ArticlePDF Available

Abstract

One of the approaches to solving terminal control problems for affine dynamical systems is based on the use of polynomials of degree 2n − 1, where n is the order of the system in question. In this paper, we investigate the terminal control problem for which the final state of the system coincides with the origin in the phase space. We seek a set of initial states such that the solution of the terminal control problem can be constructed by using a polynomial of degree 2n − 2.Note that solution of the terminal control problem in question can be used to solve the problem of stabilizing the zero equilibrium in a finite time.For the second-order systems we prove the necessary and sufficient conditions for existence of the polynomial of the second degree which determines the solution of the terminal problem. The solutions of the terminal control problem based on the polynomials of second and third degree are given. As an example, the terminal control problem is considered for the simple pendulum.We also discuss solution of the terminal problem for affine systems of the third order, based on the use of the fourth and fifth degree polynomials. The necessary and sufficient conditions for existence of the fourth-degree polynomial such that its phase graph connects an arbitrary initial state of the system and the origin are obtained.For systems of arbitrary order n we obtain the necessary and sufficient conditions for existence of a solution of the terminal problem using the polynomial of degree 2n − 2. We also give the solution of the problem by means of the polynomial of degree 2n − 1.Further research can be focused on extending the results obtained in this note to terminal control problems where the desired final state of the system is not necessarily the origin.One of the potential application areas for the obtained theoretical results is automatic control of technical plants like unmanned aerial vehicles and mobile robots.
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà.
Ýëåêòðîí. æóðí. 2015. ¹ 2. Ñ. 101{114.
DOI: 10.7463/0215.0758826
Ïðåäñòàâëåíà â ðåäàêöèþ: 05.03.2015
c
ÌÃÒÓ èì. Í.Ý. Áàóìàíà
ÓÄÊ 519.71
Ðåøåíèå òåðìèíàëüíîé çàäà÷è óïðàâëåíèÿ
äëÿ àôôèííîé ñèñòåìû ïðè ïîìîùè ìíîãî÷ëåíîâ
Ãîëóáåâ À. Å.1,*, Êðèùåíêî À. Ï.1*
1ÌÃÒÓ èì. Í.Ý. Áàóìàíà, Ìîñêâà, Ðîññèÿ
 ñòàòüå èññëåäîâàíà òåðìèíàëüíàÿ çàäà÷à óïðàâëåíèÿ äëÿ àôôèííûõ äèíàìè÷åñêèõ ñèñòåì.
Ðàññìîòðåí ñëó÷àé, êîãäà êîíå÷íîå ñîñòîÿíèå ñèñòåìû ñîâïàäàåò ñ íà÷àëîì êîîðäèíàò â ôàçîâîì
ïðîñòðàíñòâå ñèñòåìû. Ðåøåíèå òåðìèíàëüíîé çàäà÷è ïîñòðîåíî íà îñíîâå ìíîãî÷ëåíîâ ñòåïåíè
2n2, ãäå n| ïîðÿäîê ñèñòåìû. Ïîëó÷åíû íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ ñóùåñòâî-
âàíèÿ ìíîãî÷ëåíà ñòåïåíè 2n2, ôàçîâûé ãðàôèê êîòîðîãî ñîåäèíÿåò ïðîèçâîëüíîå íà÷àëüíîå
ñîñòîÿíèå ñèñòåìû è íà÷àëî êîîðäèíàò â ôàçîâîì ïðîñòðàíñòâå. Ïðèâåäåíî òàêæå ðåøåíèå òåð-
ìèíàëüíîé çàäà÷è ïðè ïîìîùè ìíîãî÷ëåíà ñòåïåíè 2n1. Ðàññìîòðåí ïðèìåð ðåøåíèÿ çàäà÷è
óïðàâëåíèÿ äëÿ ìàòåìàòè÷åñêîãî ìàÿòíèêà. Âîçìîæíîé îáëàñòüþ ïðèìåíåíèÿ ïîëó÷åííûõ â
ðàáîòå òåîðåòè÷åñêèõ ðåçóëüòàòîâ ÿâëÿåòñÿ ðåøåíèå çàäà÷ àâòîìàòè÷åñêîãî óïðàâëåíèÿ òåõíè÷å-
ñêèìè ñèñòåìàìè, íàïðèìåð, áåñïèëîòíûìè ëåòàòåëüíûìè àïïàðàòàìè è ìîáèëüíûìè ðîáîòàìè.
Êëþ÷åâûå ñëîâà: óïðàâëåíèå, àôôèííàÿ ñèñòåìà, òåðìèíàëüíàÿ çàäà÷à, ìíîãî÷ëåíû
Ââåäåíèå è ïîñòàíîâêà çàäà÷è
Ðàññìàòðèâàåòñÿ òåðìèíàëüíàÿ çàäà÷à óïðàâëåíèÿ äëÿ àôôèííîé äèíàìè÷åñêîé ñèñòåìû,
çàïèñàííîé â âèäå
y(n)+f(y, ˙y,...,y(n1)) = g(y, ˙y,...,y(n1))u, (1)
ãäå y=y, ˙y, . . . , y(n1)Rn| âåêòîð ñîñòîÿíèÿ ñèñòåìû; uR| óïðàâëåíèå; f(y)è
g(y)| ãëàäêèå ôóíêöèè ñâîèõ àðãóìåíòîâ; g(y)6= 0 ïðè âñåõ yRn.
Íàïîìíèì, ÷òî ïîä òåðìèíàëüíîé çàäà÷åé ïîäðàçóìåâàþò íàõîæäåíèå óïðàâëåíèÿ, ïå-
ðåâîäÿùåãî äèíàìè÷åñêóþ ñèñòåìó çà íåêîòîðûé îòðåçîê âðåìåíè èç çàäàííîãî íà÷àëüíîãî
ñîñòîÿíèÿ â çàäàííîå êîíå÷íîå ñîñòîÿíèå [1]. Îäèí èç ñïîñîáîâ ðåøåíèÿ òåðìèíàëüíûõ
çàäà÷ äëÿ ñèñòåì âèäà (1) îñíîâàí íà èñïîëüçîâàíèè ìíîãî÷ëåíîâ ñòåïåíè 2n1[1, 2].
Ðåøåíèå ðàçëè÷íûõ òåðìèíàëüíûõ çàäà÷ ñ èñïîëüçîâàíèåì ìíîãî÷ëåíîâ ðàññìàòðèâàëîñü,
íàïðèìåð, â ðàáîòàõ [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 101
 íàñòîÿùåé ñòàòüå èññëåäóåòñÿ òåðìèíàëüíàÿ çàäà÷à, äëÿ êîòîðîé êîíå÷íîå ñîñòîÿíèå
ñèñòåìû (1) ñîâïàäàåò ñ íà÷àëîì êîîðäèíàò y= 0. Èùåòñÿ ìíîæåñòâî íà÷àëüíûõ ñîñòî-
ÿíèé òàêèõ, ÷òî ðåøåíèå òåðìèíàëüíîé çàäà÷è ìîæíî ïîñòðîèòü ïðè ïîìîùè ìíîãî÷ëåíà
ñòåïåíè 2n2.
