Content uploaded by Eduardo Morteo
Author content
All content in this area was uploaded by Eduardo Morteo on May 31, 2015
Content may be subject to copyright.
THERYA, 2015, Vol. 6(2): 337-350 DOI: 10.12933/therya-15-270, ISSN 2007-3364
Las asociaciones entre individuos se correlacionan
con la diversidad de las conductas en delnes costeros
(Tursiops truncatus) del Sureste del Golfo de México
Inter-individual association levels correlate
to behavioral diversity in coastal bottlenose
dolphins (Tursiops truncatus) from the
Southwestern Gulf of Mexico
Marah García-Vital1, Eduardo Morteo1, 2*, Ibiza Marnez-Serrano3, Alberto Delgado-Estrella4 y Carmen Bazúa-Durán5
1Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana. Calle Hidalgo Núm. 617, Col. Río Jamapa, CP 94290, Boca del
Río, Veracruz, México. E-mail: maravital@gmail.com (MGV).
2Instituto de Investigaciones Biológicas, Universidad Veracruzana. Calle Dr. Luis Castelazo Ayala s/n, km 2.5 Carr. Xalapa-Veracruz,
Col. Industrial Ánimas, CP 91190, Xalapa, Veracruz, México. E-mail: eduardo.morteo@gmail.com (EM).
3Facultad de Biología, Universidad Veracruzana. Museo de Zoología. Facultad de Biología, Universidad Veracruzana. Circ. Gonzalo
Aguirre Beltran s/n Zona Universitaria. CP 91090. Xalapa, Veracruz, México. E-mail: ibimartinez@uv.mx (IMS).
4Facultad de Ciencias Naturales, Universidad Autónoma del Carmen. Calle 56 Núm. 4, Esq. Av. Concordia, Col. Benito Juárez, 24180,
Cd. del Carmen, Campeche, México. E-mail: delgadoestrella@gmail.com (ADE).
5Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510 México, D. F.,
México. E-mail: bazua@unam.mx (CBD).
*Corresponding author
Introduction: Societies in mammal species are inuenced by intrinsic and extrinsic factors that aect the temporality
of the associations among individuals. Coastal bottlenose dolphins generally live in small uid aggregations variable in
composition, but the nature of their associations is commonly unknown. Our goal was to determine if school size was
inuenced by dolphins’ behavior, and if individuals associated to develop particular activities within the coastal waters
of Alvarado, Mexico.
Methods: In total, 80 boat-based surveys were conducted (2002 - 2003 and 2006 - 2009), where group size, behavior,
and photo-identication data were collected. From 237 sightings and 2,021 dolphins the mean school size was 8.5
animals (s. d. = 8.6), but individuals and pairs were observed more frequently (33 %).
Results: Temporal dierences in school sizes and behavior conveyed with habitat seasonality (P < 0.05), but were
inconsistent across years; thus short-term factors such as marine trac and sheries intensity were deemed important.
Dolphins were commonly feeding (29 %) corresponding to groups of 4 - 6 animals, whereas solitary individuals typically
showed evasion (P < 0.01).
Discussion and Conclusions: Association coecients computed for 89 of the 232 identiable dolphins proved not
random only in 6 % of the 3,915 combinations (P < 0.05), and these coecients were positively correlated to the diversity
of activities developed by each dyad (P < 0.01), thus the nature of their associations in most cases (93 %) became richer
with time. The community is likely formed by very small units that frequently exchange members; this may be due to
large food availability and low predator abundance in the area, but also to avoid detection and threats posed by local
artisanal sheries.
Key words: Avoidance; behavior; group size; membership; socialization; sheries.
338 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY
Introduction
Societies in mammal species are dynamic and complex (e. g. carnivores, primates, cetaceans),
in which many of their members may interact and associate with other known or unknown
individuals, forming distinctive assemblages (Goodall 1986). The structure of such social units is
often aected by age, sex, reproductive status, hierarchy and kin selection (Beddia 2007); all these
aspects may modify the behavior of individuals (Bräger 1993) and determine how the animals
spend their time in certain areas, thus producing dierent patterns of residency, seasonality or
migration that change their associations and the social structure of the population (Scott and
Chivers 1990).
Dolphin societies or communities (sensu Wells et al. 1987) are generally composed by individuals
that inhabit the same general area and have frequent interactions with each other (Goodall 1986);
thus marine mammalogists often use this term to describe assemblages of individuals of the same
species, instead of assemblages of dierent species as referred in texts of classic ecological theory
(Roughgarden 1989). Such aggregations are loose and uent, where individual and genetic
exchange may occur over time within the limits of the community (Wells et al. 1987).
Individual interactions are inuenced by intrinsic factors such as the presence of recurrent
associations (Connor et al. 2001), which in turn may be determined by extrinsic factors such as
habitat variability (e. g. food abundance and availability, as well as natural and human-related
threats (Lusseau et al. 2006; Quintana-Rizo 2006; Morteo and Hernández 2007; Morteo et al. 2012).
