ArticlePDF Available

Transport Infrastructure and the Environment in the Global South: Sustainable Mobility and Urbanism


Abstract and Figures

Abstrak. Integrasi infrastruktur transportasi dan perkembangan kota harus ditingkatkan kepentingannya. Di banyak kota di belahan bumi bagian selatan, investasi pada Bus Rapid Transit (BRT) memberikan kesempatan untuk peningkatan tersebut. Akan tetapi, sampai saat ini, sistem BRT telah gagal dalam menciptakan pembangunan yang kompak dan multi-guna bukan saja karena kurangnya perencanaan strategis kawasan stasiun tetapi juga dampak dari penempatan jalur-jalur dan stasiun pada wilayah perkotaan yang stagnan dan pada median jalan yang sibuk. Sistem BRT selama ini dipertimbangkan dan dirancang sebagai suatu investasi pergerakan dan bukan pembentuk kota. Disebabkan mayoritas pertumbuhan kota di masa depan di seluruh dunia akan berada pada kota-kota menengah yang cocok untuk investasi BRT, kesempatan untuk membuat sistem BRT sebagai investasi pembentuk kota tidak boleh disia-siakan. Pembangunan yang berorientasi transit adalah salah satu dari sejumlah model yang paling menjanjikan untuk mendorong pola pergerakan dan urbanisasi yang lebih berkelanjutan di kota-kota di belahan bumi selatan.Kata kunci. Transportasi publik, bus rapid transit, tata guna lahan, keberlanjutan, pembangunan berorientasi transitAbstract. The integration of transport infrastructure and urban development must be elevated in importance. In many cities of the Global South, recent Bus Rapid Transit (BRT) investments provide an unprecedented opportunity to do just that. To date, however, BRT systems have failed to leverage compact, mixed-use development due not only to little strategic station-area planning but also factors like siting lines and stations in stagnant urban districts and busy roadway medians. BRT systems are being conceived and designed as mobility investments rather than city-shaping ones. Given that the majority of future urban growth worldwide will be in intermediate-size cities well-suited for BRT investments, the opportunities for making these not only mobility investments but city-shaping investments as well should not be squandered. Transit-oriented development is but one of a number of built forms that hold considerable promise toward placing cities of the Global South on more sustainable mobility and urbanization pathways.Keywords. Public Transport, bus rapid transit, land use, sustainability, transit oriented development
Content may be subject to copyright.
Jurnal Perencanaan Wilayah dan Kota
vol. 25, no. 3, hlm. 174-191, Desember 2014
ISSN 0853-9847 © 2014 SAPPK ITB dan IAP
Transport Infrastructure and the Environment
in the Global South: Sustainable Mobility
and Urbanism
Robert Cervero
[Diterima: 22 Oktober 2013; disetujui dalam bentuk akhir: 4 Juni 2014]
Integrasi infrastruktur transportasi dan perkembangan kota harus ditingkatkan
kepentingannya. Di banyak kota di belahan bumi bagian selatan, investasi pada Bus Rapid
Transit (BRT) memberikan kesempatan untuk peningkatan tersebut. Akan tetapi, sampai saat
ini, sistem BRT telah gagal dalam menciptakan pembangunan yang kompak dan multi-guna
bukan saja karena kurangnya perencanaan strategis kawasan stasiun tetapi juga dampak dari
penempatan jalur-jalur dan stasiun pada wilayah perkotaan yang stagnan dan pada median
jalan yang sibuk. Sistem BRT selama ini dipertimbangkan dan dirancang sebagai suatu
investasi pergerakan dan bukan pembentuk kota. Disebabkan mayoritas pertumbuhan kota di
masa depan di seluruh dunia akan berada pada kota-kota menengah yang cocok untuk investasi
BRT, kesempatan untuk membuat sistem BRT sebagai investasi pembentuk kota tidak boleh
disia-siakan. Pembangunan yang berorientasi transit adalah salah satu dari sejumlah model
yang paling menjanjikan untuk mendorong pola pergerakan dan urbanisasi yang lebih
berkelanjutan di kota-kota di belahan bumi selatan.
Kata kunci. Transportasi publik, bus rapid transit, tata guna lahan, keberlanjutan,
pembangunan berorientasi transit
[Received: October 22, 2013; accepted in final version: June 4, 2014]
Abstract. The integration of transport infrastructure and urban development must be elevated in
importance. In many cities of the Global South, recent Bus Rapid Transit (BRT) investments
provide an unprecedented opportunity to do just that. To date, however, BRT systems have
failed to leverage compact, mixed-use development due not only to little strategic station-area
planning but also factors like siting lines and stations in stagnant urban districts and busy
roadway medians. BRT systems are being conceived and designed as mobility investments
rather than city-shaping ones. Given that the majority of future urban growth worldwide will be
in intermediate-size cities well-suited for BRT investments, the opportunities for making these
not only mobility investments but city-shaping investments as well should not be squandered.
Transit-oriented development is but one of a number of built forms that hold considerable
promise toward placing cities of the Global South on more sustainable mobility and
urbanization pathways
Keywords. Public Transport, bus rapid transit, land use, sustainability, transit oriented
Department of City and Regional Planning, University of California at Berkeley, USA,
Transport Infrastructure and the Environment in the Global South
Urban areas, home to more than half of the world’s population, face unprecedented transport
and mobility challenges.With rapid population and economic growth, demands for urban
mobility are steadily rising. Globally, some 8 billion trips are made every day in cities of which
nearly half (47%) are by private motorized modes, almost all of which are propelled by fossil
fuels (Pourbaix, 2011). In 2050, there may be 3 to 4 times as many passenger-kilometers
travelled as half a century earlier, infrastructure and energy prices permitting (International
Transportation Forum, 2011).
Concurrent to rapid rates of motorization, more sustainable forms of transport like public and
non-motorized transport face mounting challenges, especially in developing countries. Public
transport and non-motorized modes, despite being the chief way many poor people get around,
are fast losing customers to private cars in much of the world (Gakenheimer and Dimitriou,
2011). In 2005, walking and cycling accounted for only 37% and public transport 16% globally
(Pourbaix, 2011). At the same time, informal modes of transport are proliferating to fill the
gaps left by inadequate or non-existent public transport services.
The transportation sector is also inextricably linked to the climate-change challenge since it is
currently responsible for 13% of Greenhouse Gas (GHG) emissions worldwide and 23% of total
energy-related GHG emissions (UN Habitat, 2011). If recent trends hold, the sector’s share of
global GHG emissions could reach 40 % by 2050 (International Energy Agency, 2011). Fueling
this increase is the growing demand for urban mobility. In the hundred-plus years of motor
vehicles relying on gasoline as a fuel, the world has used approximately 1 trillion barrels of
petroleum to move people, materials, and goods (Black, 2010). The transport sector’s share of
global oil demand grew from 33 % in 1971 to 47 % in 2002 and by one account could reach 54
% by 2030 if past trends hold (IFP Energy Nouvelles, 2012). With increasing motorization and
investments in roads and highways, cities find themselves in a vicious cycle reliance on the
private car unleashes more sprawl and road building further increases reliance on the private
It is widely accepted that cities of the future must become more sustainable, and that the
transportation sector has a major role to play in this regard. The idea of a paradigm shift in
urban transport is gaining currency in many parts of the world, not only to de-carbonize its fuel
supply but also to create cleaner, economically viable, and socially just cities of the future. In
particular, a shift towards the design of more compact cities based on the inter-mixing of land
uses that prioritize sustainable forms of mobility such as public transport and non-motorized
movement is broadly advocated. The post-oil city of tomorrow will need to be one that allows
people to easily get around by foot, two-wheelers, buses, and trains. It is also recognized that
urban transportation systems needs to be inclusive, providing mobility opportunities for all. In
a car-dependent city, those without access to a private vehicle often the poor, physically
disabled, youth, elderly, or those forsaking car ownership out of choice are unable to access
opportunities and services. It will also be essential to enhance the pivotal role of transportation
in the shaping the economic future of cities, in recognition that it is the transport sector that
connects workers to jobs, raw materials to plants, produce and goods to markets, and people to
retail shops and places of entertainment and recreation.
This paper discusses key challenges in advancing sustainable urban mobility in the 21
particularly in a developing cities context. Issues facing different modal options discussed,
Robert Cervero
particularly with regard to public transport. Reforms needed to achieve sustainable urban
mobility on multiple fronts environmentally but also socially and economically are also
reviewed. The paper then shifts to a particularly important transport-infrastructure challenge:
investment in BRT systems that not only enhance mobility but also promote more efficient,
sustainable, and socially just urban forms. Experiences in three global cities are reviewed in
this regard. The paper closes with commentary on the institutional challenges and social equity
considerations of advancing the sustainable mobility agenda.
Urbanization and Motorization
Since the mid-half of the last century, rapid urbanization has been accompanied by urban
sprawl. Spread out patterns of growth carry high costs. It not only increase automobile
dependence but also consume farmland and open space, threaten estuaries and natural habitats,
and burden municipal treasuries with the high costs of expanding urban infrastructure and
From 1995 to 2005, 85% of the 78 largest cities in the developed world experienced a faster
growth in their suburban belts than their urban cores (UN Habitat, 2011). In Bangkok and
Jakarta, 53% and 77% of urban growth by 2025, respectively, is expected to be in peri-urban
regions (Angel, 2011). In Greater Cairo and Mexico City, sprawl is fueled mostly by informal
housing settlements while on the outskirts of Mumbai and Delhi new towns and employment
sub-centers have been the largest consumers of once exurban land. Sprawl in China is partly
induced by local government policy wherein municipalities buy agriculture land at low prices,
add infrastructure and services, and then lease to developers at much higher prices effectively
practicing value capture as a revenue generating tool.