Îòìåòèì, ÷òî ðåøåíèå ðàññìàòðèâàåìîé òåðìèíàëüíîé çàäà÷è óïðàâëåíèÿ ìîæåò áûòü
èñïîëüçîâàíî äëÿ ðåøåíèÿ çàäà÷è ñòàáèëèçàöèè íóëåâîãî ïîëîæåíèÿ ðàâíîâåñèÿ çà êîíå÷íîå
âðåìÿ [15, 16, 17, 18].
 ðàçä. 1 äëÿ ñèñòåì âòîðîãî ïîðÿäêà äîêàçûâàþòñÿ íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ
ñóùåñòâîâàíèÿ ìíîãî÷ëåíà âòîðîé ñòåïåíè, êîòîðûé îïðåäåëÿåò ðåøåíèå òåðìèíàëüíîé çà-
äà÷è. Ïðèâîäèòñÿ ðåøåíèå òåðìèíàëüíîé çàäà÷è óïðàâëåíèÿ ñ èñïîëüçîâàíèåì ìíîãî÷ëåíîâ
âòîðîé è òðåòüåé ñòåïåíè. Ðàññìîòðåí ïðèìåð ðåøåíèÿ çàäà÷è óïðàâëåíèÿ äëÿ ìàòåìàòè-
÷åñêîãî ìàÿòíèêà.  ðàçä. 2 íàéäåíî ðåøåíèå òåðìèíàëüíîé çàäà÷è äëÿ àôôèííûõ ñèñòåì
òðåòüåãî ïîðÿäêà, îñíîâàííîå íà èñïîëüçîâàíèè ìíîãî÷ëåíîâ ÷åòâåðòîé è ïÿòîé ñòåïåíè.
Äëÿ ñèñòåì ïðîèçâîëüíîãî ïîðÿäêà nâ ðàçä. 3 ïîëó÷åíû íåîáõîäèìûå è äîñòàòî÷íûå óñëî-
âèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ òåðìèíàëüíîé çàäà÷è c èñïîëüçîâàíèåì ìíîãî÷ëåíà ñòåïåíè
2n2. Ïðèâåäåíî òàêæå ðåøåíèå çàäà÷è ïðè ïîìîùè ìíîãî÷ëåíà ñòåïåíè 2n1.
1. Ñèñòåìû âòîðîãî ïîðÿäêà
Ïðè n= 2 ñèñòåìà (1) çàïèøåòñÿ ñëåäóþùèì îáðàçîì:
¨y+f(y) = g(y)u, (2)
ãäå y= (y, ˙y).  êà÷åñòâå íà÷àëüíîãî ñîñòîÿíèÿ ñèñòåìû ðàññìîòðèì ïðîèçâîëüíóþ òî÷êó
y= (y0,˙y0)ôàçîâîé ïëîñêîñòè, îòëè÷íóþ îò íà÷àëà êîîðäèíàò y= (0,0). Òîãäà èñêîìàÿ
ïðîãðàììíàÿ òðàåêòîðèÿ y(t),u(t)ñèñòåìû (2) äîëæíà óäîâëåòâîðÿòü ãðàíè÷íûì óñëîâèÿì
y(0) = y0,˙y(0) = ˙y0èy(T)=0,˙y(T)=0, ãäå T > 0íåêîòîðîå êîíå÷íîå çíà÷åíèå
íåçàâèñèìîé ïåðåìåííîé t.
Íàïîìíèì, ÷òî ôàçîâûì ãðàôèêîì [1] ôóíêöèè ϕ(t)Cn[0, T ]â ôàçîâîì ïðîñòðàíñòâå
ñèñòåìû (1) íàçûâàþò êðèâóþ, çàäàííóþ ïàðàìåòðè÷åñêè ïðè ïîìîùè óðàâíåíèé y(i)=
=ϕ(i)(t),i= 0, n1,t[0, T ].
Íàéäåì ìíîãî÷ëåí p(t), ôàçîâûé ãðàôèê p(t) = (p(t),˙p(t)),t[0, T ], êîòîðîãî ñîåäè-
íÿåò òî÷êè y= (y0,˙y0)èy= (0,0) â ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (2).
Ðàññìîòðèì ñíà÷àëà ñëó÷àé, êîãäà Tçàäàíî. Ñîãëàñíî [1, 2] ñóùåñòâóåò òàêîé åäèíñòâåí-
íûé ìíîãî÷ëåí ñòåïåíè 3, èìåþùèé âèä
p(t) = y0+ ˙y0t+c1t2+c2t3,(3)
÷òî âûïîëíåíû óñëîâèÿ p(T) = 0,˙p(T) = 0. Îòìåòèì, ÷òî ïðè ëþáûõ çíà÷åíèÿõ ïîñòîÿííûõ
c1èc2ñïðàâåäëèâû ðàâåíñòâà p(0) = y0è˙p(0) = ˙y0.
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 102
Êîýôôèöèåíòû c1,c2íàõîäÿòñÿ èç ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé
T2T3
2T3T2
c1
c2
=
y0˙y0T
˙y0
,(4)
ðåøåíèå êîòîðîé ñóùåñòâóåò è åäèíñòâåííî â ñèëó íåâûðîæäåííîñòè ìàòðèöû ýòîé ñèñòåìû.
Òàêèì îáðàçîì, ôàçîâûé ãðàôèê p(t)=(p(t),˙p(t)),t[0, T ], ìíîãî÷ëåíà (3) ïðè óêà-
çàííûõ çíà÷åíèÿõ êîýôôèöèåíòîâ c1,c2ñîåäèíÿåò òî÷êè y= (y0,˙y0)èy= (0,0) â ôàçîâîì
ïðîñòðàíñòâå ñèñòåìû (2), ïðè÷åì p(T) = 0,˙p(T) = 0.
 ñëó÷àå, åñëè çíà÷åíèå Tíå çàäàíî, èìååò ìåñòî ñëåäóþùèé ðåçóëüòàò.
Òåîðåìà 1. Äëÿ ñóùåñòâîâàíèÿ ìíîãî÷ëåíà p(t)ñòåïåíè 2, ôàçîâûé ãðàôèê p(t) =
= (p(t),˙p(t)),t[0, T ], êîòîðîãî ñîåäèíÿåò òî÷êè y= (y0,˙y0)èy= (0,0) â ôàçîâîì
ïðîñòðàíñòâå ñèñòåìû (2), íåîáõîäèìî è äîñòàòî÷íî âûïîëíåíèÿ óñëîâèÿ
y0˙y0<0.(5)
Ä î ê à ç à ò å ë ü ñ ò â î. Ðàññìîòðèì ìíîãî÷ëåí
p(t) = y0+ ˙y0t+c1t2,(6)
ãäå c1| íåêîòîðàÿ êîíñòàíòà, ïîäëåæàùàÿ îïðåäåëåíèþ. Îòìåòèì, ÷òî ïðè ëþáîì çíà÷åíèè
ïîñòîÿííîé c1ñïðàâåäëèâû ðàâåíñòâà p(0) = y0è˙p(0) = ˙y0.