Social and ecological pressures may dictate the temporality of the associations at dierent scales
(McDonald and Carr 1989; Quintana-Rizzo 2006; Morteo et al. 2014). For instance, some species
are known to maintain strong permanent and even multilevel associations such as killer whales
(Orcinus orca) and sperm whales (Physeter microcephalus; Bräger et al. 1994; Whitehead et al. 2012),
whereas other like the spinner dolphin (Stenella longirostris) are very loose (Chilvers and Corkeron
2002).
The social structure of coastal bottlenose dolphins (Tursiops truncatus) has been characterized
as ssion-fusion, involving small groups that constantly exchange individuals forming a wide range
of social bonds (Goodall 1986; Wells et al. 1987; Connor et al. 1992). Several communities of the
coastal form of this species are known to present segregation related to sex, age and reproductive
status, thus the nature of their associations is highly variable (Wells et al. 1987; Wells 1991; Connor
et al. 1992; Smolker et al. 1992; Connor et al. 2000; Quintana-Rizzo and Wells 2001; Morteo et al.
2014).
Living in social groups facilitates feeding, protecting against harassment, predation, enhances
reproductive output, and promotes communication and learning (Bräger et al. 1994). Individuals
may join or leave a group in response to the gains or losses of participating with the partners
involved within a given social unit (Wrangham et al. 1993). Thus recording the activities of animal
groups is useful to establish behavioral patterns in a specic habitat (Bräger 1993; Steiner 2011),
but also to determine the current state of individuals within a community (Beddia 2007).
Coastal bottlenose dolphins inhabiting the waters o Alvarado in the state of Veracruz have
been studied intermittently since 1993 (García 1995) and reliable data on individual identities has
been collected since 2002 (Del Castillo 2010; Morteo et al. 2014). Many of these dolphins are
known to associate and develop a range of activities, but little is known on how these animals
interact and form groups, and if they do it with dierent purposes (Morteo 2011; García-Vital
2012). The goal of this study is to establish if school size is determined by the activities of the
dolphins, and if individuals associate with specic partners to develop particular sets of activities.
www.mastozoologiamexicana.org 339
García-Vital et al.
Materials and methods
Study area. The Alvarado region is a shallow (< 20 m depth) open coastal habitat in the
southwestern Gulf of Mexico, strongly inuenced by river discharges Figure 1; habitat
modication is the major threat to the area (Del Castillo 2010; Morteo 2011; García-Vital 2012).
It is the third largest coastal lagoon system in Mexico, and according to the National Institute
of Fisheries (INAPESCA), it’s the most important shrimp shing ground in the state of Veracruz,
which takes place year-around depending on weather and market demands. Sea surface
temperature ranges from 20 to 32.5 °C, with an annual average of 27 °C. The regional climate is
tropical with three seasons: a Dry season (March-June) with a signicant reduction in average
precipitation; a Rainy season (July-October), in which runo from rivers into the adjacent lagoon
and mangrove forest causes high organic matter and nutrient input into coastal waters; and a
Windy season (November-February, locally known as “Nortes”), featuring strong winds (up to
80 km h-1) associated with the incursion of northern cold fronts, which may last several days.
Fisheries are relevant to coastal dolphin populations due to the frequent adverse interactions
between dolphins and local sheries, causing incidental mortality of dolphins in nets (Morteo
2011; Morteo et al. 2012). Around 2000 shermen were active in the area, most of which (75 -
85 %) operate in the lagoon and the rest operate in open waters. No ocial data is available on
marine trac or shing eort and port facilities are dedicated to shing, therefore there is no
alternative commercial seagoing activity.
Surveys. Photographic line-transect surveys were conducted at least twice per month from
October 2002 to September 2003 and from May 2006 to April 2009. The extent of the surveyed
area was dependent on the duration of daily operations, and intended to maximize the chance
Figure 1. Study area and survey trajectories (bold lines). Dashed lines show depth contours every 5 m.
340 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY
of encountering coastal dolphins, based on their habitat preferences (Fazioli et al. 2006). Surveys
were carried out at constant speed (15 - 18 km h-1) always in low swell conditions (sea state
Beaufort ≤ 3, where wind speed < 15 km h-1) on board of a 7 m outboard berglass ski (40 / 60
hp). When dolphins were sighted, the survey was paused to allow habituation (10 min) while
their location was recorded using a GPS (Garmin eTrex Legend). Dolphins were then observed
until their behavior was determined ad libitum (Altmann 1974) and classied into one of the most
commonly used categories which were: 1) Feeding, 2) Socializing, 3) Traveling, 4) Avoiding, 5)
Resting, and 6) Undetermined, following the literature (see Shane 1990; Bräger 1993; Chilvers and
Corkeron 2002; Constantine et al. 2004; Steiner 2011). Subsequently, the group was approached
with caution to avoid disturbing them, at the time that group size was estimated; we used an
inclusive denition of group, consisting in all dolphins observed in apparent association, moving
in the same direction and often, but not always, engaged in the same activity (Bräger et al. 1994);
however, some groups included only one dolphin (Fazioli et al. 2006). Dolphins were followed
until all dorsal ns were photographed or until they were lost from sight; we used SLR cameras,
both analogical (Canon EOS Rebel 2000 with lm Kodak Tri-X-pan ISO 400) and digital (Canon
Rebel XT and Nikon D50) with 70 - 300 mm lenses. The survey was then resumed and the search
proceeded until the study area was completed.
