objetivo analisar as possíveis influências do Guia do Programa Nacional do Livro Didático – PLND sobre o livro didático de matemática, referente ao ensino de estatística no ciclo de alfabetização. Nesse artigo o objetivo é analisar as modificações ocorridas entre as orientações dos Guias do PNLD para os anos iniciais do Ensino Fundamental para o eixo tratamento da informação dos anos de
BOrBA, r. Como o raciocínio combinatório tem sido apresentado em livros didáticos de séries iniciais
  • F Barreto
  • F Amaral