Urbanization has both encouraged and been shaped by the growth in motorized movements in
cities. The global count of motorized vehicles has been increasing at unprecedented rates. In
2010, there were nearly 1.2 billion passenger vehicles worldwide (UN Habitat, 2011; Wright
and Fulton, 2005). Based on data from five years earlier, nearly half of all urban trips were by
private motorized modes, a figure that continues to climb (Pourbaix, 2011). A key factor
contributing to rising motorization in both developed and developing countries is the availability
of fairly cheap oil which has literally and figuratively fueled low-density development. In
China, urban growth is occurring as far as 150km to 300km from the core of cities. A recent
study of Shanghai residents who were relocated from the compact, mixed-use, highly walkable
urban core to isolated residential towers on the periphery found dramatic shifts from non-
motorized to motorized modes, accompanied by substantial increases in travel duration and
vehicle-kilometers-traveled (VKT) (Cervero and Day, 2008). Economic growth and rising
incomes have also triggered motorization. From 2002 to 2007, China’s per capita incomes
almost doubled and car ownership nearly tripled. Societal values also play a role given that for
many who join the ranks of the middle class in rapidly emerging economies, owning a car is a
rite of passage.
Rapid motorization unavoidably shifts future travel from the most sustainable modes -- public
transport and non-motorized ones (walking and cycling) to private vehicles. Daily trips in
urban areas by private cars are projected to jump from 3.5 billion in 2005 to 6.2 billion in 2025,
an 80% rise (Pourbaix, 2011). Much of this growth will be in developing countries. If past
trends continue, petroleum consumption and greenhouse gas emissions are projected to increase
by 30%, matched by a similar growth in traffic fatalities. While they provide tremendous
mobility benefits to those who cannot afford a car, motorcycles, which are the dominant mode
Transport Infrastructure and the Environment in the Global South
of transport in many Asian countries, come at a high cost. Besides congesting city streets, they
can be exceedingly loud, contribute to traffic accidents, and when powered by two-stroke
engines, spew dirty tailpipe emissions. A poorly tuned two-stroke engine, for example, can emit
10 times as hydro-carbons and particulate matter as a four-stroke engine or private car (Badami,
1998; World Bank, 2002).
Motorization is also marked by environmental justice concerns given the growing international
trade of old second-hand vehicles from high-income to low-income countries. Over 80% of the
vehicle stock in Peru was originally imported as used vehicles from the United States or Japan
(Davis and Kahn, 2011). In many African countries, import liberalization policies from the
1990’s made it easier and cheaper for households to buy second-hand vehicles shipped across
the Mediterranean Sea from Europe.
Mobility and Modality
Challenges faced by the two most resourceful forms of mobility public transport and non-
motorized transport are reviewed in this section. Being pro-transit, pro-walking, and pro-
cycling means not only enhancing the service quality of these options but also removing the
many built-in subsidies and incentives that promote auto-mobility.
Public Transport
In 2005, 16% of the roughly 7.5 billion trips made in urban areas worldwide were by some form
of public transport (i.e., formal, institutionally recognized services, such as local buses and rail
transit) (Pourbaix, 2011). Public transport’s mobility role varies widely, accounting for 45% of
urban trips in Eastern Europe and Asia, 10% to 20% in much of Western Europe and Latin
America, and less than 5% in North America and Sub-Saharan Africa (where informal services
dominate the mass transit sector) (UITP, 2006).
In cities of the developing world, the mobility role of public transport also varies markedly,
particularly among African cities. Only a handful of Sub-Saharan Africa cities, such as Addis
Ababa, Abidjan, and Ouagadougou, have reasonably well-developed, institutionalized forms of
local bus services that are of a high enough quality to capture 25% to 35% of motorized trips.
In most other parts of Sub-Saharan Africa, private paratransit and informal operators dominate,
with local buses serving but a small fraction of trips, if any. In Sub-Saharan Africa as well as
poorer parts of South and Southeast Asia, government-sponsored transit is either inadequate or
non-existent, mainly because governments are too cash-strapped and under-staffed to mount and
sustain effective and reliable mass transit services.
In Southeast Asia, conventional 50 passenger buses are the workhorse of the public transport
networks of most cities. In Bangkok, 50% of passenger trips are by bus, rising to 75% during
peak hours. In East Asia, buses serve slightly larger shares of mechanized trips than metrorail
in Taipei (14.4% Vs 12.9%) and Shanghai (12.9% Vs 5.7%) whereas metrorail is more
dominant in Hong Kong (35.5% of mechanized trips), Seoul (34.8%), and greater Tokyo (57%).
Buses similarly predominate throughout Latin America, even in rail-served cities like São
Paulo, Santiago, and Buenos Aires. When buses operate on exclusive dedicated lanes, they tend
to gain even more popularity by mimicking mimic the speed advantages of metros however
usually at a fraction of the construction cost. As discussed later, the most extensive Bus Rapid
Transit (BRT) networks are today found in Latin America.
Robert Cervero
In many parts of Asia, Africa, and Latin America, the informal transport sector serves the
mobility needs of most people. The lack of affordable and accessible public transport systems in
developing countries has led to the proliferation of informal operators, such as private microbus
and minibus services. These modes help fill service gaps but can also worsen traffic congestion
and air quality. In some settings, informal carriers are the only forms of mass transport
available. In India, for example, only about 100 of the more than 5,000 cities and towns have
formal public transport. Everything from hand-pushed rickshaws to private minibuses have
stepped in to fill the gap.
Non-Motorized Transport
Walking and bicycling are the healthiest, least intrusive, and most affordable forms of
movement. In 2005, 37% of urban trips worldwide were made by foot or bicycle, the two
predominant forms of non-motorized transport (NMT). In African cities, 30% to 35% of all
trips are by walking but in some cities, like Dakar and Douala, the share is much higher, over
60% (Montgomery and Roberts, 2008). In general, the poorer and smaller the city, the more
important NMT becomes, capturing as many as 90% of total person trips. In densely packed
urban cores, NMT provides access to places that motorized modes cannot reach and are often
the fastest means of getting around. Among South Asia’s densest, most congested cities, more
than half of all passenger and goods trips are by foot, bicycles, and rickshaw.
Walking is often the only form of transport for the very poor. Many people from the developing
world are “captive walkers”, meaning that they cannot afford an alternative. For them, having a
well-connected and safe pedestrian environment is critical to meeting their daily needs. As the
least expensive form of mobility, walking allows the very poor to allocate income for other
purposes, thus helping to reduce poverty. It also promotes physical fitness, provides feeder
access to bus and rail stops, and enhances security by providing “eyes on the street”.
Cycling’s mobility role contrasts sharply among the world cities. In general, the lower the per
capita income, the bigger the mobility role played by bicycles however when high-quality
cycling infrastructure is provided, bicycles can be a prevalent mode in even well-to-do cities.
Today, bicycles are used for more than 40% of trips in some Dutch and Danish cities.
Historically bicycles have also played a prominent mobility role in Chinese cities but today their
use is in rapid decline, partly due to motorization but also government policies. In Beijing, for
example, it is still illegal to park bicycles in front of many modern office buildings yet cars can
be parked nearby. Bicycle lanes have been taken away in cities like Guangzhou and Shenzhen
to make way for motorists. Shanghai and Nanjing officials recently announced the goal of
cutting bicycle trips in half.
In some of the poorest cities of the world, bicycles serve as mass transport”, in the form of
rickshaws. Cycle rickshaws are found all over Bangladesh, India, Pakistan, and Sri Lanka.
They are particularly important modes for women and children. In Dhaka, around 40% of
school trips are by rickshaw (Jain, 2011). Rickshaw pulling is often the first job for many rural
migrants in cities of South Asia. In Dhaka, 20% of the population, or 2.5 million people, rely on
rickshaw pulling for their livelihood, directly or indirectly (Jain, 2011). Still, the vehicles are
being banned for slowing motorized traffic and a belief that they detract from the city’s image as
a modern metropolis.
Transport Infrastructure and the Environment in the Global South
Immobility: Traffic Congestion
Traffic congestion is an unwanted by-product of widespread, or what some might call “excess”,
mobility in cities around the world. A recent study in 20 cities across six continents revealed
that traffic congestion levels markedly worsened during the 2007-2010 period (IBM, 2010).
Moscow motorists reported the worst commute, with an average daily delay of two and a half
hours.With a 24% annual growth rate in registered vehicles, traffic conditions are deteriorating
most rapidly in Beijing according to 95% of surveyed residents.
Congestion has widespread impacts on urban quality of life, consumption of fossil fuels, air
pollution and economic growth and prosperity. World Bank (1994) studies from the 1990’s
estimated that traffic congestion lowered GDP of cities in the range of 3% to 6%, with the
higher value applying mostly to rapidly growing cities (e.g., places with busy port traffic,
reliance on just-in-time inventorying and manufacturing, and other time-sensitive activities).
Time losses from traffic congestion are estimated to comprise 2% of GDP in Europe and 2% to
5% in Asia. The hidden external costs of traffic congestion in Metro Manila, Dakar, and
Abidjan have been pegged at nearly 5% of those cities GDPs (Chin, 2011). Such costs not only
exact a burden on the present generation but also commit future generations to long-term debts,
which can eventually slow global growth.