Group size and behavior. All sighting records from 2002 - 2003 and 2006 - 2009 (2002 - 2009
henceforth) were arranged into histograms to determine the most common types of aggregations
and behaviors within the area. Average group size was computed for comparison, whereas
dierences among months, seasons and years were examined for both group size and behavior
frequencies using non-parametric tests (α = 0.05). Also, a correspondence analysis was performed
to explore the relation between group size and the behavioral categories using Statistica 7.0.
Photographic identication. Individual dolphins were identied by the marking patterns on
their dorsal ns (Würsig and Jeerson 1990; Morteo 2011). Markings such as tooth rakes, scars,
pigmentation marks, supercial wounds, and epiphytic organisms are temporary, thus these were
considered unidentiable and were excluded. Only dolphins with permanent and conspicuous
markings were included, only if they were sighted in ve or more survey days (Bräger et al. 1994;
Félix 1997; Bejder et al. 1998; Rogers et al. 2004); thus, analyses were performed only for dolphins
with a certain degree of residency.
Association patterns and behavioral diversity. Photographic data were also used to compute
half-weight (i. e. controlled for sighting frequencies) coecients of association (COA) for each
dyad (pair of individuals; e. g. Smolker et al. 1992; Bräger et al. 1994; Félix 1997; Quintana-Rizzo
and Wells 2001; Rogers et al. 2004) using SOCPROG 2.4 (Whitehead 2009). COA values range from
zero for dolphins that are never seen together, to one for a pair that is always seen together. COA
values were categorized as infrequent (0.0 - 0.2), casual (0.2 - 0.4), fair, (0.4 - 0.6), moderate (0.6
- 0.8) or strong (0.8 - 1.0; Smolker et al. 1992; Quintana-Rizzo and Wells 2001). Also, to prevent
the occurrence of articial dyads (i. e. individuals photographed together by chance due to our
inclusive denition of group), a preferred/avoided partner assessment was developed through a
permutation test (Smolker et al. 1992; Bejder et al. 1998; Gero et al. 2005).
The recorded behaviors were used to calculate a measure of diversity for the activities
developed by all paired individuals; therefore, the Shannon-Wiener index was used as a proxy
for each dyad; the latter was standardized to meet the COA range values (0 - 1) and renamed as
activity diversity index (ADI). Since dolphin sightings containing more than two individuals would
use the same behavioral records for the computation of the ADI in their respective dyads, the
result would overestimate the contribution of each pair to the index (Hurlbert 1984); therefore, we
randomly removed photographic data from individual dolphins until the statistical distribution of
the ADI and the COA values stabilized. We then computed new COA and ADI in order to reduce
www.mastozoologiamexicana.org 341
García-Vital et al.
the bias from the pooling fallacy (Machlis et al. 1985). Finally, the resulting COA and ADI matrices
were analyzed using a Mantel’s one tailed test, which measures the correlation between the values
within two symmetrical matrices containing the data from all the possible combinations between
individuals, throughout a randomization process (α = 0.05, Spearman correlation, Monte Carlo
method and 10,000 permutations).
Results
Survey eort and group size. The Alvarado area was sampled on 80 photographic surveys
accounting for 237 groups and 2,021 sighted dolphins. Average school size was 8.5 (s. d. = 8.6) but
single animals (16.7 %) and pairs (16.3 %) accounted for almost a third of the recorded sightings
(Figure 2). Groups were signicantly larger in specic months (June and April, P < 0.01, Table 1),
seasons (dry, P < 0.01, Table 1) and years (2002-3, 2007-8, P < 0.01, Table 1) across the study period.
Table 1. Group size (numbers) and prevalent behaviors of bottlenose dolphins observed
within dierent periods in the study area (n = 237, * = P < 0.01).
Period Mean (s.d.) Group size Behavior
2002-2003 10.3 (1.1) * Apr*, Jun* Feeding*, Resting*
2006-2007 7.6 (0.6) - Feeding*
2007-2008 9.6 (0.9) * Sep* Socializing*
2008-2009 8.2 (0.7) Nov*, Feb* -
Rainy 8.4 (0.7) Sep* Feeding*
Windy 7.6 (0.8) Nov*, Feb* -
Dry 9.3 (0.7) * Apr*, Jun* -
0
2
4
6
8
10
12
14
16
18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>20
Proportion %
Group size
Figure 2. Group size proportion for bottlenose dolphins sighted in the study area during 2002 - 2009 (n = 237).
Behavior and group size. Behavioral records existed for 220 of the 237 sightings, where feeding was
the most common activity in the area (29 %, χ2 = 15.22, P < 0.05), but this was true only for years
2002-2003 and 2006-2007 (P < 0.05, Table 1). Seasonal dierences were observed only for the
rainy months, were feeding was also signicantly more frequent (χ2 = 23.05, P < 0.05).
Group size was arranged into class intervals according to its frequency in order to homogenize
sample sizes (Figure 2). Correspondence between group size and behavior was signicant within
the studied period (χ2 = 69.47, P < 0.01) where the rst two dimensions explained 76.1 % of the
342 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY
variance, and only three behavioral categories were associated to group size: dolphin pairs were
mostly resting, whereas feeding aggregations were formed of four to six dolphins, and solitary
individuals commonly showed evasion (Figure 3).