Äàëåå, óñëîâèå p(T) = 0 âûïîëíåíî òîãäà è òîëüêî òîãäà, êîãäà èìååò ìåñòî ðàâåíñòâî
y0+ ˙y0T+c1T2= 0.(7)
Ãðàíè÷íîå óñëîâèå ˙p(T) = 0 çàïèñûâàåòñÿ â âèäå ñîîòíîøåíèÿ
˙y0+ 2c1T= 0.(8)
Ðåøèâ óðàâíåíèÿ (7) è (8) îòíîñèòåëüíî íåèçâåñòíûõ c1èT, ïîëó÷èì
c1=˙y0
2T, T =2y0
˙y0
.
Òàêèì îáðàçîì, äëÿ âûïîëíåíèÿ óñëîâèÿ T > 0íåîáõîäèìî è äîñòàòî÷íî, ÷òîáû áûëî
ñïðàâåäëèâî íåðàâåíñòâî (5).
Ïðè íàéäåííûõ çíà÷åíèÿõ c1èTìíîãî÷ëåí (6) ïðèìåò âèä
p(t) = y0+ ˙y0t+˙y2
0
4y0
t2.(9)
Ôàçîâûé ãðàôèê p(t) = (p(t),˙p(t)),t[0, T ], ìíîãî÷ëåíà (9) ñîåäèíÿåò òî÷êè y= (y0,˙y0)
èy= (0,0) íà ôàçîâîé ïëîñêîñòè, ïðè÷åì p(T) = 0,˙p(T) = 0. Òåîðåìà äîêàçàíà.
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 103
Ïðîãðàììíîå óïðàâëåíèå, ÿâëÿþùååñÿ ðåøåíèåì ðàññìàòðèâàåìîé òåðìèíàëüíîé çàäà÷è
äëÿ ñèñòåìû (2), çàïèøåòñÿ ñëåäóþùèì îáðàçîì [1, 2]:
u(t) = 1
g(p(t))¨p(t) + f(p(t)),(10)
ãäå p(t)| ñîîòâåòñòâóþùèé ìíîãî÷ëåí, èìåþùèé âèä (3), (4) èëè (9).
Ïðèìåð. Ðàññìîòðèì òåðìèíàëüíóþ çàäà÷ó óïðàâëåíèÿ äëÿ ìàòåìàòè÷åñêîãî ìàÿòíèêà,
óðàâíåíèÿ äâèæåíèÿ êîòîðîãî èìåþò âèä
˙x1=x2,
˙x2=csin x1dx2+u, (11)
ãäå x= (x1, x2)òR2| âåêòîð ñîñòîÿíèÿ ñèñòåìû; u| óïðàâëÿþùèé ìîìåíò, êîíñòàíòû
cèdïîëîæèòåëüíû.
 êà÷åñòâå æåëàåìîãî êîíå÷íîãî ñîñòîÿíèÿ ñèñòåìû (11) âîçüìåì òî÷êó x= 0, ñîîòâåò-
ñòâóþùóþ âåðõíåìó íåóñòîé÷èâîìó ïîëîæåíèþ ðàâíîâåñèÿ ìàÿòíèêà.
 ïåðåìåííûõ y=x1,˙y=x2ñèñòåìà (11) ïðèìåò âèä (2), ãäå f(y) = csin y+d˙y,
g(y) = 1.
Ïîñòðîèì ðåøåíèå òåðìèíàëüíîé çàäà÷è ïðè ïîìîùè ìíîãî÷ëåíîâ âòîðîé è òðåòüåé
ñòåïåíè.  êà÷åñòâå íà÷àëüíîãî ñîñòîÿíèÿ ñèñòåìû (2) ðàññìîòðèì ïðîèçâîëüíóþ òî÷êó
y= (y0,˙y0)ôàçîâîé ïëîñêîñòè òàêóþ, ÷òî âûïîëíåíî íåðàâåíñòâî (5). Òîãäà ñîãëàñíî
òåîðåìå 1 ôàçîâûé ãðàôèê p(t)=(p(t),˙p(t)),t[0,2y0/˙y0], ìíîãî÷ëåíà (9) cîåäèíÿåò
òî÷êè y= (y0,˙y0)èy= (0,0) â ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (2).
Ñëåäîâàòåëüíî, ïàðàìåòðè÷åñêè çàäàííàÿ êðèâàÿ x1=p(t),x2= ˙p(t),t[0,2y0/˙y0],
ñîåäèíÿåò â ïðîñòðàíñòâå ñîñòîÿíèé ñèñòåìû (11) òî÷êè x= (y0,˙y0)òèx= 0.
Îòìåòèì, ÷òî êðèâîé, ñîåäèíÿþùåé òî÷êè x= (y0,˙y0)òèx= 0 â ôàçîâîì ïðîñòðàíñòâå
ñèñòåìû (11), ÿâëÿåòñÿ òàêæå ôàçîâûé ãðàôèê p(t) = (p(t),˙p(t))ò,t[0, T ], ìíîãî÷ëåíà (3),
ãäå êîýôôèöèåíòû c1,c2óäîâëåòâîðÿþò ñèñòåìå ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé (4),
T > 0| íåêîòîðîå çàäàííîå êîíå÷íîå çíà÷åíèå íåçàâèñèìîé ïåðåìåííîé.
Ðåøåíèå ðàññìàòðèâàåìîé òåðìèíàëüíîé çàäà÷è äëÿ ñèñòåìû (11) èìååò âèä ïðîãðàìì-
íîãî óïðàâëåíèÿ (10), ãäå p(t)| ñîîòâåòñòâóþùèé ìíîãî÷ëåí (9) âòîðîé ñòåïåíè èëè ìíî-
ãî÷ëåí (3) òðåòüåé ñòåïåíè.
Ðåçóëüòàòû ÷èñëåííîãî ìîäåëèðîâàíèÿ ñèñòåìû (11) ñ óïðàâëåíèåì (10) ïðåäñòàâëåíû
íà ðèñ. 1 è 2 ïðè ñëåäóþùèõ çíà÷åíèÿõ ïàðàìåòðîâ è íà÷àëüíûõ çíà÷åíèé: c= 9,81,d= 0,1,
x1(0) = π/6,x2(0) = 0,5.
Çàìåòèì, ÷òî ïðè ïîñòðîåíèè ïðîãðàììíîé òðàåêòîðèè äëÿ ñèñòåìû (2) íà îñíîâå ìíî-
ãî÷ëåíà òðåòüåé ñòåïåíè âîçìîæíû êîëåáàòåëüíûå ïðîöåññû, ÷òî íåæåëàòåëüíî.  ñëó÷àå
èñïîëüçîâàíèÿ ìíîãî÷ëåíà âòîðîé ñòåïåíè ëåãêî ïîêàçàòü, ÷òî äëÿ ðàññìàòðèâàåìîé òåðìè-
íàëüíîé çàäà÷è îáðàùåíèå â íîëü ïðîèçâîäíîé ˙p(t)íà ôàçîâîé ïëîñêîñòè âîçìîæíî òîëüêî
â òî÷êå y= (0,0) ïðè t=2y0/˙y0.