Limited road capacity in the face of growing demand for motorized mobility partly explains
deteriorating traffic conditions. The nature of the problem, however, varies markedly across the
globe. Less than 10% of land area is devoted to roads in many developing country cities (e.g.,
Calcutta, Jakarta, Nairobi) (Vasconcellos, 1999). This contrasts with 15% to 20% in many
rapidly emerging economies (e.g., Seoul, São Paulo), 20% to 25% in much of continental
Europe (e.g., London, Paris), and 35% or more in America’s largest automobile-oriented cities
(e.g., Houston, Atlanta) (Vasconcellos, 2001). In India, the annual growth rate in traffic during
the 1990’s was around 5% in Mumbai, 7% in Chennai, and 10% in Delhi. However none of
these cities have expanded their road supply by even 1% annually (Pucher et al., 2005).
In the developing world, buses are most vulnerable to the speed-eroding effects of traffic
congestion. Because many are long, lumbering vehicles with slow acceleration and
deceleration, restricted turning radii, and limited maneuverability to switch lanes, buses move
the slowest in highly congested conditions. Average peak-period bus speeds in Bangkok are 11
km/hr, for example, compared to 20 km/hr in Curitiba, Brazil, one of the first cities to provide
exclusive bus-lanes (Cervero, 2000). Stop-and-go traffic causes buses to over-heat and
breakdown. Unreliable services in turn chase away choice consumers who have the option of
driving a car instead.
Toward Sustainable Transport
It is increasingly recognized that sustainability in the urban transportation realm must be
pursued and achieved on multiple fronts environmentally, socially, and economically. This
section addresses these challenges.
Environmental Sustainability
The urban transport sector’s ecological footprint is enormous and expanding. Many
environmental problems in the urban transport sector are rooted in its reliance on petroleum, the
automotive fuel source of choice, to propel motor vehicles, increasingly ones that are privately
Robert Cervero
owned and used. The share of the world’s oil consumption accounted for by transportation rose
from 45.2% in 1973 to 61.7% in 2009, and the sector is expected to continue to drive the growth
in oil demand (IEA, 2011). World reserves of conventional oil exceed what has been used to
date, but with rapid motorization and thus increasing demands for oil, many observe believe it is
unlikely that this energy source will last beyond the mid-century mark. Rising GHG emissions
and global temperatures as well as levels of photochemical smog and particulates in urban air
basins further underscore the urgency of weaning the sector from its dependency on oil and
more generally auto-mobility. A combination of technological advances, demand management,
and externality-based pricing will be critical in charting an environmentally sustainable future in
the urban transport sector. On the technological front, clean-fuel vehicles and information
systems that enable innovations like dynamic ridesharing and carsharing, will have pivotal roles
to play. Reducing the demand for indiscriminant auto-mobility, such as by designing compact,
mixed-use cities that shorten trips and encourage NMT, will also be important. Setting price
signals so that polluters and those driving in rush hours internalize costs are similarly part of the
environmental sustainability equation.
Environmental sustainability will depend on good economics (e.g., congestion pricing) but also
the presence of the other two pillars of sustainability – institutional capacities and social
equality. Setting maximum air and noise pollution standards will be useless unless there is the
political will and regulatory resources in place to enforce them. Nor will the premature
introduction of costly low-carbon fuel alternatives aid the poor if bus fares increase as a
Social Sustainability
Urban transport is socially sustainable when mobility benefits are equally and fairly distributed,
with few if any inequalities in access to transport infrastructure and services based on income,
social, and physical differences (including gender, ethnicity, age, or disabilities). Social
sustainability is rooted in the principle of accessibility wherein equality exists among groups in
accessing opportunities for employment, housing, retail markets, and other essential urban
services. It recognizes mobility and accessibility as human rights, not privileges. Cities that
ensure accessibility for all are socially inclusive and ones that do not are socially exclusive.
One important aspect of accessibility is the affordability of transport modes. By affordability is
meant the financial capacity to pay for the ability to reach destinations for everyday needs, such
as work, education, and shopping, without undue economic hardships. For many urban dwellers
in developing countries, the availability of reliable and affordable bus and rail services can be
the difference between being integrated into the economic and social life of a city or not. The
share of marginalized city-dwellers with poor access to essential facilities and services,
including public transport but also clean water and sanitation, is increasing worldwide. In the
poor informal housing settlements on the outskirts of Mexico City, beyond the service
jurisdiction of the city’s 201km metro, residents sometimes must take 2 to 3 separate collectivos
(shared-ride taxis and microbuses) to reach a metro terminal which provides low-cost
connections to the core city and job opportunities (Cervero, 1998). Travel can consume 25% or
more of daily wages. Time costs can also be exorbitant: 20% of workers in Mexico City spend
more than 3 hours traveling to and from work each day. Studies show that taking a series of
informal minibuses and motorized tricycles to and from work can cost 20% to 25% of daily
wages in rapidly growing cities like Delhi, Buenos Aires, and Manila and as high as 30% in
Nairobi, Pretoria and Dar Es Salaam (Vasconcellos, 2001; Kaltheier, 2002; Ferrarazzo and
Arauz, 2000; Carruthers, et al., 2000).
Transport Infrastructure and the Environment in the Global South
Economic Sustainability
The urban transport sector is economically sustainable when resources are efficiently used and
distributed to maximize the benefits and minimize the external costs of mobility, and
investments in and maintenance of transport infrastructure and assets can be sustained. The
translation of investments in walkways, bikeways, transit ways, and roadways into jobs,
business expansion, and increased economic output means that the urban transport sector is on
an economically sustainable pathway. Increasingly, the litmus test of cost-effective transport
infrastructure is whether the project is “bankable” capable of attracting loans and private
Urban transport infrastructure is expensive. It can consume a large share of the public largesse
in emerging economies. In Ho Chi Minh City, a US$5 billion subway is currently under
construction and in Jakarta a new ring road is expected to cost about the same amount.
Crafting reliable and equitable funding programs for transport infrastructure that reward
efficient and sustainable behavior remains a formidable challenge.
Sustainable Mobility and Urbanism
Coordinating and integrating urban transport and land development is imperative to creating
sustainable urban futures. Successfully linking the two is a signature feature of “smart
growth”. This section probes the challenges of linking transport-infrastructure investments and
urban development in what is an increasingly important mobility platform: Bus Rapid Transit
(BRT). BRT systems have gained popularity worldwide because they are a costeffective
alternative to far more expensive urban rail investments. Highquality busbased systems also
better serve the lowdensity settlement patterns of many suburban markets and smallto-medium
size cities due to the inherent flexibility advantages of rubbertire systems the same vehicle
that provides speedy linehaul services on a dedicated bus lane or busway can morph into a
feeder vehicle, collecting and distributing customers on local streets. To date, more than 150
cities have implemented some form of BRT system worldwide, carrying around estimated 28
million passengers each weekday.
Bus Rapid Transit and Urban Development
New kilometers of BRT lines are today being added at a rapid-fire pace, gaining particular favor
in the developing world, following on the heels of widely publicized BRT successes in Curitiba,
Bogotá, Mexico City, Istanbul, Ahmedabad, and Guangzhou. These developing cities show that
high-performance BRT systems that yield appreciable mobility and environmental benefits can
be built at an affordable price. Metrorail systems, studies show, can cost 10 times as much a
BRT system of similar length (Suzuki et al., 2013). Light Rail Transit (LRT) can be more than
four times as expensive. Besides cost-savings, highly congested mega-cities of the world, like
Jakarta, Delhi, Sao Paulo, and Lagos have been drawn to BRT because high-capacity transit can
be built and expanded quickly during periods of rapid motorization and ever-worsening traffic
congestion. The ability to open segments before an entire system is in place is particularly
attractive to politicians and taxpayers who want quick results. Politicians are also drawn to the
economic development potential of BRT. In its Liveanomics series, the Economist Intelligence
Unit (2011) found that 61% of surveyed mayors reported that “improving public
transport/roads” was the most important thing that could done to make their city more
competitive for business on the global stage. This was nearly twice the share that felt investing
in schooling and education was the key to being economically competitive.
Robert Cervero
BRT will no doubt play an increasingly prominent role in the global campaign to achieve more
sustainable urban and mobility futures. This is partly because the bulk of future population
growth will be in intermediate-size cities, the very places where BRT is often more cost-
effective than its pricier alternative, metrorail transit (UN Habitat, 2011). Future growth of not
only population but also economic outputs is also projected for intermediate-size cities (Glaeser
and Joshi-Ghani, 2012).
Figure 1. Number of Cities with BRT Systems, by National and Regional Settings, 2013.
Figure 2. Average Weekday Riders per BRT Kilometer Among BRT Cities, by Continent-
Region. Numbers in bars denote number of BRT cities in region that are included in the
Figure 1 rank-orders countries or regions based on the number of cities with BRT systems as of
mid-2013. The vast majority of these systems have been built in the last 15 years. Brazil has
emerged as the global leader in building BRT systems, extending the success of Curitiba’s
Transport Infrastructure and the Environment in the Global South
pioneering system to 30 other cities. Other Latin American countries, notably Colombia and
Mexico but also Chile, Peru, and Ecuador, have since followed Brazil’s lead. Latin America is
today the epicenter of the global BRT movement. A third of BRT route kilometers and nearly
two thirds (63%) of ridership are in Latin America (BRTDATA.ORG, 2013). Among 38 Latin
American BRT cities with reliable data from BRTDATA.ORG, average weekday ridership is
more 10 times greater than averages for BRT cities of the U.S. and Europe. Latin American
BRT systems are also considerably more productive than systems elsewhere. Figure 2 shows
that they averaged more than 2 ½ times as many weekday riders per BRT kilometer as Asian
It is widely accepted that for public transit systems to be successful, they must be accompanied
by high densities (Pushkarev and Zupan, 1977; Cervero, 1998; Newman and Kenworthy, 1999).