Association patterns and behavioral diversity. A total of 232 dierent dolphins were individually
identied, but only 89 were sighted at least ve times, and only one was recognized on up to
47 occasions. Association values (COA) changed annually (Figure 4), as the composition of the
members within the community was very uid, and only eight individuals were consistently
identied over the years. The combination of these 89 individuals resulted in 3,915 possible dyads
and 67.2 % of these were photographed at least once; however, the permutation test showed that
only 237 pairs (6 %) were non-random (P < 0.05). From the latter, visual inspection of COA values
showed that 11 % avoided each other (0.0 - 0.2), or met infrequently (0.2 - 0.4), whereas 68 % were
moderately associated (0.4 - 0.6), and the remaining were either close (7 %; 0.6 - 0.8) or very close
(0.8 - 1.0) partners (3 %; Figure 5).
The diversity of activities (ADI) for each dyad showed a wide range of values, and its statistical
distribution stabilized upon the random elimination of half of the records from the 237 signicant
pairs (Figure 5). Only 5 % of the dyads had very high diversity (0.8 - 1.0), 9 % had high diversity
(0.6 - 0.8), 31 % were fairly diverse (0.4 - 0.6), 34 % developed a low diversity of activities (0.2 - 0.4),
and 20.3 % of the dyads were selective (0.0 - 0.2, all null values corresponded to avoided partners,
i. e. COA = 0; Figure 5).
The Mantel’s test showed signicant correlation between the COA and ADI matrices (r(AB) =
0.98, P < 0.01), thus the diversity of activities developed by each dyad increased signicantly with
their level of associations; however, a few instances deviated signicantly from this pattern. For
instance, 7.2 % of the dyads had moderate to very high associations but developed a low or very
low diversity of activities (low-right corner in Figure 6), specically feeding and socializing.
Figure 3. Correspondence analysis between activities and group class (size) for bottlenose dolphins sighted in the study area
during 2002 - 2009. F = Feeding; T = Travel; E = Evasion S = Social; R = Rest (n = 220).
www.mastozoologiamexicana.org 343
García-Vital et al.
Discussion
Group size. Aggregations in animals are widely variable in size and composition, and their study
is closely linked to the criteria used to dene their limits (Shane et al. 1986; Wells et al. 1987; Shane
1990; Wells 1991; Smolker et al. 1992; Bejder et al. 1998; Whitehead 1999; Connor et al. 2000;
Mareike 2003; Morteo 2011). The number of individuals in a group has been related to advantages
while overcoming selective pressures, including but not limited to protection against harassment
and predation, improving food acquisition and energy eciency, thus leading to enhanced
reproductive output (Wells et al. 1980; Shane et al. 1986; Mareike 2003).
Mean group size is often helpful to represent the optimal number of individuals for a community
within a specic habitat (Würsig 1979), and the average group size found here (8.5 ± 8.6 s.d.) was
similar to other coastal locations across the Gulf of Mexico, the Caribbean and the Atlantic (Shane
et al. 1986; Wells et al. 1987; Scott and Chivers 1990; Delgado 2002; García 1995; Morteo and
Hernández 2007; Hernández-Candelario 2009; Martínez-Serrano et al. 2011). However, since the
statistical distribution was skewed towards smaller aggregations (i. e. one third of the sightings
were composed of solitary individuals and pairs) despite our inclusive denition (Figure 2), this
value seems inconclusive. Morteo et al. (2014) anticipated this for bottlenose dolphins within
the same study area, and determined that many of these small aggregations were likely single
sexed. This strongly suggests that the community may be divided into small social units that join
in common activities (Campbell et al. 2002).
Behavior. The general behavioral pattern suggested for most bottlenose dolphin communities
is: Travelling > Socialization or Feeding > Resting > Evasion (Morteo 2002). Feeding has been
reported as a common activity in many dolphin communities (Shane 1990; Bräger 1993; Morteo
Figure 4. Annual sociograms for dolphins identied at least 5 times in the study area during 2002 - 2009. Line thickness shows
the values for coecients of association between dyads. Individuals with COA < 0.6 were removed (n = 27, n = 89), and also diagrams
and line thickness were scaled dierently to t the gure.
344 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY
2002; Beddia 2007; Steiner 2011) and was the single most frequent activity (29%) within the
studied period, especially in the rainy months (15.5 %). Maze and Würsig (1999) hypothesized
that dolphins may use environmental cues such as continental water runos to congregate over
shallow coastal areas close to rivers and lagoons, taking advantage of increased prey populations;
in fact, coastal bottlenose dolphins in this and in neighboring locations are known to experience
seasonal expansions in their distribution during this time of the year (Martínez-Serrano et al. 2011;
Medellín-Ortiz 2012). Although the latter may seem to enhance the possibilities of interacting with
other dolphins in larger aggregations, Morteo (2011) suggested that as food seems abundant and
predators are scarce in this study area, large groups might not necessarily imply an advantage for
foraging or protection. The statistical distribution for group size is consistent with this hypothesis
and it also explains the correspondence between the feeding records and the groups composed
by 4 - 6 dolphins (Figure 3), thus strengthening the notion of a small-unit based social structure.
