Conference PaperPDF Available

Abstract

For the majority of mines, closure succeeds when healthy, self‐sustaining ecosystems develop on previously mined lands. In British Columbia, Canada, the regulations require reclamation of ecosystems; however, there are few specified targets, and those that are presented are vague. Genomics technologies may provide the key to both understanding the elements necessary to recreate functional ecosystems and provide sufficient benchmarks for success. In this review, we highlight the use of genomics to meet mine closure goals, enhance ecosystem development and optimise ecosystem services inherent in self‐sustaining reclaimed ecosystems. We outline practical steps for applying genomics technologies to characterise the composition and activity of microbial communities in soils and treatment substrates. From this framework, we address the state of the science and how recently developed techniques have transferable value to mine reclamation. We then define three areas in which genomics technologies have already proven effective at informing management and reclamation of mine sites in the form of bioreactors, passive treatment systems and novel gene discovery. Finally, we speculate on the future applications of genomics technologies and the necessary steps to integrate these data into comprehensive management of mined sites.
MineClosure2015A.B.Fourie,M.Tibbett,L.SawatskyandD.vanZyl(eds)
©2015InfoMineInc.,Canada,9780991790593
MineClosure2015,Vancouver,Canada1
Usinggenomicsinminereclamation
L.H.FraserNaturalResourceSciences,ThompsonRiversUniversity,Canada
H.W.GarrisNaturalResourceSciences,ThompsonRiversUniversity,Canada
S.A.BaldwinChemicalandBiologicalEngineering,UniversityofBritishColumbia,Canada
J.D.VanHammeBiologicalSciences,ThompsonRiversUniversity,Canada
W.C.GardnerNaturalResourceSciences,ThompsonRiversUniversity,Canada
Abstract
Forthemajorityofmines,closuresucceedswhenhealthy,selfsustainingecosystemsdevelopon
previouslyminedlands.InBritishColumbia,Canada,theregulationsrequirereclamationof
ecosystems;however,therearefewspecifiedtargets,andthosethatarepresentedarevague.
Genomicstechnologiesmayprovidethekeytobothunderstandingtheelementsnecessaryto
recreatefunctionalecosystemsandprovidesufficientbenchmarksforsuccess.Inthisreview,we
highlighttheuseofgenomicstomeetmineclosuregoals,enhanceecosystemdevelopmentand
optimiseecosystemservicesinherentinselfsustainingreclaimedecosystems.Weoutlinepractical
stepsforapplyinggenomicstechnologiestocharacterisethecompositionandactivityofmicrobial
communitiesinsoilsandtreatmentsubstrates.Fromthisframework,weaddressthestateofthe
scienceandhowrecentlydevelopedtechniqueshavetransferablevaluetominereclamation.We
thendefinethreeareasinwhichgenomicstechnologieshavealreadyproveneffectiveatinforming
managementandreclamationofminesitesintheformofbioreactors,passivetreatmentsystems
andnovelgenediscovery.Finally,wespeculateonthefutureapplicationsofgenomicstechnologies
andthenecessarystepstointegratethesedataintocomprehensivemanagementofminedsites.
1Introduction
Inanidealsystem,minesoperatewithminimalenvironmentalimpactwithinandoutsideoftheoperational
footprint.Aftertheperiodofprofitableextractionisreached,adesirableconditionisrecreated,beitforest,
pastureorsuburbanneighbourhood,sothatthebiota(soilmicrobestrees,andconcernedcitizensalike)can
functionwithinanatural,selfsustainingecosystem.Inreality,minesitesoftenleavealegacy,including
perpetuallyalteredplantcommunities(Holl,2002);elevatedcontaminantsinsurfaceandgroundwater(Cidu
etal.,2001);thin,compactsoils(Skousenetal.,2009);alteredsoilfunction(Mummeyetal.,2002);and
magnificationofcontaminantswithinthefoodchain(Allan,1995;MuscatelloandJanz,2009).
InCanada,governmentregulationsonminingoperationssetthestandardsforreclamationsuccess,andasa
result,directthefateofminedlands.TheBritishColumbiaMinesActandHealth,SafetyandReclamation
CodeforMines(theCode)specifythatreclamationmustsatisfytherequirementsofthechiefinspector
(GovernmentofBritishColumbia,2008).Thelegislationisvagueandsubjecttointerpretation(byboththe
miningcompaniesandtheinspectors),sotherehasbeenvariabilityingoalsandmeasuresofsuccess.
Historically,goalsweresetforplantproductivity,likelybecauseproductivityisrelativelyeasytomeasureand
canbeassociatedwithecosystemfunction(Britton,1998).ThecurrentCode(10.7.5)expressesagoalfor
equivalentlandcapability,whichisachallengetoachievebecausetherearenosetpredefinedtargets.There
hasbeenarecenttrendtoconsidermineclosureintermsofthewholeecosystem,withallofitsfunctions
andservices.