Mass transit, as the saying goes, needs “mass”. For 105 BRT cities for which reliable data
could be obtained, Figure 3 suggests a moderately positive relationship between BRT ridership
and urban density. The presence of outliers weakens the simple correlation (.225) and as the
scatterplot reveals, the number of riders per BRT kilometer tends to vary more as urban
densities increase. Regardless, the positive association between urban densities and ridership
productivity argues in favor of BRTOD – Bus Rapid Transit-Oriented Development.
Figure 3. Scatterplot of Riders per BRT Kilometer and Population Density Among 105 BRT
The challenges of leveraging TOD with BRT investment is probed in the next three
subsections. The struggles faced by two of the world’s most extensive and highly
regarded BRT cities Bogotá and Ahmedabad are contrasted with what remains the
world’s best-case example of BRT-land-use integration – Curitiba, Brazil.
Robert Cervero
The Challenges of Leveraging TOD in Bogotá
Bogotá, the capital of Colombia and home to 7.6 million inhabitants, has gained a reputation as
one of the world’s most progressive cities, underscored by the 2000 opening of what has been
called the gold standard of BRT, the 110-km TransMilenio system. Delegations of officials and
dignitaries from around the world visit Bogotá to marvel at the system. Operating on a two-lane
dedicated carriageway, TransMilenio carries upwards of 40,000 passengers per hour per
direction, which matches the passenger-throughputs of most metros. The system also boasts
enhanced stations (accessible by networks of skyways), smart card-based fare collection,
advanced control systems, distinctive images, and affordable fares. TransMilenio’s patronage is
growing at a healthy pace of around 10% annually, from 800,000 daily riders when it opened in
2001 to around 1.7 million today, accounting for 74% of public transit trips in the city. Finance
policy has played a role in TransMilenio’s success. In 2000, a 20% surcharge was tacked onto
all gasoline sales in Bogotá, with half the revenues earmarked for TransMilenio infrastructure.
As a cross-subsidy from the 19% of Bogotá’s population that owned cars to transit-dependents,
the policy promoted social as well as environmental sustainability.
While Bogotá’s TransMilenio is a substantial, widely celebrated BRT investment, able to carry
some 45,000 passengers per direction per hour, reshaping urban form and land-use patterns was
not a primary objective in its design. Building the system quickly and enhancing affordable
transport for the poor was. Placement of BRT lines in mostly economically stagnant zones that
were largely built out has suppressed land development. So has the siting of BRT stations in
busy roadway medians, which limits joint development opportunities and creates unattractive
pedestrian environs around stations. Minimal pro-active station-area planning and a dearth of
incentives for private property-owners to redevelop parcels have also tempered TOD activities.
Since TransMilenio’s 2000 opening, Bogotá’s population has grown by 21%. Building
densities have increased throughout the city, but mostly in areas away from TransMilenio
corridors. The initial TransMilenio lines were built quickly in response to worsening traffic
congestion but also to build political momentum and curry political favor for future expansions.
Aligning corridors in mostly economically stagnant zones that were largely built out has
suppressed land development. So has the siting BRT in busy roadway medians, which limited
land supplies for leveraging TOD and resulted in mostly unattractive pedestrian environment
immediate to stations. Minimal pro-active station area planning or incentives for private
property-owners to redevelop parcels also tempered TOD activities.
Cadastral data obtained from the city of Bogotá reveals the degree to which urban growth turned
its back on TransMilineo. Between 2004 and 2010, the mean floor-area ratio (FAR) of
residential and commercial development increased by 7% throughout the city of Bogotá versus
5% within 1000 meters of stations along the initial 42-kilometer system (Suzuki, Cervero, and
Iuchi, 2013). In fact, more densification occurred along surface bus routes that feed into
suburban TransMilineo stations than around BRT stops. Matched pair comparisons of changes
in building footprints between 1998 and 2011 for 1-km radii around BRT stations and otherwise
similar control areas further revealed weak effects on urban growth. For all but end-of-line
stations, more new construction occurred beyond than within 1000 meters of stations. Figure 4
shows one paired comparison for an intermediate station on a Phase II line toward the southwest
of the city, near the low-income neighborhood of Kennedy. Far less new development occurred
within 1000 meters of the BRT station than the control area off the line. For terminal stations,
however, there tended to be relatively more new building activities than in control areas, as
revealed by one of the matched-pair comparisons shown in Figure 5, for the Americas terminal
Transport Infrastructure and the Environment in the Global South
station. Other researchers have similarly found more land-use densification near
TransMilenio’s terminal stations than control areas (Bocharejo, Portilla, and Perez, 2013). This
higher degree of station-area activities was largely due to the commercial opportunities at
terminals, representing busy transfer points between feeder buses and trunkline BRT services.
Figure 4. Footprints of new developments in Station Area and Control Area for an Intermediate
Station, 1998 to 2011.
Source: Suzuki, Cervero, and Iuchi, 2013.
Figure 5. Footprints of new developments in Station Area and Control Area for an End-of-the-
Line Station, 1998 to 2011.
Source: Suzuki, Cervero, and Iuchi, 2013
Findings from Bogotá square with earlier assessments of transit investments and urban
development (Knight and Trygg, 1977; Cervero and Seskin, 1995; Cervero and Landis, 1997),
namely that transit cannot overcome weak local real estate markets. Station siting also matters.
Placing stops in the medians of active roadways inevitably means a poor-quality pedestrian-
access environment and thus little commercial development near the stations themselves.
TransMilenio’s design gave little weight to the pedestrian experience. The visually prominent
skywalks that connect to BRT stops create lengthy, circuitous walks, can be noisy (resonating
like steel drums during peak traffic conditions, by some accounts), and are difficult for the
Robert Cervero
elderly, disabled, and semi-ambulatory individuals to negotiate. Bogotá’s experiences further
show that planning matters. Neither the city nor neighborhood districts (where detailed land use
planning is regulated and implemented) prepared station-area plans to orchestrate private
development, change zoning (including increasing permissible densities), introduce
complementary improvements (like streetscape enhancements) to entice private investments, or
take any other pro-active steps to leverage new development.
The one area for which local leaders win kudos has been the bundling of transit investments and
the provision of affordable social housing for the poor. In 1999, at the time Bogotá’s successful
Transmilenio BRT system was being built, an innovative land-banking/poverty-alleviation
program, called Metrovivienda, was launched (Cervero, 2005). Under Metrovivienda,
transportation and housing are treated as bundled goods. The city acquires plots when they are
in open agricultural uses at relatively cheap prices and proceeds to plat and title the land and
provide public utilities, roads and open space. Property is sold to developers at higher prices to
help cover infrastructure costs with the proviso that average prices be kept under US$8,500 per
unit and are affordable to families with incomes of US$200 per month.
To date, four Metrovivienda sites have been created near one of Transmilenio’s terminuses,
each between 100 and 120 hectares in size and housing some 8,000 families. At build out, the
program aims to construct 440,000 new housing units. Putting housing near stations helps the
city’s poor by “killing two birds with one stone” i.e., providing improved housing and public
transport services. Those moving from peripheral illegal settlements into transit-served
Metrovivienda projects enjoy both “sites and serviced” housing and material improvements in
access to major economic centers in the city. It is estimated that job-accessibility levels via
transit within one-hour travel times increased by a factor of three for those moving from illegal
housing to legal Metrovivienda projects (Cervero, 2005).
An important aspect of the program is the acquisition of land well in advance of BRT
services. Because Metrovivienda officials serve on the Board of Transmilenio, they are aware
of strategic plans and timelines for extending BRT. This has enabled the organization to
acquire land before prices are inflated by the arrival of Transmilenio. Acquiring land in
advance has enabled Metrovivienda to keep prices affordable for households relocated from
peripheral “clandestine” housing projects. Transmilenio also makes commuting more
affordable. When living in the hillsides, most residents used two different public transit services
(a feeder and a mainline), paying on average US$1.40 a day to leave and return home (Cervero,
2005). With Transmilenio, feeder buses are free, resulting in an average of US$0.80 in daily
travel costs.
Metrovivienda serves as a model of multi-sectoral and accessibility-based planning in a
developing country. By coupling affordable housing with affordable transport, Bogotá leaders
have improved access to jobs, shops, and services while reducing the joint costs of what often
consumes two-thirds of the poor’s income: housing and transport. Whether Metrovivienda
makes a serious dent in the city’s housing shortages and traffic woes remains to be seen,
however most observers agree that it is a significant and positive step forward.
The Challenges of Leverage TOD in Ahmedabad
In the 2009, Ahmedabad opened India’s first and what today remains the country’s largest BRT
network. Called Janmarg (People’s Way), the current 45 km system was built to relieve
mounting traffic congestion in India’s fifth largest city. With some 5.5 million inhabitants,
Transport Infrastructure and the Environment in the Global South
Ahmedabad is today one of the world’s fastest growing cities (Forbes, 2010). The ingredients
are thus there for BRT to shape future urban growth: rapid growth and motorization coupled
with worsening traffic congestion. To date, however, few notable changes have occurred near
Janmarg stations.