Following the same hypothesis, solitary individuals were signicantly associated to evasive
behavior (17 % of recorded sightings, Figure 3), which may be due to the frequent and antagonistic
interactions between dolphins and artisanal sheries using gillnets in this location. Resident
Figure 5. Proportion of non-random dyads by association (COA) and behavioral diversity (ADI) class in the study area during
2002 - 2009 (n = 237).
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Very Low
(0.0-0.2)
Low (0.2-
0.4)
Moderate
(0.4-0.6)
High (0.6-
0.8)
Very high
(0.8-1.0)
Index value
Class
COA
ADI
Figure 6. Mantel’s correlation test (r = 0.98, P < 0.01) between association coecients (COA) and diversity of activities (ADI) for
non-random dyads identied in the study area during 2002 - 2009 (n = 237). Half of the individual data was randomly removed.
www.mastozoologiamexicana.org 345
García-Vital et al.
individuals face the inherent risk of being harassed, entangled or even killed, thus individuals rather
than groups are more likely to evade detection by shermen due to the extremely low visibility
below the sea surface (Morteo et al. 2012). The latter also supports the argument that individuals
in general gain larger benets by aggregating in small groups (Figure 2) within this heavily shed
area, and in extreme cases points to a “selsh strategy” as a mean for auto-preservation.
Habitat seasonality agreed with temporal dierences found in both group size and behavior
(Table 1; Del Castillo 2010; Martínez-Serrano et al. 2011; Morteo 2011; Medellín-Ortiz 2012);
however, short-term habitat variability also seems to play an important role, since both of these
variables were inconsistent throughout the studied period (Table 1). Morteo et al. (2012) pointed
out the importance of boat trac and shing activities in the area, which seem to inuence the
presence and distribution of dolphins on a daily basis or even instantaneously (Constantine et al.
2004; Lusseau et al. 2006; Hernandez-Candelario 2009). Although many cetaceans seem to have
habituated to certain levels of marine trac, other evidence suggest that it may cause severe
alterations in their behavior and in this case may promote the separation of group members,
probably altering the social bonds within the community (Constantine et al. 2004; Morteo et al.
2012; Morteo et al. 2014).
Association patterns and behavioral diversity. A social organization is dened by the relations
and interactions among individuals within the sampled population (Chapman et al. 1995).
Societies are believed to gain from all the variety in their associations (Dunbar 1989); however,
even in ssion-fusion societies, partners could be selected to maximize eciency or benets while
joining to develop their activities (Gero et al. 2005). In this study, up to 94 % of all possible paired
associations were non-signicant, rearming the uid nature of the community; however, 78 %
of the non-random pairs exhibited moderate to high membership (Figure 4). The congregation of
prey within a limited area could help explain the random encounters for many of these dolphins
(Morteo et al. 2012); on the other hand, the close associations for a small part of the community
is likely the result of male alliances, and female bands (sensu Connor et al. 2000), by means of the
sexual segregation occurring in the area (Morteo et al. 2014).
We found that dolphin interactions seem to modulate group size (Figure 2), and these are
inherently associated to their own activities (Connor et al. 2001; Figure 3 and 5). The positive
correlation between the level of association and the diversity of activities (Figure 6) was expected,
as the context of the interactions between dyad members should become richer over time (Gero et
al. 2005); however, the fact that 17 of the 237 signicant dyads involved partnerships with specic
purposes suggests that only a handful of these individuals nd larger benets from exploiting
the specic abilities of selected partners. Lusseau et al. (2006) evidenced the importance of roles
for specic individuals within a social network, where previous knowledge of group members
and reduced number of participants helped to coordinate actions and facilitated cooperation;
however such interactions were rare and deserve further attention.
Knowledge of the social structure of dolphin communities is important for assessing their
ecological and evolutionary patterns; and behavioral data helps to understand how the animals
adapt to the habitat and its selective pressures. However, both aspects are rarely combined to
determine the nature of their associations, and how these are modied by their life conditions,
including natural and anthropogenic factors. Human developments cause that coastal bottlenose
dolphins face increasing disruptions within their core areas of distribution, therefore these aspects
should be considered while developing and applying conservation and management strategies
and policies.
346 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY
Acknowledgments
This research is part of the lead author’s MSc thesis at the Universidad Veracruzana, Mexico,
where she obtained fellowship from CONACyT. J. Montano, I. Hernández, V. Del Castillo and N.
Medellín were involved in surveys and data collection. Fieldwork was carried with authorization
from SEMARNAT permits SGPA/DGVS/00351/06 (E. Morteo) and SGPA/DGVS/00870/07, 02788/07,
01344/08 and 01649/08 (C. Bazúa). This work was supported by the following grants: PROMEP
Apoyo a Nuevo PTC (E. Morteo) and CAMyCRA (E. Morteo, and H. Pérez-España), CONACyT grant
45468 (E. Velarde) and the Marine Mammal Laboratory of Universidad Veracruzana and Acuario de
Veracruz, A.C.