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 104
Ðèñ. 1. Ôàçîâûå òðàåêòîðèè ñèñòåìû, ñîîòâåòñòâóþùèå ìíîãî÷ëåíó âòîðîé
(ñïëîøíàÿ ëèíèÿ) è òðåòüåé (ïóíêòèð) ñòåïåíè (T > 2x1(0)/x2(0))
Ðèñ. 2. Ôàçîâûå òðàåêòîðèè ñèñòåìû, ñîîòâåòñòâóþùèå ìíîãî÷ëåíó âòîðîé
(ñïëîøíàÿ ëèíèÿ) è òðåòüåé (ïóíêòèð) ñòåïåíè (T < 2x1(0)/x2(0))
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 105
2. Ñèñòåìû òðåòüåãî ïîðÿäêà
Ðàññìîòðèì ñèñòåìó (1), èìåþùóþ òðåòèé ïîðÿäîê è çàïèñàííóþ â âèäå
y(3) +f(y) = g(y)u, (12)
ãäå y= (y, ˙y, ¨y). Åñëè çíà÷åíèå T > 0ôèêñèðîâàíî, òî ñóùåñòâóåò åäèíñòâåííûé ìíîãî÷ëåí
ïÿòîé ñòåïåíè
p(t) = y0+ ˙y0t+¨y0
2t2+c1t3+c2t4+с3t5,(13)
ôàçîâûé ãðàôèê p(t) = (p(t),˙p(t),¨p(t)),t[0, T ], êîòîðîãî ñîåäèíÿåò òî÷êè y= (y0,˙y0,¨y0)
èy= (0,0,0) â ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (12), ïðè÷åì p(T) = 0,˙p(T) = 0,¨p(T) = 0
[1, 2]. Ïîñòîÿííûå c1,c2èc3èùóòñÿ èç ñëåäóþùåé ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ
óðàâíåíèé:
T3T4T5
3T24T35T4
6T12T220T3
c1
c2
c3
=
y0˙y0T¨y0
2T2
˙y0¨y0T
¨y0
,(14)
ðåøåíèå êîòîðîé ñóùåñòâóåò è åäèíñòâåííî, òàê êàê ìàòðèöà ýòîé ñèñòåìû íåâûðîæäåíà.
 ñëó÷àå, êîãäà çíà÷åíèå Tíå çàäàíî, ââåäåì îáîçíà÷åíèÿ a= 6 ˙y0/¨y0,b= 12y0/¨y0è
ñôîðìóëèðóåì ñëåäóþùóþ òåîðåìó.
Òåîðåìà 2. Äëÿ ñóùåñòâîâàíèÿ ìíîãî÷ëåíà p(t)ñòåïåíè 4, ôàçîâûé ãðàôèê p(t) =
= (p(t),˙p(t),¨p(t)),t[0, T ], êîòîðîãî ñîåäèíÿåò òî÷êè y= (y0,˙y0,¨y0)èy= (0,0,0) â
ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (12), íåîáõîäèìî è äîñòàòî÷íî âûïîëíåíèÿ óñëîâèé
b < 0
èëè
b0, a < 0, a24b0
èëè
¨y0= 0, y0˙y0<0.
Ä î ê à ç à ò å ë ü ñ ò â î. Ðàññìîòðèì ìíîãî÷ëåí
p(t) = y0+ ˙y0t+¨y0t2
2+c1t3+c2t4,(15)
ãäå c1,c2| íåêîòîðûå êîíñòàíòû, ïîäëåæàùèå îïðåäåëåíèþ. Çàìåòèì, ÷òî ïðè ëþáûõ
çíà÷åíèÿõ ïîñòîÿííûõ c1èc2âûïîëíÿþòñÿ ðàâåíñòâà p(0) = y0,˙p(0) = ˙y0è¨p(0) = ¨y0.
Ãðàíè÷íûå óñëîâèÿ p(T)=0,˙p(T)=0è¨p(T)=0ýêâèâàëåíòíû ñëåäóþùåé ñèñòåìå
óðàâíåíèé îòíîñèòåëüíî íåèçâåñòíûõ c1,c2èT:
y0+ ˙y0T+¨y0T2
2+c1T3+c2T4= 0,
˙y0+ ¨y0T+ 3c1T2+ 4c2T3= 0,
¨y0+ 6c1T+ 12c2T2= 0.
(16)
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 106
Ðàññìîòðåâ ïåðâûå äâà óðàâíåíèÿ ñèñòåìû (16) êàê ñèñòåìó ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâ-
íåíèé îòíîñèòåëüíî ïîñòîÿííûõ c1èc2, íàéäåì
c1=˙y0
T22¨y0
3T, c2=˙y0
2T3+¨y0
4T2.(17)
Ïîäñòàâèâ ñîîòíîøåíèÿ (17) â ïîñëåäíåå óðàâíåíèå ñèñòåìû (16), ïðè ¨y06= 0 îòíîñè-
òåëüíî íåèçâåñòíîãî Tïîëó÷èì êâàäðàòíîå óðàâíåíèå
T2+aT +b= 0.(18)
Äèñêðèìèíàíò êâàäðàòíîãî òðåõ÷ëåíà, ñòîÿùåãî â ëåâîé ÷àñòè ðàâåíñòâà (18), èìååò âèä
D=a24b. Êâàäðàòíîå óðàâíåíèå (18) èìååò ïîëîæèòåëüíîå ðåøåíèå T > 0òîãäà è
òîëüêî òîãäà, êîãäà âûïîëíåíû óñëîâèÿ b < 0èëè b0,a < 0,D0.
 ñëó÷àå ¨y0= 0 îòíîñèòåëüíî íåèçâåñòíîãî Tèìååì óðàâíåíèå
6 ˙y0T+ 12y0= 0.
Ñëåäîâàòåëüíî, äëÿ ïîëîæèòåëüíîñòè T=2y0/˙y0íåîáõîäèìî è äîñòàòî÷íî âûïîëíåíèÿ
óñëîâèÿ y0˙y0<0.
Äàëåå, â ñëó÷àå ïîëîæèòåëüíîñòè Tôàçîâûé ãðàôèê p(t)=(p(t),˙p(t),¨p(t)),t[0, T ],
ìíîãî÷ëåíà (15), (17), (18) ñîåäèíÿåò òî÷êè y= (y0,˙y0,¨y0)èy= (0,0,0) â ôàçîâîì
ïðîñòðàíñòâå ñèñòåìû (12), ïðè÷åì p(T) = 0,˙p(T) = 0,¨p(T) = 0. Òåîðåìà äîêàçàíà.
Ïðîãðàììíîå óïðàâëåíèå, ÿâëÿþùååñÿ ðåøåíèåì ðàññìàòðèâàåìîé òåðìèíàëüíîé çàäà÷è
äëÿ ñèñòåìû (12), ñîãëàñíî [1, 2] çàïèøåòñÿ ñëåäóþùèì îáðàçîì:
u(t) = 1
g(p(t))p(3)(t) + f(p(t)),
ãäå p(t)| ñîîòâåòñòâóþùèé ìíîãî÷ëåí, èìåþùèé âèä (13), (14) èëè (15), (17), (18).