As in Bogotá, Janmarg was envisaged and design as a mobility investment, not a city-shaping
one. Janmarg lines were and are being selected to serve the city’s fastest growing areas, more
so than in the case of Bogotá, however little attention has been given to the physical integration
of BRT stops with surrounding neighborhoods or increasing the share of future populations and
workers near BRT. Janmarg, slated to span some 220 kilometers at build-out, which would
make it one of the most extensive BRT systems anywhere, was designed mainly to keep costs
low. Little thought was given to urban development possibilities. So far, no land-use or TOD
plans have been prepared for any Janmarg stations. What land development is occurring has
been left solely to private market forces.
So far, Ahmedabad officials have opted to maintain uniform densities throughout the city,
regardless of how close parcels might be to transit corridors. This has been done to disperse
trips and thus decongest the city. It has also been done for socio-cultural reasons, namely to
avoid creating a privileged class of land owners whose new-found wealth is create through
government fiat. However keeping densities uniform also shifts growth to the periphery, in a
more auto-oriented configuration. In the near term, the city may experience less traffic
congestion due to density caps however over the long term, the resulting auto-oriented urban
form could backfire, creating more traffic congestion and air pollution for the region as a whole.
Several design shortcomings also need to be overcome if Ahmedabad is to spawn TOD.
Janmarg was and is being designed as a closed system, requiring users to access stations sited in
the medians of roadways by foot, bicycle, car, two-wheeler, three-wheelers, or surface-street
buses. Little attention, however, has been given to perpendicular connectors to BRT stops. No
secondary feeder systems provide safe and efficient pedestrian, bikeway, and transit connections
to mainline services. While a substantial network of cycletracks was built in conjunction
Janmarg, for the most part bike-paths run parallel rather than perpendicular to the busway, thus
functioning more as competitive than complementary systems. Moreover, there is no bicycle
parking at stations. What few pedestrian-ways exist near Janmarg stops are often occupied by
motorcycles and fast-moving three-wheel vehicles.
BRT and Urbanism in Curitiba
A counterpoint to failures in coordinating BRT and urban development is the well-chronicled
experiences of Curitiba, Brazil. Guided by a cogent long-term vision of the future city, the
municipal government mandated that all medium- and large-scale urban development be sited
along a BRT corridor. Orchestrating regional growth has been the Institute for Research and
Urban Planning (IPPUC), an independent entity charged with ensuring integration of all
elements of urban growth.
A design element used to enhance transit accessibility in Curitiba is the trinarythree parallel
roadways with compatible land uses and building heights that taper with distance from the BRT
corridor. The first two floors of the busway, which do not count against permissible plot ratios
(building height/land area), are slated for retail uses. Above the second floor, buildings must be
set back at least five meters from the property line, to allow sun to cast on the transitway. The
inclusion of upper-level housing entitles property owners to density bonuses, which has led to
Robert Cervero
vertical mixing of uses within buildings. An important benefit of mixed land uses and transit
service levels along these corridors, in addition to extraordinarily high ridership rates, has been
balanced bidirectional flows, ensuring efficient use of bus capacity. The higher densities
produced by the trinary design have translated directly into higher ridership. Concentrated
commercial development has also channeled trips from residences beyond BRT terminuses to
the trinary corridors. In 2009, for example, 78.4% of trips boarding at the terminus of Curitiba’s
north-south trinary corridor were destined to a bus stop on the same corridor (Duarte and
Ultramari 2012). Today, Curitiba’s share of motorized trips by transit (45%) is the highest in
Latin America (Santos, 2011). High transit use has appreciably shrunk the city’s environmental
footprint. Curitiba’s annual congestion cost per capita of $0.67 (in US$2008) is a fraction of
São Paulo’s (Suzuki et al., 2010). The city also boasts the cleanest air of any Brazilian city with
more than 1 million inhabitants, despite having a sizable industrial sector. The strong, workable
nexus that exists between Curitiba’s bus-based transit system and its mixed-use linear settlement
pattern deserves most of the credit.
Sustained political commitment has been pivotal to Curitiba’s success. The harmonization of
transit and land use took place over 40 years of political continuity, marked by a progression of
forward-looking, like-minded mayors who built on the work of their predecessors. A well-
articulated long-term vision and the presence of a politically insulated regional planning
organization, the IPUCC, to implement the vision have been crucial in allowing the city to chart
a sustainable urban pathway.
One area where Curitiba’s BRT investment has fallen short is the provision of housing for the
poor. Most social housing built in the last 40 years for Curitiba’s poor has been far from main
transit axes and transport corridors (Duarte and Ultramari, 2012). The availability of cheaper
land and laxer environmental regulations on floodplain development prompted Curitiba’s
authorities to put the most disadvantaged households in the least transit-accessible locations.
The best ideas for advancing sustainable urbanism and mobility will go nowhere unless there is
the political will and institutional capacity to embrace and move forward with them. The ability
to manage and respond to escalating demands for urban travel is often limited in developing
cities. Institutional shortcomings such as an insufficiently trained and educated civil-service
talent pool or absence of a transparent and corruption-free procurement process for providing
transport infrastructure abound. Limited experience with urban management, budgeting and
accounting, urban planning, finance, and project supervision have thwarted Indonesia’s
decentralization of infrastructure programs from the central to local governments over the past
Sustainable mobility futures will depend upon a re-ordering of priorities, a paradigm shift if you
will, that promotes inherently resourceful forms of mobility, frames investments in more holistic
(and less mobility-focused) terms, and importantly seizes opportunities to integrate transport
infrastructure and urban development when and where they avail themselves. As more and
more growth shifts to cities of the Global South, opportunities for linking land development and
transport infrastructure should not be squandered. Given that a large share of future urban
growth is projected for small-to-medium size cities, bus-based forms of smaller scale transit-
oriented development interlaced by high-quality infrastructure for pedestrians and cyclists holds
promise in many global settings. Many developing cities have the kinds of pre-requisites needed
if BRT investments are to trigger meaningful land-use changes, including rapid growth, rising
Transport Infrastructure and the Environment in the Global South
real incomes, and increased motorization and congestion levels. This, of course, assumes there
is supportive planning and zoning, public-sector leveraging and risk-sharing, a commitment to
travel demand management to remove many built-in incentives to car use, and the capacity to
manage the land-use shifts that are put into motion by transportation infrastructure investments.
While integrated transport and land development can relieve congestion, cleanse the air, and
conserve energy, its potential to reduce what remains the gravest problem facing the Global
South extreme and persistent poverty is every bit if not more important. All that is done in
the developing world must pass the litmus test of helping to alleviate poverty. Designing cities
and transport systems to enhance accessibility and affordability is pro-poor. So are initiatives
that strengthen non-motorized and public transport, keep fares affordable, and protect
vulnerable populations from the hazards of motorized travel. Mass transit needs to be pro-poor
across the board. In many developing countries, this means investing in bus way over metros to
keep fares affordable and targeting affordable housing to transit-served corridors. In Brazil,
transit is kept affordable via national legislation, called Vale Transport that requires employers
to provide bus passes for commuting expenses that exceed 6% of workers’ earnings. In Cairo
and Bogotá, tens of thousands of low-income households have been relocated to more transit-
accessible sites.
Being pro-poor also means designing high-quality and safe walking and cycling environments.
Mixed land-use patterns and walking/cycling friendly environments allow the very poor to
allocate income for other urgent purposes and thus helps reduce poverty. In the very poorest
cities, small interventions e.g. sitting basic services such as schools, health centres, markets,
and water standpipes to reduce travel distances can make a big difference in the amount of time
and energy devoted to transport. The time freed up allows women to achieve gainful
employment and children to attend schools. What are cardinal features of integrated and
sustainable transport and urbanism everywhere accessible urban activities and safe, attractive
walking and cycling environs are particularly vital to the welfare of the neediest members of
the world’s poorest countries.
Angel, S. (2011) Making room for a planet of cities. Cambridge, Massachusetts: Lincoln
Institute of Land Policy.
Badami, M. (1998) Improving air quality in Delhi. Habitat Debate 4(2), 22-23.
Black, W. (2010) Sustainable transportation: problems and solutions. New York: Guilford
Bocharejo, J., Portilla, I., and Perez. M. (2013) Impacts of TransMilenio on density, land use,
and land value in Bogota. Research in Transportation Economics, 40(1), 78-86.
Carruthers, R., Dick, M. and Saurkar, A. (2005) Affordability of public transport in developing
countries. Washington, DC: World Bank, World Bank Transport Paper, TP-3.
Cervero, R. (1998) The Transit Metropolis: a Global Inquiry. Washington, DC: Island Press.
Cervero, R. (2000) Informal Transport in the Developing World. Nairobi: UN Habitat .
Cervero, R. (2005) Progressive transport and the poor: Bogotá's bold steps forward. Access 27,
Cervero, R. and Landis, J. (1997) Twenty years of BART: land use and development impacts.
Transportation Research A 31(4), 309-333.
Cervero, R. and Seskin, S. (1995) An evaluation of the relationship between transit and urban
form. Washington: Transit Cooperative Research Program, National Research Council,
Research Results Digest 7.
Robert Cervero
Cervero, R. and Day, J. (2008) Suburbanization and transit-oriented development in China,
Transport Policy 15, 315-323.