Resumen
Introducción: Las sociedades en mamíferos están inuenciadas por factores intrínsecos y extrínsecos afectando
la temporalidad de las asociaciones entre individuos. Los tursiones costeros generalmente viven en agregaciones
pequeñas y uidas de composición variable, pero comúnmente se desconoce la naturaleza de sus asociaciones.
Nuestro objetivo fue determinar si el tamaño de grupo se relaciona con el comportamiento de los delnes y si los
individuos se asocian para desarrollar actividades particulares en las costas de Alvarado, México.
Metodología: Se realizaron 80 navegaciones (2002 - 2003 y 2006 - 2009) para registrar la conducta, el tamaño
de grupo y para foto-identicar a los delnes. De 237 avistamientos, con 2,021 delnes observados, se obtuvo un
promedio de 8.5 (d. e. = 8.6) animales por grupo, donde las parejas y los individuos fueron más frecuentes (33 %).
Resultados: Las diferencias en tamaño de grupo y comportamiento concordaron con la estacionalidad del
hábitat (P < 0.05), siendo inconsistentes entre años, por lo que los factores de corto plazo (i e. tránsito marino e
intensidad de pesca) fueron importantes. La alimentación fue común (29 %) y correspondió con grupos de 4 – 6
animales, mientras los individuos solitarios típicamente mostraron evasión (P < 0.01).
Discusión y conclusiones: Los coecientes de asociación calculados para 89 de 232 delnes identicables fueron
no aleatorios en sólo 6 % de las 3,915 combinaciones (P < 0.05); dichos valores se correlacionaron positivamente con
la diversidad de actividades de cada pareja (P < 0.01) y la naturaleza de sus asociaciones se volvió más rica con el
tiempo en el 93 % de los casos. Se cree que esta comunidad se compone de pequeñas unidades que intercambian
miembros; esto puede deberse a una alta abundancia de alimento y bajo número de depredadores en el área, pero
también a una estrategia para evitar la detección y las amenazas derivadas de la pesca artesanal.
Palabras clave: Comportamiento; evasión; membresía; pesquerías; socialización; tamaño de grupo.
References
AltmAnn, J. 1974. Observational study of behavior sampling methods. Behaviour 49:227-67.
BeddiA, l. 2007. Diurnal behaviour of bottlenose dolphins (Tursiops truncatus) in the Cardigan Bay, West
Wales. Doctoral thesis. School of Biological Science, University of Wales. Bangor, United Kindom.
BEJDER, L., D. FLETCHER, AND S. BRÄGER. 1998. A method for testing association patterns of social animals.
Animal Behavior 56:719-725.
BRÄGER, S. 1993. Diurnal seasonal behavior patterns of bottlenose dolphins (Tursiops truncatus). Marine
Mammal Science 9:434-438.
BRÄGER, S., B. WÜRSIG, A. ACEVEDO, And T. HENNINGSEN. 1994. Association patterns of Bottlenose dolphins
(Tursiops truncatus) in Galveston Bay, Texas. Journal of Mammalogy 75:431-437.
CAMPBELL, G. S., B. A. BILGRE, AND R. H. DEFRAN. 2002. Bottlenose dolphins (Tursiops truncatus) in Turnee
Atoll, Belize: Ocurrence, site delity, group size and abundance. Aquatic Mammals 28:170-180.
CHAPMAN, C. A., R. W. WRANGHAM, AND L. J. CHAPMAN. 1995. Ecological constraints on group size: an analysis
of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology 36:59-70.
CHILVERS, B. L., AND P. J. CORKERON. 2002. Association patterns of bottlenose dolphins (Tursiops truncatus)
www.mastozoologiamexicana.org 347
García-Vital et al.
o Point Lookout. Queensland. Australia. Canadian Journal of Zoology 80:973-979.
CONNOR, R. C., R. A. SMOLKER, And A. F. RICHARDS. 1992. Dolphin alliances and coalitions. Pp. 415-443 in
Coalitions and alliances in humans and other animals (Harcourt A. H., and F. B. M. de Waal, eds.).
Oxford University Press. Oxford, United Kindom.
CONNOR, R. C., R. S. WELLS, J. MANN, AND A. READ. 2000. The Bottlenose dolphin. Pp. 91-126 in Cetacean
societies (Mann, J., R. C. Connor, P. Tyack, and H. Whitehead, eds.). The University of Chicago Press.
Chicago, EE. UU.
CONNOR, R. C., M. R. HEITHAUS, AND L. M. BARRE. 2001. Complex social structure, alliance stability and
mating access in bottlenose dolphin ‘super-alliance’. Proceedings of the Royal Society of London
B 268:263-267.
CONSTANTINE, R., D. H. BRUNTON AND T. DENNIS. 2004. Dolphin-watching tour boats change bottlenose
dolphin (Tursiops truncatus) behaviour. Biological Conservation 117:199-307.
DEL CASTILLO, V. 2010. Ecología poblacional del tursión (Tursiops truncatus) en la costa de Alvarado,
Veracruz. Undergraduate thesis. Benemérita Universidad Autónoma de Puebla. Puebla, México.
DELGADO, A. 2002. Comparación de parámetros poblacionales de las toninas, Tursiops truncatus,
en la región sureste del Golfo de México (Estados de Tabasco, Campeche, Yucatán y
Quintana Roo). Doctoral thesis. Facultad de Ciencias, Universidad Nacional Autónoma de
México. Ciudad de México, México.