3. Ñèñòåìû ïîðÿäêà n > 3
Ðàññìîòðèì ñèñòåìó (1) ïðîèçâîëüíîãî ïîðÿäêà n. Ïðåäïîëîæèì, ÷òî çíà÷åíèå T > 0
çàäàíî. Òîãäà ñîãëàñíî [1, 2] ñóùåñòâóåò åäèíñòâåííûé ìíîãî÷ëåí ñòåïåíè 2n1, èìåþùèé
âèä
p(t) =
n1
X
k=0
y(k)
0
k!tk+
n
X
k=1
cktn1+k,(19)
ôàçîâûé ãðàôèê p(t) = p(t),˙p(t), . . . , p(n1)(t),t[0, T ], êîòîðîãî ñîåäèíÿåò òî÷êè
y= (y0,˙y0, . . . , y(n1)
0)èy= (0, . . . , 0) â ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (1), ïðè÷åì
p(T)=0,˙p(T)=0, ..., p(n1) (T)=0. Ïîñòîÿííûå c1,c2, ..., cníàõîäÿòñÿ èç ñèñòåìû
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 107
ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé
TnTn+1 . . . T 2n1
nT n1(n+ 1)Tn. . . (2n1)T2n2
......................
n!
1! T(n+ 1)!
2! T2. . . (2n1)!
n!Tn
c1
c2
.
.
.
cn
=
n1
P
k=0
y(k)
0
k!Tk
n1
P
k=1
y(k)
0
(k1)!Tk1
.
.
.
y(n1)
0
,(20)
ðåøåíèå êîòîðîé ñóùåñòâóåò è åäèíñòâåííî â ñèëó íåâûðîæäåííîñòè ìàòðèöû ýòîé ñèñòåìû.
Ðàññìîòðèì òåïåðü ñëó÷àé, êîãäà çíà÷åíèå Tíå ôèêñèðîâàíî. Èìååò ìåñòî ñëåäóþùåå
óòâåðæäåíèå.
Òåîðåìà 3. Äëÿ ñóùåñòâîâàíèÿ ìíîãî÷ëåíà p(t)ñòåïåíè 2n2, ôàçîâûé ãðàôèê p(t) =
=p(t),˙p(t), . . . , p(n1)(t),t[0, T ], êîòîðîãî ñîåäèíÿåò òî÷êè y= (y0,˙y0, . . . , y(n1)
0)
èy= (0, . . . , 0) â ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (1), äîñòàòî÷íî, ÷òîáû ÷èñëî ïåðåìåí
çíàêîâ â ñèñòåìå íà÷àëüíûõ çíà÷åíèé y0,˙y0,...,y(n2)
0,y(n1)
0áûëî íå÷åòíî.
Ä î ê à ç à ò å ë ü ñ ò â î. Ðàññìîòðèì ìíîãî÷ëåí
p(t) =
n1
X
k=0
y(k)
0
k!tk+
n1
X
k=1
cktn1+k,(21)
ãäå c1,c2, ..., cn1| êîíñòàíòû, ïîäëåæàùèå îïðåäåëåíèþ. Îòìåòèì, ÷òî ïðè ëþáûõ
çíà÷åíèÿõ ïîñòîÿííûõ c1,c2,...,cn1äëÿ ìíîãî÷ëåíà (21) âûïîëíÿþòñÿ óñëîâèÿ p(0) = y0,
˙p(0) = ˙y0,...,p(n1)(0) = y(n1)
0.
Ñîîòíîøåíèÿ p(T) = 0,˙p(T) = 0,...,p(n1)(T) = 0 çàïèøåì â âèäå ñèñòåìû óðàâíåíèé
îòíîñèòåëüíî íåèçâåñòíûõ c1,c2,...,cn1èT, êîòîðàÿ èìååò âèä
TnTn+1 . . . T 2n2
nT n1(n+ 1)Tn. . . (2n2)T2n3
.....................
n!
1! T(n+ 1)!
2! T2. . . (2n2)!
(n1)! Tn1
c1
c2
.
.
.
cn1
=
n1
P
k=0
y(k)
0
k!Tk
n1
P
k=1
y(k)
0
(k1)!Tk1
.
.
.
y(n1)
0
.(22)
Ðàññìîòðèì, íàïðèìåð, ïåðâûå n1óðàâíåíèé ñèñòåìû (22) êàê ñèñòåìó ëèíåéíûõ
àëãåáðàè÷åñêèõ óðàâíåíèé îòíîñèòåëüíî ïîñòîÿííûõ c1,c2,. . .,cn1. Ðåøèâ ýòó ñèñòåìó è
ïîäñòàâèâ íàéäåííûå çíà÷åíèÿ c1,c2,. . .,cn1â ïîñëåäíåå óðàâíåíèå ñèñòåìû (22), ïîëó÷èì
îòíîñèòåëüíî íåèçâåñòíîãî Tñëåäóþùåå óðàâíåíèå:
y(n1)
0Tn1+n!
1!(n2)!y(n2)
0Tn2+(n+ 1)!
2!(n3)!y(n3)
0Tn3+. . .
. . . +(2n3)!
(n2)!1! ˙y0T+(2n2)!
(n1)! y0= 0.(23)
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 108
Ñîãëàñíî [19] ÷èñëî ïîëîæèòåëüíûõ êîðíåé ìíîãî÷ëåíà, ñòîÿùåãî â ëåâîé ÷àñòè ðàâåí-
ñòâà (23), ðàâíî ÷èñëó ïåðåìåí çíàêîâ â ñèñòåìå êîýôôèöèåíòîâ y0,˙y0...,y(n1)
0èëè ìåíüøå
ýòîãî ÷èñëà íà ÷åòíîå ÷èñëî. Òàêèì îáðàçîì, åñëè ÷èñëî ïåðåìåí çíàêîâ â óêàçàííîé ñè-
ñòåìå çíà÷åíèé êîýôôèöèåíòîâ íå÷åòíî, òî ñóùåñòâóåò õîòÿ áû îäíî ïîëîæèòåëüíîå ðåøå-
íèå T > 0óðàâíåíèÿ (23).  ýòîì ñëó÷àå ôàçîâûé ãðàôèê p(t) = p(t),˙p(t), . . . , p(n1)(t),
t[0, T ], ìíîãî÷ëåíà (21), (22) ñîåäèíÿåò òî÷êè y= (y0,˙y0, . . . , y(n1)
0)èy= (0, . . . , 0) â
ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (1), ïðè÷åì p(T) = 0,˙p(T) = 0,...,p(n1)(T) = 0. Òåîðåìà
äîêàçàíà.
Ç à ì å ÷ à í è å . Íåîáõîäèìûì è äîñòàòî÷íûì óñëîâèåì ñóùåñòâîâàíèÿ ìíîãî÷ëåíà
ñòåïåíè 2n2, ôàçîâûé ãðàôèê êîòîðîãî ñîåäèíÿåò òî÷êè y= (y0,˙y0, . . . , y(n1)
0)è
y= (0, . . . , 0) â ôàçîâîì ïðîñòðàíñòâå ñèñòåìû (1), ÿâëÿåòñÿ íàëè÷èå ïîëîæèòåëüíîãî
êîðíÿ ó ìíîãî÷ëåíà, ñòîÿùåãî â ëåâîé ÷àñòè ðàâåíñòâà (23).
Íàêîíåö, ïðîãðàììíîå óïðàâëåíèå, ÿâëÿþùååñÿ ðåøåíèåì ðàññìàòðèâàåìîé òåðìèíàëü-
íîé çàäà÷è äëÿ ñèñòåìû (1), ñëåäóþùåå: [1, 2]:
u(t) = 1
g(p(t))p(n)(t) + f(p(t)),(24)
ãäå p(t)| ñîîòâåòñòâóþùèé ìíîãî÷ëåí (19), (20) èëè (21), (22).