Chin, H.C. (2011) Sustainable urban mobility in South-Eastern Asia and the Pacific. Nairobi:
UN Habitat.
Davis, L. and Kahn, M. (2011) Cash for clunkers? The environmental impact of Mexico’s
demand for used vehicles. Access 38, 15-21.
Duarte, F. and Ultramari, C. (2012) Making public transport and housing match:
accomplishments and failures of Curitiba's BRT. Journal of Urban Planning and
Development 138(2), 183-194.
Economist Intelligence Unit. (2011) Lievanomics: urban liveability and economic growth.
London: The Economist.
Ferrarazzo, A. and Arauz, M. (2000) Pobreza y transporte, consultación con grupos de foco en
Buenos Aires, Informe Final. Washington, DC: World Bank, WB UTS Review, Santiago
Forbes. (2010). In pictures: the next decade’s fastest-growing cities. Forbes, October 7.
Available from
joel-kotkin_slide4.html. Accessed 07 October 2010.
Gakenheimer, R. and Dimitriou, H. (2011) Urban Transport in the Developing World: A
Handbook of Policy and Practice. Cheltenham UK: Edward Elgar.
Glaeser, E. and Joshi-Ghani, A. (2012) Overview, Rethinking cities. Washington: World Bank.
IBM (International Business Machines) Corporation, (2010) The globalization of traffic
congestion: IBM 2010 commuter pain survey. Armonk, New York: IBM Corporation.
IEA (International Energy Agency), (2011) Key world energy statistics. Brussels. Available at Accessed 9
Ovtober 2010
IFG Energies Nouvelles. (2012) IFG Energies Nouvelles activity report 2012. Lyon: IFG
Energies Nouvelles.
International Transport Forum. (2011) Transport outlook: meeting the needs of 9 billion people.
Paris: Organization for Economic Development/International Transport Forum.
Jain, A.K. (2011) Sustainable urban mobility in Southern Asia. Nairobi: UN Habitat.
Kaltheier, R. (2002) Urban transport and poverty in developing countries: analysis and options
for transport policy and planning. Eschborn, Germany: Deutsche Gesellschaft für Technische
Zusammenarbeit (GTZ) GmbH.
Knight, R. and L. Trygg. (1977) Evidence of land use impacts of rapid transit systems,
Transportation 6(3), 231-247.
Montgomery, B. and P. Roberts. (2008) Walk urban: demand, constraints and measurement of
the urban pedestrian environment. Washington: World Bank.
Newman, P. and J. Kenworthy. 1999. Sustainability and cities: overcoming automobile
dependence. Washington: Island Press.
Pourbaix, J. (2011) Towards a smart future for cities: urban transport scenarios for 2025. Public
Transport International 60(3), 8-10.
Pucher, J., Korattyswaropam, N., Mittal, N. and Ittyerah, N. (2005) Urban transport crisis in
India. Transport Policy 12, 185-198.
Pushkarev, B. and Zupan, J. (1977) Public transportation and land use policy. Bloomington:
Indiana University Press.
Santos, E. (2011). Pioneer in BRT and urban planning. Saarbrücken, Germany: Lambert
Academic Press.
Suzuki, H., Cervero, R. and Iuchi, K. (2013) Transforming cities with transit: transit and land-
use integration for sustainable urban development. Washington, DC: World Bank.
Transport Infrastructure and the Environment in the Global South
UITP (International Association of Public Transport), (2006) Mobility in cities database, CD
Rom. Brussels: UITP.
UN Habitat. (2011) Global report on human settlements 2011: cities and climate change.
Nairobi: UN Habitat.
UN Habitat. (2012) Database on urban densities among global cities. Nairobi: UN Habitat.
Vasconcellos, E. (1999) ‘Urban transportation and traffic policies: The challenge of coexistence
in developing countries’, Transportation Quarterly 54(1), 91-101
Vasconcellos, E. (2001) Urban transport, environment and equity: The case for developing
countries. London: Earthscan.
World Bank. (1994) World Development Report. Washington, DC: World Bank.
World Bank. (2002) Cities on the move: a World Bank transport strategy review. Washington,
DC: World Bank.
Wright, L. and Fulton, l. (2005) Climate change mitigation and transport in developing nations,
Transport Reviews 25(6), 691-717.
... Of much importance to this research is the variables for assessing road transit terminals. Cervero [7] assessed transport terminals by considering accessibility and affordability, the efficiency of resources and their wastage, the use of renewables and recyclables. Further, research works by Cruz et al. [11] indicated that evaluating the conditions of terminals should consider planning and policy, design and construction, operations and maintenance of terminal facilities. ...
... Ellis [13] and Litman [23] further assessed transport terminals with variables such as accessibility, land mixuse facility cost, safety, affordability, inclusive planning, pollution, depletion of non-renewable resources for fuel, landscape degradation and the construction techniques of facilities. These variables discussed by several scholars e.g., [7,11,13,23,24] influenced the choice of variables used for assessing the condition of transport terminals in this study. Thus, taking Cape Coast, the capital of the Central Region of Ghana, as a case, this study examines user (drivers and passengers) satisfaction levels on the conditions of road transit terminals, as an input to informing policy and design interventions toward maximizing the benefits of providing them. ...
... The questionnaire survey technique was designed based on a five point Likert scale, using variables reviewed from literature. Specifically, data from the research participants (passengers and drivers) were gathered on several variables specifically, accessibility [7,13,23], way finding and signage provisions, safety and security provision [13,24], cleanliness (adapted by authors based on findings reported by [3] from Cairo) and comfort at terminals [30,47], relaxation area for drivers (adapted by authors based on research from [43] and the affordability [7,13] and quality of service [23]. ...
Full-text available
Transportation is fundamental to the current globalized economy as it facilitates the exchange of goods and services between people and places. It is widely accepted that road transport facilitates increases in urban productivity and connectivity and its improvement leads to economic development. Though, the road transportation sector in Ghana continues to expand due to rapid urbanization, there very little corresponding investment to upgrade its related infrastructure, specifically, road transit terminals. This study assessed the general conditions of road transit terminals in Ghana from the perspective of users, in terms of accessibility, way finding and signage provisions, safety and security provision, cleanliness and comfort at terminals, as well as relaxation area for drivers, affordability and quality of service. The aim of this is to guide future interventions in upgrading the existing systems to respond to the evolving transport needs of people. The findings, based on interviews with 150 passengers and 20 drivers selected from 8 road transit terminals in the Cape Coast Metropolis, Ghana, show that terminals in the study area were in poor conditions, rendering it environmentally unfriendly, incapable and unsafe to meet service demands. Users of the terminals in the metropolis generally indicated that they were dissatisfied with the current provisions. The study concludes that there is the urgent need to create or design terminals which are safer, convenient, comfortable and environment-friendly and meets the needs of users.
... Transit-Oriented Development (TOD) has been proposed by several authors as an effective alternative for the promotion of urban sustainability (Calthorpe, 1994;Cervero, 1998;Cervero & Sullivan, 2011;Qviström & Bengtsson, 2015;Loo & du Verle, 2017). The integration between transport and land use policies is seen as key ingredient for promoting accessibility, active mobility and public transport (Banister, 2011, Cervero, 2014. ...
... Some of the main benefits of TOD discussed in the literature would be the promotion communities less dependent on motor vehicles, achieved through a combination of mixed communities and proximity between people, activities and transport services (Bernick; Cervero, 1997;Dittmar & Poticha, 2004, Carlton, 2009). Provision of public transport, walkable infrastructure and proximity between residential and commercial use are factors that can lead to reduced car use and higher levels of transit accessibility to opportunities (Boschmann & Brady 2013;Taki et al., 2017;Cervero;Dai, 2014;Perk & Catalá, 2009). Because of these benefits, several studies argue that TOD strategies can foster more inclusive cities and equitable transit systems with lower car dependency and greater access to opportunities for all communities (Calthorpe, 1994;Chava et al., 2018;Jamme et al, 2019;Appleyard et al., 2019;Lyu et al., 2020). ...
... Curitiba's implementation of this system led to its recognition as the birthplace of the BRT (Lindau et al., 2010), and culminated in the current full BRT 1 system (Duarte & Rojas, 2012). In practice, Curitiba was planned around TOD model based on BRT as transport technology (Cervero,1998;Cervero, 2014;Suzuki et al., 2013;Hidalgo et al., 2019). ...
Full-text available
In this paper we analyze how socio-spatial inequalities have been shaped by transport and land-use planning in Curitiba (Brazil), a city internationally recognized for its Transit Oriented Development (TOD) planning based on Bus Rapid Transit (BRT). We examine how the spatial organization of the BRT system is associated with the distribution of population densities, socioeconomic groups, and real-estate values and its implications in terms of inequalities of access to employment and health services. The results show that Curitiba's TOD has had limited influence on population densities, but has shaped the concentration of high-income classes and premium real-estate along its main BRT corridors. These effects contribute to the peripheralization of low-income communities with limited accessibility benefits from the transit system. Our findings suggest that Curitiba’s success story should be seen as a cautionary tale about the consequences of TOD planning, which perpetuate the spatial concentration of resources and reinforce inequalities of access to opportunities.