DUNBAR, R. I. M. 1989. Social systems as optimal strategy sets: the costs and benets of sociality. Pp.
131-149 in Comparative socioecology: The behavioral ecology of humans and other mammals
(Standen V., and R. A. Foley, eds.). Blackwell Scientic Publications. Oxford, United Kindom.
FAZIOLI, K. L., S. HOFMANN, AND R. S. WELLS. 2006. Use of Gulf of Mexico coastal waters by distinct
assemblages of bottlenose dolphins (Tursiops truncatus). Aquatic Mammals 32:212-222.
FÉLIX, F. 1997. Organization and social structure of the coastal bottlenose dolphins Tursiops truncatus in
the Gulf de Guayaquil, Ecuador. Aquatic Mammals 23:1-16.
GARCÍA, R. 1995. Presencia de toninas, Tursiops truncatus (Montagu 1821), en la Zona de pesca de
camarón de Alvarado, Ver. México (Cetácea: Delphinidae). Undergraduate thesis. Facultad de
Biología. Universidad Nacional Autónoma de México. Iztacala, México.
GARCÍA-VITAL, M. 2012. Relación de los patrones de asociación y las actividades de delnes (Tursiops
truncatus) residentes de Alvarado, Veracruz. MSc thesis. Instituto de Ciencias Marinas y Pesquerías,
Universidad Veracruzana. Boca del Río, Mexico.
GERO, S., L. BEJDER, H. WHITEHEAD, J. MANN, AND R. C. CONNOR. 2005. Behaviourally specic preferred
associations in bottlenose dolphins, Tursiops spp. Canadian Journal of Zoology 83:1566-1573.
GOODALL, J. 1986. The chimpanzees of Gombe: Patterns of behavior. The Belknap Press of the Harvard
University Press. Cambridge, EE. UU.
HERNÁNDEZ-CANDELARIO, I. C. 2009. Interacción del delfín costeroTursiops truncatus con embarcaciones y
artes de pescaen el Sistema Arrecifal Veracruzano. MSc thesis. Centro de Investigación Cientíca
y de Educación Superior de Ensenada. Ensenada, Mexico.
HURLBERT, S. H. 1984. Pseudoreplication and the design of ecological eld experiments. Ecological
Monographs 54:187-211
LUSSEAU, D., B. WILSON, P. S. HAMMOND, K. GRELLIER, J. W. DURBAN, K. M. PARSONS, T. R. BARTON, AND P. M.
THOMPSON. 2006. Quantifying the inuence of sociality on population structure in bottlenose
dolphins. Journal of Animal Ecology 75:14-24.
MACHLIS, L., P. W. D. DOOD, AND J. C. FENTRESS. 1985. The pooling fallacy: Problems arising when individuals
contribute more than one observation to the data set. Zeitschrift für Tierpsychologie 68:201-14.
MAREIKE, S. E. 2003. The social aliation and group composition of bottlenose dolphins (Tursiops
truncatus) in the outer southern Moray Firth, NE Scotland. MSc thesis. School of Biological
Science. University of Whales. Whales, United Kindom.
348 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY
MARTÍNEZ-SERRANO, I., A. SERRANO, G. HECKEL, AND Y. SCHRAMM. 2011. Distribución y ámbito hogareño de
toninas (Tursiops truncatus) en Veracruz, México. Ciencias Marinas 37:379-392.
MAZE, K. S., AND B. WÜRSIG. 1999. Bottlenose dolphins of San Luis Pass, Texas: Ocurrence patterns site
delity, and habitat use. Aquatic Mammals 25:91-103.
MCDONALD, D. W., AND G. M. CARR. 1989. Food security and the rewards of tolerance. Pp. 75-99 in
Comparative socioecology: The behavioural ecology of humans and other mammals (Standenana
V., and R.A. Foley, eds.). Blackwell Scientic Publications. Oxford, United Kindom.
MEDELLÍN-ORTIZ, B. N. 2012. Diferencias sexo-especícas en las áreas núcleo de la distribución de los
delnes Tursiops truncatus frente al sistema lagunar de Alvarado, Golfo de México. MSc thesis.
Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana. Boca del Río, México.
MORTEO, E. 2002. Distribución y movimientos del tursión (Tursiops truncatus: Montagu, 1821) en las
aguas adyacentes a San Quintín, Baja California, México (Cetacea: Delphinidae). Undergraduate
thesis. Universidad Autónoma de Baja California. Ensenada, México.
MORTEO, E. 2011. Ecología social de los delnes (Tursiops truncatus) en las aguas costeras de Alvarado,
Veracruz, México. Doctoral thesis. Instituto de Ciencias Marinas y Pesquerías. Universidad
Veracruzana. Boca del Río, México.
MORTEO, E., AND I. HERNÁNDEZ. 2007. Resultados preliminares sobre la relación entre delnes Tursiops
truncatus, embarcaciones y artes de pesca en el Sistema Arrecifal Veracruzano. Pp. 241-256 in
Investigaciones Cientícas en el Sistema Arrecifal Veracruzano (Granados-Barba, A., L. G. Abarca-
Arenas, y J. M. Vargas-Hernández (eds.). Promep, Universidad Veracruzana, Universidad Autónoma
de Campeche. Campeche, México.