Çàêëþ÷åíèå
 íàñòîÿùåé ðàáîòå èññëåäîâàíà òåðìèíàëüíàÿ çàäà÷à óïðàâëåíèÿ äëÿ àôôèííûõ ñèñòåì,
èìåþùèõ âèä (1). Ðàññìîòðåí ñëó÷àé, êîãäà êîíå÷íîå ñîñòîÿíèå ñèñòåìû ñîâïàäàåò ñ íà-
÷àëîì êîîðäèíàò. Ðåøåíèå òåðìèíàëüíîé çàäà÷è ïîñòðîåíî íà îñíîâå ìíîãî÷ëåíà ñòåïåíè
2n2. Ïðèâåäåíî òàêæå èçâåñòíîå ðåøåíèå ïðè ïîìîùè ìíîãî÷ëåíà ñòåïåíè 2n1.
Îòìåòèì, ÷òî íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ ñóùåñòâîâàíèÿ çàìåíû ïåðåìåííûõ,
ïðåîáðàçóþùåé àôôèííóþ äèíàìè÷åñêóþ ñèñòåìó ê âèäó (1), ìîæíî íàéòè, íàïðèìåð, â
ìîíîãðàôèè [1].
Äàëüíåéøèå èññëåäîâàíèÿ ìîãóò áûòü ñâÿçàíû ñ ðåøåíèåì íà îñíîâå ìíîãî÷ëåíîâ ñòå-
ïåíè 2n2òåðìèíàëüíûõ çàäà÷ óïðàâëåíèÿ ïðè ïðîèçâîëüíîì êîíå÷íîì ñîñòîÿíèè ñè-
ñòåìû (1), íå ñîâïàäàþùèì ñ íà÷àëîì êîîðäèíàò.
Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ìèíèñòåðñòâà îáðàçîâàíèÿ è íàóêè ÐÔ
(ïðîåêòû ¹736 ïðîãðàììû <Îðãàíèçàöèÿ ïðîâåäåíèÿ íàó÷íûõ èññëåäîâàíèé> è ¹1711
ãîñóäàðñòâåííîãî çàäàíèÿ ÐÔ) è Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé (ïðîåêò
¹14-01-00424).
Ñïèñîê ëèòåðàòóðû
1. Êðàñíîùå÷åíêî Â.È., Êðèùåíêî À.Ï. Íåëèíåéíûå ñèñòåìû: ãåîìåòðè÷åñêèå ìåòîäû
àíàëèçà è ñèíòåçà. Ì.: Èçä-âî ÌÃÒÓ èì. Í.Ý. Áàóìàíà, 2005. 520 ñ.
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 109
2. Æåâíèí À.À., Êðèùåíêî À.Ï. Óïðàâëÿåìîñòü íåëèíåéíûõ ñèñòåì è ñèíòåç àëãîðèòìîâ
óïðàâëåíèÿ // Äîêëàäû ÀÍ ÑÑÑÐ. 1981. Ò. 258, ¹ 4. Ñ. 805{809.
3. Òàðàíåíêî Â.Ò. Äèíàìèêà ñàìîëåòà ñ âåðòèêàëüíûì âçëåòîì è ïîñàäêîé. Ì.: Ìàøèíî-
ñòðîåíèå, 1978. 278 c.
4. Áàòåíêî À.Ï. Ñèñòåìû òåðìèíàëüíîãî óïðàâëåíèÿ. Ì.: Ðàäèî è ñâÿçü, 1984. 160 ñ.
5. Åðìîøèíà Î.Â., Êðèùåíêî À.Ï. Ñèíòåç ïðîãðàììíûõ óïðàâëåíèé îðèåíòàöèåé êîñìè-
÷åñêîãî àïïàðàòà ìåòîäîì îáðàòíûõ çàäà÷ äèíàìèêè // Èçâåñòèÿ ÐÀÍ. Òåîðèÿ è ñèñòåìû
óïðàâëåíèÿ. 2000. ¹ 2. Ñ. 155{162.
6. Âåëèùàíñêèé Ì.À., Êðèùåíêî À.Ï., Òêà÷åâ Ñ.Á. Ñèíòåç àëãîðèòìîâ ïåðåîðèåíòàöèè
êîñìè÷åñêîãî àïïàðàòà íà îñíîâå êîíöåïöèè îáðàòíîé çàäà÷è äèíàìèêè // Èçâåñòèÿ
ÐÀÍ. Òåîðèÿ è ñèñòåìû óïðàâëåíèÿ. 2003. ¹ 5. Ñ. 156{163.
7. Êàíàòíèêîâ À.Í., Êðèùåíêî À.Ï. Òåðìèíàëüíîå óïðàâëåíèå ïðîñòðàíñòâåííûì äâèæå-
íèåì ëåòàòåëüíûõ àïïàðàòîâ // Èçâåñòèÿ ÐÀÍ. Òåîðèÿ è ñèñòåìû óïðàâëåíèÿ. 2008. ¹ 5.
C. 51{64.
8. Tang C.P., Miller P.T., Krovi V.N., Ryu J., Agrawal S.K. Differential-flatness-based planning
and control of a wheeled mobile manipulator | theory and experiment // IEEE/ASME Trans.
on Mechatronics. 2011. Vol. 16, no. 4. P. 768{773. DOI: 10.1109/TMECH.2010.2066282
9. Êàíàòíèêîâ À.Í., Êðèùåíêî À.Ï., Òêà÷åâ Ñ.Á. Äîïóñòèìûå ïðîñòðàíñòâåííûå òðà-
åêòîðèè áåñïèëîòíîãî ëåòàòåëüíîãî àïïàðàòà â âåðòèêàëüíîé ïëîñêîñòè // Íàóêà è
îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà. Ýëåêòðîí. æóðí. 2012. ¹ 3. Ðåæèì äîñòóïà:
http://technomag.bmstu.ru/doc/367724.html (äàòà îáðàùåíèÿ 30.01.2015).
10. Åìåëüÿíîâ Ñ.Â., Êðèùåíêî À.Ï., Ôåòèñîâ Ä.À. Èññëåäîâàíèå óïðàâëÿåìîñòè àôôèííûõ
ñèñòåì // Äîêëàäû ÀÍ. 2013. Ò. 449. ¹ 1. Ñ. 15{18.
11. Êðèùåíêî À.Ï., Ôåòèñîâ Ä.À. Çàäà÷à òåðìèíàëüíîãî óïðàâëåíèÿ äëÿ àôôèííûõ ñèñòåì
// Äèôôåðåíöèàëüíûå óðàâíåíèÿ. 2013. Ò. 49. ¹ 11. Ñ. 1410{1420.
12. Êàíàòíèêîâ À.Í. Ïîñòðîåíèå òðàåêòîðèé ëåòàòåëüíûõ àïïàðàòîâ ñ íåìîíîòîííûì èçìå-
íåíèåì ýíåðãèè // Íàóêà è îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà. Ýëåêòðîí. æóðí. 2013.