... However, while fare integration without implementing widespread institutional, operational, and infrastructural reforms is possible, positive results in terms of affordability have typically followed physical integration of services that work to bridge the large spatial gaps created by decades of socio-spatial segregation in cities in the region. Affordability benefits in these cases are related to reducing the excessive costs associated with the transfers between independent, localized, and often informal services to mass transit or other forms of higher-capacity or longer-distance public transit services (Cervero 2014;Rodriguez et al. 2017). ...
... However, while there can be fare integration without necessarily implementing widespread institutional, operational, and infrastructural reforms, as in some cases of informal transport in Africa (Narayanaswami 2017;Schalekamp and Behrens 2010), positive results in terms of affordability in Latin America and the Caribbean have almost invariably followed physical integration of services that helps bridge the large spatial gaps created by decades of socio-spatial segregation in cities in the region, as discussed earlier. Affordability benefits in these cases are related to reducing the excessive costs associated with the transfers between independent localized (and often informal) services to mass transit or other forms of higher-capacity or longer-distance public transit services (Cervero 2014;Rodriguez et al. 2017). ...
Full-text available
Uneven distribution of employment opportunities and services, the imbalances in access to housing and job opportunities for the entire population, and the difficulties of providing access to urban services for all urban dwellers may also increase socio spatial inequalities. Chapter 3 describes emerging issues related to the tradeoff between affordable housing location and transport and the need of promoting integrated planning as essential for economic development in Latin American cities and a source of opportunities for low-income populations. Many of the urban transport projects in Latin American cities have prioritized the development of mass transit corridors, which generate better access conditions for hundreds of thousands of low-income citizens. However, in some cases these projects can have an unintended impact of decreased affordability of housing options located near the new system, making access to opportunities more difficult to the city’s poorest. The degree of displacement or gentrification associated with the introduction of mass transit corridors remains unknown given the lack of research on this topic, as indicated by the related gap in the literature. Studies in which the socioeconomic and socio-spatial distribution changes occurring due to the implementation of mass transit projects are urgently needed. Additionally, land value increments generated on property values are not often captured by the public sector to leverage the financing of mass transit projects or their expansion. The experience in the region suggests that coordination between transport and land use planning is difficult due to a mismatch and variation in the implementation and development timelines of each, low technical capacity, and a lack of funding for TOD projects. TOD projects provide the opportunity to strength the coordination between the transportation, land use planning and housing sectors. It is important that each city defines a TOD policy, with pilot projects based on the previous research into the dynamics of real estate as well as the land and housing markets, within a long term planning process that includes citizen participation. TOD pilot projects can certainly improve the integration of transportation planning and land use planning. TOD projects in the region should be employed as a strategy to promote value capture mechanisms, including cross housing subsidies in which the promotion of affordable housing near transit systems becomes a reality Affordable housing initiatives require to become more diverse and innovative in order to increase the quality of these projects through a portfolio of options linked to mass transit and other infrastructure investments that increase the accessibility for their residents. As in the case of transportation infrastructure projects, it is important that those projects include accessibility indicators to evaluate the effects of these investments on the poor. The recent experience with the implementation of Cable Cars that include slum upgrading measures, and the generation of new affordable housing units with infill development measures, constitute an innovation in the region.
... Developing countries, who are currently embracing economic rising and foreign investments, tend to have more road and highway construction, which leads to more dependencies on private motorized vehicles [1]. However, Transit-Oriented Development (TOD) concept is nowadays widely accepted in the development urbanized area; it efficiently integrates the land use planning and transportation systems [2] with its eight aspects; Connect, Compact, Transit, Densify, Shift, Mix, Cycle, and Walk [3]. ...
... However, Transit-Oriented Development (TOD) concept is nowadays widely accepted in the development urbanized area; it efficiently integrates the land use planning and transportation systems [2] with its eight aspects; Connect, Compact, Transit, Densify, Shift, Mix, Cycle, and Walk [3]. It also supports the notion of accessibility and inclusivity in the city, pro-poor positively ensure the security of its citizen to walk and cycle, reliable public transport, less traffic, and affordable moving for all [1]. ...
Conference Paper
Full-text available
Kota Tua is one of the most popular Transit-Oriented Development heritage areas in Jakarta. Kali Besar Corridor, as part of Kota Tua, was revitalized to improve the visitors' experiences. Due to its proximity to other historical sites, Jakarta Kota station, and availability of Transjakarta bus stops, tourist and visitors expect easy access. However, some buildings are unoccupied and slowly deteriorated, despite the possibility to enhance its functionality. Accordingly, this paper examines to what extent Kali Besar Revitalisation Project meets the visitors' and tourists' cumulative satisfaction regarding connectivity and accessibility aspects, for possibility in future intensification in this area. It takes mixed methods between qualitative and quantitative methods, including direct observation and online surveys. The results suggest that 57 percent of visitors were commuting by public transport, and 66 percent pleased by the accessibility of public transport. Despite this moderate satisfaction rate of passengers in public transport services for accessibility and interconnection between public transport hub with pedestrian ways and tourist spots along the Kali Besar corridor, the simple cross-tabulation analysis concluded that respondents' satisfaction has less impact in their future visit on loyalty. In conclusion, the connectivity and accessibility factors along the Kali Besar Corridor and its nearby area are supporting the idea of TOD and opening the potential sustainable urban development in the future, especially in the tourism heritage area. However, some improvements need to be done to ensure the basic aspects of pedestrian ways, such as safety, security, and comfort level of visitors are well-achieved.
... En el ámbito de los sistemas de transporte existe una larga tradición de reflexiones académicas sobre sostenibilidad con un sesgo hacia las dimensiones económicas (Hook, 2011) y medioambientales (Replogle, 2011), pero el ámbito de la movilidad urbana ya muestra un trabajo de conceptualización más homogéneo respecto a la sostenibilidad social. Dos son los textos que se proponen para establecer una línea base como articuladores de un concepto de ssmu, el primero es Management of Traffic and the Urban Environment (Flora, 2001) y el segundo Transport infrastructure and the environment in the Global South: sustainable mobility and urbanism (Cervero, 2014). Según Cervero la ssmu puede evidenciarse en al menos dos aspectos. ...
Full-text available
El proceso descrito en este texto tiene como objetivo mejorar el análisis y planificación de la movilidad urbana, tal que, expongan el nivel de inclusión y equidad de una porción de ciudad, identificando falencias en el acceso a equipamientos urbanos debido a la organización de los sistemas de usos de suelo y transporte. Para ello se utiliza el enfoque de análisis de la Soste­nibilidad Social en la Movilidad Urbana (ssmu) y sistemas de información geográfica open source. La metodología establece dos análisis a escalas distintas de los niveles de servicio de equipamientos públicos. El primero a escala del Área Metropolitana de San Salvador (amss) utilizando teoría de lugares centrales, el segundo analiza las condiciones de accesibilidad a escala municipal de San Salvador (capital de El Salvador) a partir de modelos de localización óptima que permiten generar indicadores de eficiencia y equidad espacial. Los resultados obtenidos son la operativización del enfoque de ssmu, la aplicación de técnicas de análisis multiescalar estableciendo una estructura metropolitana que categoriza a los municipios en función de los niveles de servicio que los equipamientos urbanos prestan a sus ciudadanos, la caracterización de la situación de accesibilidad a nivel municipal para San Salvador con indicadores proxy para grupos vulnerables y la definición de áreas prioritarias para intervenir e impactar en la movilidad cotidiana. Finalmente se abre una discusión que identifica los pasos siguientes en la mejora de esta investigación para fortalecer futuros ejercicios de planificación en el contexto de escases de recursos y acceso a datos base típicos del sur global.
... Figure 1 shows the distribution of different regulations across Europe. For simplicity, these regulations are classified into three categories, which include low emission zones, urban road tolls (road pricing) and other access restrictions [16], [17]. The performance of these regulations are simply assessed by comparing their impact on traffic flow and composition before and after implementation but with reduction of environmental impact of transport being key to the success, air quality within and outside the regulation coverage area is also monitored and compared with minimum standards of ambient air quality issued by the European Commission in Directive 2008/50/EC [18] and as shown in Table 1. ...
Conference Paper
Full-text available
Rapid urbanization, the quest for mobility and prompt delivery of freight has led to a continual increase in travel demand on public transit, number of private vehicles and heavy-duty vehicles on urban roads respectively. This comes along with undesirable effects on the environment which include greenhouse gas emission, air pollution and noise annoyance. Different policy instruments, methods and strategies have been adopted across Europe to control access of transportation in urban areas and thus put the environmental effects in check. This paper offers a state-of-the-art review of the different approaches employed in access control of urban transport. It undertakes a structured overview of the approaches by describing the methods in practice, investigating the gains, uncovering the challenges and suggesting directions for the future.
... Like many others in the developing world, urban practitioners and researchers in Bangladesh are increasingly emphasizing bicycling as a regular commute mode among city dwellers (Chiran, 2019;Tasnim, 2020a;Zaman, 2019). Although the use of non-motorized modes in the developing world is prevalent, a rise in the use of motorized vehicles in those countries has been recently noticed (Cervero, 2014;Li, 2011). This increase has resulted in negative externalities such as severe traffic congestion, higher collision rates, air pollution, and deteriorated population health and well-being worldwide (Faiz, 1993;Nantulya and Reich, 2002;Wang et al., 2019). ...