MORTEO E., A. ROCHA-OLIVARES, P. ARCEO-BRISEÑO, AND L. G ABARCA-ARENAS. 2012. Spatial analyses of
bottlenose dolphin-sheries interactions reveal human avoidance o a productive lagoon in
the western Gulf of Mexico. Journal of the Marine Biological Association of the United Kingdom
92:1893-1900.
MORTEO E., A. ROCHA-OLIVARES, AND L. G. ABARCA-ARENAS. 2014. Sexual segregation in coastal bottlenose
dolphins (Tursiops truncatus) in the south-western Gulf of Mexico. Aquatic Mammals 40:375-385.
QUINTANA-RIZZO, P. 2006. Group ssion-fussion dynamics and communication in the bottlenose dolphin
(Tursiops truncatus). MSc thesis. Graduate School Theses and Dissertations. University of South
Florida. Tampa, USA.
QUINTANA-RIZZO, E., AND R. S. WELLS. 2001. Resighting and association patterns of bottlenose dolphins
(Tursiops truncatus) in the Cedar Keys, Florida: insights into social organization. Canadian Journal
of Zoology 79:447-456.
ROGERS, C. A., B. J. BRUNNICK, D. L. HERZING, AND J. D. BALDWIN. 2004. The social structure of bottlenose
dolphins, Tursiops truncatus, in the Bahamas. Marine Mammal Science 20:688-708.
ROUGHGARDEN, J. 1989. The structure and assembly of communities. Pp. 203-226 in Perspective in
ecological theory (Roughgarden, J., R. M. May, y S. A. Levin, eds). Princeton University Press.
Princeton, EE. UU.
SCOTT, M. D., AND S. J. CHIVERS. 1990. Distribution and herd structure of bottlenose dolphins in the
eastern tropical Pacic Ocean. Pp. 387-402 in The bottlenose dolphin (Leatherwood, S., and R. R.
Reeves, eds.). Academic Press. San Diego, EE. UU.
SHANE, S. H. 1990. Behavior and ecology of the bottlenose dolphin at Sanibel island, Florida. Pp. 245-265
in The bottlenose dolphin (Leatherwood, S., and R. R. Reeves, eds.). Academic Press Inc. San Diego,
EE. UU.
SHANE, S. H., R. S. WELLS, AND B. WÜRSIG. 1986. Ecology, behavior and social organization of the Bottlenose
Dolphin: A review. Marine Mammal Science 2:34-63.
SMOLKER, R. A., A. F. RICHARDS, R. C. CONNOR, AND J. W. PEPPER. 1992. Sex dierences in patterns association
among Indian Ocean bottlenose dolphins. Behavior 123:38-69.
www.mastozoologiamexicana.org 349
García-Vital et al.
STEINER, A. 2011. Activity budget of inshore Indo-pacic bottlenose dolphin (Tursiops aduncus): A critical
evaluation of methods and comparison among other populations. Marine Mammal Science
271:20-38.
WELLS, R. S. 1991. The role of long-term study in understanding the social structure of a bottlenose
dolphin community. Pp. 199-226 in Dolphins societies (Pryor, K., and K. Norris, eds.). University of
California Press. Los Angeles, EE. UU.
WELLS, R. S., A. B. IRVINE, AND M. D. SCOTT. 1980. The social ecology of inshore Odontocetes. Pp 263-317
in Cetacean behavior: mechanisms and functions (Hermann, L.M. ed.). John Wiley y Sons. Nueva
York, EE. UU.
WELLS, R. S., M. D. SCOTT, AND A. B. IRVINE. 1987. The social structure of free-ranging bottlenose dolphins.
Pp. 247–305 in Current mammalogy (Genoways H. H. ed.). Plenum Press. New York, EE. UU.
WHITEHEAD, H. 1999. Testing association patterns of social animals. Animal Behaviour 57:F26-29
WHITEHEAD, H. 2009. SOCPROG programs: analyzing animal social structures. Behavioral Ecology and
Sociobiology 63:765-778.
WHITEHEAD, H., R. ANTUNES, S. GERO, S. N. WONG, D. ENGELHAUPT, AND L. RENDELL. 2012. Multilevel societies
of female sperm whales (Physeter macrocephalus) in the Atlantic and Pacic: why are they so
dierent? International Journal of Primatology 33:1142-1164.
WRANGHAM, R. W., R. GITTLEMAN, AND C. A. CHAPMAN. 1993. Constraints on group size in primates and
carnivores: population density and day-range as assays of exploitation competition. Behavioral
Ecology and Sociobiology 32:199-210.
WÜRSIG, B. 1979. Dolphins. Scientic American 240:136-48.
WÜRSIG, B., AND T. A. JEFFERSON. 1990. Methods of photo-identication for small cetaceans. Report
International Whaling Commission 12:43-52.
Summited: February 13, 2015
Review: April 8, 2015
Accepted: April 21, 2015
Associated editor: Juan Pablo Gallo
350 THERYA Vol.6(2): 337-350
DOLPHIN BEHAVIOR AND SOCIOLOGY