¹ 4. Ñ. 107{122. DOI: 10.7463/0413.0554666
13. Ôåòèñîâ Ä.À. Ðåøåíèå òåðìèíàëüíûõ çàäà÷ äëÿ àôôèííûõ ñèñòåì // Íàóêà è îáðà-
çîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà. Ýëåêòðîí. æóðí. 2013. ¹ 10. Ñ. 123{136. DOI:
10.7463/1013.0604151
14. Íåôåäîâ Ã.À. Îïòèìàëüíûå òðàåêòîðèè ñèñòåì êàíîíè÷åñêîãî âèäà // Èíæåíåðíûé æóð-
íàë: íàóêà è èííîâàöèè. 2014. ¹ 1. Ðåæèì äîñòóïà: http://engjournal.ru/catalog/eng/
teormech/1186.html (äàòà îáðàùåíèÿ 30.01.2015).
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 110
15. Perruquetti W., Floquet T., Orlov Y. Finite time stabilization of interconnected second order
nonlinear systems // Proc. of the 42nd IEEE Conference on Decision and Control. Vol. 5. IEEE,
2003. P. 4599{4604. DOI: 10.1109/CDC.2003.1272284
16. Cruz-Zavala E., Moreno J.A., Fridman L. Asymptotic stabilization in fixed time via sliding
mode control // Proc. of the 51st Conference on Decision and Control (CDC). IEEE, 2012.
P. 6460{6465. DOI: 10.1109/CDC.2012.6425999
17. Polyakov A. Fixed-time stabilization of linear systems via sliding mode control //
Proc. of the 12th Workshop on Variable Structure Systems. IEEE, 2012. P. 1{6. DOI:
10.1109/VSS.2012.6163469
18. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control
systems // IEEE Trans. on Automatic Control. 2012. Vol. 57, no. 8. P. 2106{2110. DOI:
10.1109/TAC.2011.2179869
19. Êóðîø À.Ã. Êóðñ âûñøåé àëãåáðû. Ì.: Íàóêà, 1968. 431 ñ.
Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 111
Science and Education of the Bauman MSTU,
2015, no. 2, pp. 101{114.
DOI: 10.7463/0215.0758826
Received: 05.03.2015
c
Bauman Moscow State Technical University
Polynomials-Based Terminal Control of Affine Systems
Golubev A. E.1,*, Krishchenko A. P.1*
1Bauman Moscow State Technical University, Russia
Keywords: control, affine system, terminal problem, polynomials
One of the approaches to solving terminal control problems for affine dynamical systems
is based on the use of polynomials of degree 2n1, where nis the order of the system in
question. In this paper, we investigate the terminal control problem for which the final state
of the system coincides with the origin in the phase space. We seek a set of initial states such
that the solution of the terminal control problem can be constructed by using a polynomial of
degree 2n2.
Note that solution of the terminal control problem in question can be used to solve the problem
of stabilizing the zero equilibrium in a finite time.
For the second-order systems we prove the necessary and sufficient conditions for existence of
the polynomial of the second degree which determines the solution of the terminal problem. The
solutions of the terminal control problem based on the polynomials of second and third degree are
given. As an example, the terminal control problem is considered for the simple pendulum.
We also discuss solution of the terminal problem for affine systems of the third order, based
on the use of the fourth and fifth degree polynomials. The necessary and sufficient conditions for
existence of the fourth-degree polynomial such that its phase graph connects an arbitrary initial
state of the system and the origin are obtained.
For systems of arbitrary order nwe obtain the necessary and sufficient conditions for existence
of a solution of the terminal problem using the polynomial of degree 2n2. We also give the
solution of the problem by means of the polynomial of degree 2n1.
Further research can be focused on extending the results obtained in this note to terminal control
problems where the desired final state of the system is not necessarily the origin.
One of the potential application areas for the obtained theoretical results is automatic control
of technical plants like unmanned aerial vehicles and mobile robots.
Science and Education of the Bauman MSTU 112
References
1. Krasnowechenko V.I., Krishchenko A.P. Nelinejnye sistemy: geometricheskie metody analiza
i sinteza [Nonlinear systems: geometric methods of analysis and synthesis]. Moscow, Bauman
MSTU Publ., 2005. 520 p. (in Russian).
2. Zhevnin A.A., Krishchenko A.P. Controllability of nonlinear systems and synthesis of control
algorithms. Doklady AN SSSR =Reports of Academy of Sciences of the USSR, 1981, vol. 258,
no. 4, pp. 805{809. (in Russian).
3. Taranenko W.T. Dinamika samoleta s vertikal'nym vzletom i posadkoj [Aircraft dynamics with
vertical take-off and landing]. Moscow, Mashinostroenie Publ., 1978. 278 p. (in Russian).
4. Batenko A.P. Sistemy terminal'nogo upravleniya [Terminal Control Systems]. Moscow, Radio
i svyaz' Publ., 1984. 160 p. (in Russian).
5. Ermoshina O.V., Krishchenko A.P. Synthesis of Programmed Controls of Spacecraft Ori-
entation by the Method of Inverse Problem of Dynamics. Izvestiya RAN. Teoriia i sistemy
upravleniia, 2000, no. 2, pp. 155{162. (English version of journal: Journal of Computer and
System Sciences International, 2000, vol. 39, no. 2, pp. 313{320.).
6. Velishchanskii M.A., Krishchenko A.P., Tkachev S.B. Synthesis of spacecraft reorientation
algorithms using the consept of the inverse dynamic problem. Izvestiya RAN. Teoriia i sistemy
upravleniia, 2003, no. 5, pp. 156{163. (English version of journal: Journal of Computer and
System Sciences International, 2003, vol. 42, no. 5, pp. 811{818.).
7. Kanatnikov A.N., Krishchenko A.P. Terminal control of spatial motion of flying vehicles.
Izvestiya RAN. Teoriia i sistemy upravleniia, 2008, no. 5, pp. 51{64. (English version of journal:
Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 5, pp. 718{731.
DOI: 10.1134/S1064230708050055).
8. Tang C.P., Miller P.T., Krovi V.N., Ryu J., Agrawal S.K. Differential-flatness-based planning
and control of a wheeled mobile manipulator-theory and experiment. IEEE/ASME Trans. on
Mechatronics, 2011, vol. 16, no. 4, pp. 768{773. DOI: 10.1109/TMECH.2010.2066282
9. Kanatnikov A.N., Krishchenko A.P., Tkachev S.B. Admissible Spatial Trajectories of the
Unmanned Aeral Vechicle in the Vertical Plane. Nauka i obrazovanie MGTU im. N.E.
Baumana =Science and Education of the Bauman MSTU, 2012, no. 3. Available at:
http://technomag.bmstu.ru/doc/367724.html, accessed 30.01.2015. (in Russian).
10. Emel'yanov S.V., Krishchenko A.P., Fetisov D.A. Controllability research on affine systems.
Doklady Akademii Nauk, 2013, vol. 449, no. 1, pp. 15{18. (English version of journal: Doklady
Mathematics, 2013, vol. 87, iss. 2, pp. 245{248. DOI: 10.1134/S1064562413020026).
11. Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems. Differentsial'nye
uravneniya, 2013, vol. 49, no. 11, pp. 1410{1420. (English version of journal: Differential
Equations, 2013, vol. 49, iss. 11, pp. 1378{1388. DOI: 10.1134/S0012266113110062).