Full-text available
In recent years, Bangladesh has started moving its transportation vision towards achieving sustainability goals such as increasing bicycle infrastructure, sidewalks, reducing air pollution, etc. To contribute to the ongoing discussion, we explored factors that influence the use of bicycles for different trip purposes in Rajshahi, a medium-sized city in Bangladesh. A face-to-face household survey was conducted to collect individuals’ socio-demographic characteristics, their travel patterns for different trip purposes, and perceptions of the built environment. We developed four Integrated Choice and Latent Variable (ICLV) models to understand the influence of latent perceptions on bicycling for commuting and non-commuting (i.e., grocery shopping, going for tea, and recreational) trips. The analysis indicates that women are more likely to choose a bike for commuting trips but are less likely to use bikes for recreational trips. The results also show that the choice of commuting by bicycle is positively associated with commuting distance and negatively associated with residential land use. Walkability perception has a significant positive association with the choice of bikes for commuting and non-commuting trips. Road safety perception for active travel is positively associated with bike choice for recreational trips, and crime perception of the neighborhood is negatively associated with bike choice for grocery trips. The results from this study will be helpful for policymakers to understand and improve the built environment to attract individuals towards bike use.
Full-text available
Pembangunan metropolitan di Kota Semarang menjadi pemicu tingginya fenomena urbanisasi dan urban sprawl di kawasan pinggiran, diantaranya Kabupaten Semarang. Hal itu berdampak pada permasalahan sistem transportasi yang berperan penting dalam pertumbuhan kota. Dibutuhkan pergeseran strategi yang lebih inovatif dengan penerapan konsep Transit Oriented Development (TOD). Beroperasinya Bus Rapid Trans (BRT) Trans Jateng koridor I Semarang Tawang-Terminal Bawen dapat menjadi embrio bagi Provinsi Jawa Tengah dalam menerapkan konsep TOD. Halte BRT sebagai titik transit berpotensi dikembangkan berdasarkan konsep TOD sebagai upaya penataan sistem transportasi yang terintegrasi dengan kawasan disekitarnya. Terdapat 29 halte di Kabupaten Semarang di sepanjang jalan arteri Ungaran-Bawen yang menjadi objek penelitian. Tujuan penelitian ini adalah menenetukan tipologi halte BRT Trans Jateng Koridor I di Kabupaten Semarang berdasarkan konsep TOD. Penelitian ini menggunakan analisis buffering dan analisis cluster. Variabel yang digunakan adalah kepadatan permukiman dan proporsi tutupan lahan (density), jenis guna lahan dan proporsi permukiman-non permukiman (diversity), serta ketersediaan jalur pejalan kaki dan konektivitas jaringan jalan (design). Dari hasil analisis diketahui 3 tipologi TOD, yaitu 16 halte sebagai TOD kota, 8 halte sebagai TOD sub kota, dan 5 halte sebagai TOD lingkungan.
Conference Paper
Full-text available
Desarrollar proyectos de transporte masivo no implica solucionar el problema de la movilidad urbana de facto(Flyvbjerg, Skamris Holm, and Buhl 2005), la movilidad urbana es un problema complejo que tiene sobre la base no solo aspectos técnicos inherentes a la eficiencia de las infraestructuras y las distintas modalidades de transporte, también implica un contexto social y unas variables cualitativas que son de medular importancia en la búsqueda de soluciones para la movilidad urbana sostenible sensible al contexto(Dimitriou 2011). Esta investigación centra su atención en el fenómeno de la movilidad urbana considerándola desde un enfoque socio-técnico (Vasconcellos 2011), que viabiliza la idea introducida por el Dr. Warren Weaver en el 1958 y afincada por Jacobs para el análisis urbano, la cual establece que la ciudad es un problema de complejidad desorganizada (Jacobs 2013:22). En concreto se propone un enfoque de análisis de la movilidad urbana desde la perspectiva de la dimensión social del desarrollo sostenible (Colantonio 2009; McKenzie 2004; Polèse and Stren 2000; Shirazi et al. 2019; Vallance, Perkins, and Dixon 2011). Se parte de la hipótesis que en el Sur Global (Mahler 2017) las intervenciones de movilidad urbana que consideran aspectos de sostenibilidad social como enfoque estructurante, contribuyen en mayor medida, a la transformación de las estructuras sociales excluyentes de producción del hábitat que cuando no se consideran esos aspectos. Por ello se opta por estrategia de investigación un estudio de casos comparativos del Sur Global en el contexto
Full-text available
Full-text available
The policy focus report series is published by the Lincoln Institute of Land Policy to address timely public policy issues relating to land use, land markets, and property taxation. Each report is designed to bridge the gap between theory and practice by combining research findings, case studies, and contributions from scholars in a variety of academic disciplines, and from profes-sional practitioners, local officials, and citizens in diverse communities. About This Report The authors document the results of a five-year study of global urban expansion, initiated in 2005 with a grant from the World Bank that resulted in the report, The Dynamics of Global Urban Expansion (Angel et al. 2005). That initial phase of the study focused on analyzing and comparing satellite images and urban populations in a global sample of 120 cities circa 1990 and 2000. A second phase of the study, with support from the National Science Foun-dation, involved a survey of housing conditions and the regulatory regimes governing urban expansion in the same sample of 120 cities. The survey was conducted by local consultants in 2006–2007. The third and fourth phases, with support from NASA (National Aeronautics and Space Adminis-tration), Cities Alliance, and the Lincoln Institute of Land Policy, involved several additional steps and resulted in three Institute-sponsored working papers. They present historical research on urban expansion in 20 U.S. cities from 1910 to 2000; historical analysis of a representative global sample of 30 cities from 1800 to 2000; and the analysis of a new global urban land cover map of all 3,646 named large cities with 100,000 people or more in the year 2000 (Angel et al. 2010a; 2010d; 2010e). The complete data sets, with their associated maps and spreadsheets, are available in The Atlas of Urban Expansion on the Lincoln Institute Web site at
The twenty thematic chapters in this book provide a broad set of perspectives on the plight, possibilities and opportunities of urban transport in the developing world, set against the challenges of sustainable development. The contributors expertly set the international context of transport policy-making and planning for developing cities and present a critical review of recent developments that have taken place and which offer lessons for the future. © Harry T. Dimitriou and Ralph Gakenheimer 2011. All rights reserved.
The interest in analysing urban transport problems in developing countries emerged in the 1960s and evolved at a fast pace as problems became increasingly severe. Conditions remain highly inadequate for most: low accessibility, poor public transport supply, accidents, discomfort, pollution and congestion are all negative features.
The 59th UITP World Congress Mobility & City Transport Exhibition revealed that the market share of public transport was to increase by 2025 due to significant efforts being made in the sector around the world. The world's urban population was expected to rise from 3.2 billion in 2005 to 4.5 billion in 2025. Urban population growth was to be fastest in Africa, Asia-Pacific, and MENA. The number of trips made in urban areas every day was to increase by 50% between 2005 and 2025, reflecting the growth in urban population and the increase in the number of trips made by each citizen in developing economies. The number of trips made by public transport was to increase by about 30%, white the number of trips made by private motorized vehicles was to increase by around 80%. It was suggested that increasing the market share of public transport and keeping the share of walking and cycling stable was to make it possible to disassociate the growth of mobility in urban areas from the growth of its societal and environmental costs.
When dealing with broad urban transportation issues, planners are faced with a multitude of aspects concerning land use, street capacity and function, transportation modes and regulations, and driver and pedestrian behavior. In developing countries with the lack of proper agencies and trained personnel, along with conflicting institutional duties, these problems lead to a mix of policy decisions (or a lack of them), which is often unsatisfactory. This article explores how urban transportation problems can be dealt with by combining three forms of intervention: urban planning, transportation planning, and traffic management. Specific conditions of developing countries are stressed - fragile institutional arrangement, deep social differences - and both the strengths and limits of each sort of intervention are explored. Suggestions for beneficial coexistence are given. Among them, the most important are: (1) to create more stable urban planning agencies, particularly in large towns as well as in metropolitan areas, to ensure they are given enough power to resist sudden changes motivated by short-term political interests; (2) to combine transportation planning and traffic management into a single agency, to avoid separate policies that have proven highly defective; (3) to create formal linkages between the two mentioned agencies that should translate into joint operational tasks, followed by the opening of effective channels to society participation through organized groups; and, (4) to reduce the intellectual distance among different group approaches by creating an urban policy expertise field in the university that will require the actual engineering training to get closer to social sciences (and vice versa), towards a common field of urban policy studies.
The success of the world-renowned bus rapid transit (BRT) in Curitiba, Brazil, is based on the interdependence of public transport, road system hierarchy, and land use regulation. Notwithstanding the consolidation of this triple approach, the transport system is overcrowded, and in 2009, the city made a bid for a technical analysis of the economic feasibility and the determination of environmental effects of a subway infrastructure to be implemented along one of its mass transport corridors, the north-south one. However, a recent survey indicates that most of people using BRT do not actually live along these corridors, but primarily in the densely occupied peripheral districts of the city and the immediate neighboring areas of a much more populated metropolitan region. This paper searches to confirm a contraction between real urban performance and an ideal city proposed by its somewhat innovative and now 45-year-old plan that was elaborated according to, among other paradigms, high-density linear occupation to make public transport at the same time cheap and attractive for dwellers. This paper also intends to provoke a discussion on the paradoxical municipal managerial decision of, at the same time, enforcing a master plan establishing priorities in terms of public transport and not being able to combine the offer of its main structures for mass public transportation and the public implementation of low-income housing programs along them. Data used to explore these discussions are basically that referring to the use of this modal in the city of Curitiba and the location of municipal social housing programs between 1980 and 2010.