Science and Education of the Bauman MSTU 113
12. Kanatnikov A.N. Design of aircraft trajectories with non-monotonic change in energy. Nauka i
obrazovanie MGTU im. N.E. Baumana =Science and Education of the Bauman MSTU, 2013,
no. 4, pp. 107{122. DOI: 10.7463/0413.0554666 (in Russian).
13. Fetisov D.A. Solving terminal control problems for affine systems. Nauka i obrazovanie MGTU
im. N.E. Baumana =Science and Education of the Bauman MSTU, 2013, no. 10, pp. 123{136.
DOI: 10.7463/1013.0604151 (in Russian).
14. Nefedov G.A. Optimal trajectories for systems of canonical form. Inzhenernyy zhurnal:
nauka i innovatsii =Engineering Journal: Science and Innovation, 2014, no. 1. Available
at: http://engjournal.ru/catalog/eng/teormech/1186.html, accessed 30.01.2015. (in Russian).
15. Perruquetti W., Floquet T., Orlov Y. Finite time stabilization of interconnected second order
nonlinear systems. Proc. of the 42nd IEEE Conference on Decision and Control. Vol. 5. IEEE,
2003, pp. 4599{4604. DOI: 10.1109/CDC.2003.1272284
16. Cruz-Zavala E., Moreno J.A., Fridman L. Asymptotic stabilization in fixed time via sliding
mode control. Proc. of the 51st Conference on Decision and Control (CDC). IEEE, 2012,
pp. 6460{6465. DOI: 10.1109/CDC.2012.6425999
17. Polyakov A. Fixed-time stabilization of linear systems via sliding mode control. Proc. of
the 12th Workshop on Variable Structure Systems. IEEE, 2012, pp. 1{6. DOI: 10.1109/VSS.
2012.6163469
18. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control sys-
tems. IEEE Trans. on Automatic Control, 2012, vol. 57, no. 8, pp. 2106{2110. DOI:
10.1109/TAC.2011.2179869
19. Kurosh A.G. Kurs vysshei algebry [Course of Higher Algebra]. Moscow, Nauka Publ., 1968.
431 p. (in Russian).
Science and Education of the Bauman MSTU 114
Article
Full-text available
Anti-angiogenesis therapy is an alternative and successfully employed method for treatment of cancerous tumour. However, this therapy isn't widely used in medicine because of expensive drugs. It leads naturally to elaboration of such treatment regimens which use minimum amount of drugs.The aim of the paper is to investigate the model of development of illness and elaborate appropriate treatment regimens in the case of early diagnosis of the disease. The given model reflects the therapy at an intermediate stage of the disease treatment. Further treatment is aimed to destroy cancer cells and may be continued by other means, which are not reflected in the model.Analysis of the main properties of the model was carried out with consideration of two types of auxiliary systems. In the first case, the system is considered without control, as a model of tumour development in the absence of medical treatment. The study of the equilibrium point and determination of its type allowed us to describe disease dynamics and to determine tumour size resulting in death. In the second case a model with a constant control was investigated. The study of its equilibrium point showed that continuous control is not sufficient to support satisfactory patient's condition, and it is necessary to elaborate more complex treatment regimens. For this purpose, we used the method of terminal problems consisting in the search for such program control which forces system to a given final state. Selecting the initial and final states is due to medical grounds.As a result, we found two treatment regimens | one-stage treatment regimen and multi-stage one. The properties of each treatment regimen are analyzed and compared. The total amount of used drugs was a criterion for comparing these two treatment regimens. The theoretical conclusions obtained in this work are supported by computer modeling in MATLAB environment.
Article
Full-text available
Terminal control problem with fixed finite time for the second order affine systems with state constraints is considered. A solution of such terminal problem is suggested for the systems with scalar control of regular canonical form.In this article it is shown that the initial terminal problem is equivalent to the problem of auxiliary function search. This function should satisfy some conditions. Such function design consists of two stages. The first stage includes search of function which corresponds the solution of the terminal control problem without state constraints. This function is designed as polynom of the fifth power which depends on time variable. Coefficients of the polynom are defined by boundary conditions. The second stage includes modification of designed function if corresponding to that function trajectory is not satisfied constraints. Modification process is realized by adding to the current function supplementary polynom. Influence of that polynom handles by variation of a parameter value. Modification process can include a few iterations. After process termination continuous control is found. This control is the solution of the initial terminal prUsing presented scheme the terminal control problem for system, which describes oscillations of the mathematical pendulum, is solved. This approach can be used for the solution of terminal control problems with state constraints for affine systems with multi-dimensional control.
Conference Paper
Full-text available
In this note we extend the design of uniform sliding mode controllers for a class of arbitrary order uncertain systems with a single control input. The design is based on the Classical Sliding Mode Control. But, instead of using classical Lipschitz sliding surfaces and relay controllers, we propose a nonlinear sliding surface and two controllers that contain some high degree terms. It allows to enforce the trajectories of the system to a predefined small vicinity centered at the origin in a fixed finite time bounded by some constant independent of the initial conditions and uncertainties.
Article
Full-text available
Two types of nonlinear control algorithms are presented for uncertain linear plants. Controllers of the first type are stabilizing polynomial feedbacks that allow to adjust a guaranteed convergence time of system trajectories into a prespecified neighborhood of the origin independently on initial conditions. The control design procedure uses block control principles and finite-time attractivity properties of polynomial feedbacks. Controllers of the second type are modifications of the second order sliding mode control algorithms. They provide global finite-time stability of the closed-loop system and allow to adjust a guaranteed settling time independently on initial conditions. Control algorithms are presented for both single-input and multi-input systems. Theoretical results are supported by numerical simulations.
Article
The programmed control is found for the problem of spatial reorientation of a spacecraft from an arbitrary initial state to the final state of rest (zero angular velocity and zero angular acceleration). The solution is based on the concept of an inverse problem of dynamics, while the motion is described in the quaternion form. For the case where the initial state is also the state of rest, an approach to construction of a control satisfying any preset constraints is proposed.
Article
For the problem of spatial reorientation of spacecraft from an arbitrary initial state to a final rest state, a programme trajectory and its control are found. This trajectory is optimized with respect to a given criterion. The solution is based on the concept of the inverse dynamic problem and on the description of motion in the quaternion form. A method is proposed for finding the control under constraints.
Article
We suggest a method for solving the terminal control problem for multidimensional affine systems that are not linearizable by feedback. We prove a sufficient condition for the existence of a solution and present a numerical procedure for its construction.
Article
Given a linear stationary system x ˙=Ax+Bu, the condition for its controllability is known to coincide with the condition for its equivalence to a system in the Brunovsky canonical form, namely, the rank of the controllability matrix is equal to the dimension of the state vector. The concepts of the controllability matrix A.A. Zhevnin and A.P. Krishchenko [Sov. Phys., Dokl. 26, 559–561 (1981); translation from Dokl. Akad. Nauk SSSR 258, 805–809 (1981; Zbl 0497.93007)] and the Brunovsky canonical form have been extended to affine systems x ˙=A(x)+B(x)u. However, it was found that the relation between controllability and equivalence to a system of canonical form is much more complicated in the affine case.