Ecosystemservicescanbedefinedas“theaspectsofecosystemsutilised(activelyorpassively)toproduce
humanwellbeing“(Fisheretal.,2009).Theecosystemservicesforreclaimedminedlandsmayincludeforage
UsinggenomicsinminereclamationL.H.Fraser,H.W.Garris,S.A.Baldwin,J.D.VanHammeandW.C.Gardner
2MineClosure2015,Vancouver,Canada
forcattleandwildlife,timber,cleanairandwater,carbonsequestration,biodiversityandculturally
significantnaturalproductsrelatedtotraditionalpracticesandmedicines.Canadianregulationsexistto
protecttheseservices,orensuretheircontinuation,duringandafterminingactivitiestakeplace.Despite
pervasiveeffortstomeetandimproveuponregulatoryguidelinesforecosystemservicesatpreviouslymined
sites,thereisalargedegreeofuncertaintyinminelandrestoration.Consistentapplicationofrevegetation,
soilamendmentsandregradingtreatmentscanleadtoverydifferentresults,evenonthesamesite
(MartínezRuizandMarrs,2007).Whysuchinconsistency?Manyauthorsattributeittovariabilityinstarting
conditions(theprevailingmineralogicalsubstrate),slope,aspectandmyriadunmeasuredfactors(Martínez
RuizandMarrs,2007),withoneemergingfrequently―thesoilmicrobiota(Harris,2003).
Microorganismsarecatalystsforsoilformation.Theyareresponsibleforcreatingcomplex
microenvironmentsthatleadtonutrientuptakeinplants,semihomeostaticwaterandchemicalregulations,
andtooverallresiliencetoerosion,contaminationandinvasionbyexoticplantspecies.Newsoilsthatform
onexposedbedrockoftenfollowapredictablesuccessionalsequence.Microbialcommunitiesformon
weatheredinorganicsubstrates,fixatmosphericnitrogenandCO2andcontributethekeyelementsoforganic
life.Multicellularplantsandanimalsarerelativelatecomerstothedevelopingcommunity,arrivingwhen
soilformationprocesseshaveprovidedsufficientorganicresourcestosustainthem(seeFrouzetal.,2008,
foradiscussionofthisprocessonpreviouslyminedsites).Chronologically,thisnaturalapproachcanbe
consideredbottomup,withsoilorganismsandprocessesestablishingandpreparingthesubstratebefore
largerplantsandanimalsarrive.Thescienceofrestorationhasnotdevelopedamechanismforrecreating
(muchlessaccelerating)thisbottomupprocess.Rather,practitionersoftenattempttorecreatethedesired
ecosystemirrespectiveofthenaturalchronologicalsequencebysuperimposingsoilamendments,andwith
seedingorplantingpluggedvascularplants(Tordoffetal.,2000).Thispracticeisnotundertakenoutof
ignoranceoftherolesoilmicrobialcommunitiesplay,butbecausetoolstoobserve,quantifyandmanipulate
thesecommunitiesarenotwithinthetypicalorganisation’stoolkit.
Untilrecently,techniquesforobservingandquantifyingmicrobiotahavebeenextremelyrestrictive(Ficetola
etal.,2008).Lessthanonepercentofallsoilmicrobialorganismshavebeenculturedinalaboratorysetting
(Hugenholtzetal.,1998;Harris,2009).Asonealternative,microbiologistshavedevelopedtechniquesfor
quantifyingthemassactionofmicrobesinsoils,includingtherespirationandproductionratesofmetabolic
products.Genomicstechnologiesofferusanopportunitytoobservethecomplexityofmicrobial
communitiesastheyformonminedsites,andtoapplyecologicaltheorytosoilcommunityformationand
structureinawaythathasuntilveryrecentlybeenimpossible.Inrecentdecades,microbialgenomicshas
beenappliedtominesites,aswillbediscussed,butithasyettobeincorporatedintoacomprehensive
monitoringandtroubleshootingparadigmformineclosureandminesiterestoration.Inthispaper,we
provideacontextforgenomicsintheminingcommunityandhighlightspecificapplicationsofgenomicsand
metagenomicstomineclosure.
2Genomicstechniques:Fromsampletomanagementdecision
2.1Sampling
Microbialgenomicsbeginswithasource,eitheranindividualorganismorsamplematerialcomprisingmany
organisms.Soilcontainsacombinationofliving,deadanddormantorganisms,allofwhichcontributetothe
soil’sgeneticsignature.Representativesamplingofsoilsonminesitesfortheirmicrobialcommunity
structuresisachallenge,asminesitesarelarge,oftenincorporatingentirelandscapeswithvarying
geophysicalproperties.Furthermore,soilcommunitiesarenotoriouslypatchyindistribution(amonghabitat
typesandbothhorizontallyandverticallywithineachsoilstratum)(Foster,1988;RanjardandRichaume,
2001).Therefore,itisnotfeasibletosampleeveryhabitattypeandsoilstratumwithinaminedlandscape.
Rather,samplingshouldtargethabitatsandsoilstratathatmayprovidesignsofimminentdegradationof
waterquality(streamsandassociatedwetlandareaswithinandadjacenttotheminedlandcatchment),
contaminantsequestration(bioreactorsubstrates,ororganicrichsoilsreceivingrunofffromtheminesite)
orreclamationsuccess(processedparentmaterial,organicamendmentsandunimpactedreferencesites).
KeynotesandPlenaries
MineClosure2015,Vancouver,Canada3
Thereareafewmajorconcernstoconsiderwhendesigningasamplingprotocolforgenomicanalysis.First,
thesoilchemistryandwatercontentofsampleschangerapidlyuponcollection,possiblyleadingtoshiftsin
theactivityandabundanceofmicrobeswithinthesoil,especiallywhencollectedfromanoxicsubstrates.
Biologicalactivitymustthereforebesuspendedasquicklyaspossiblefollowingcollection,whichgenerally
involvesflashfreezingofsampleswithliquidnitrogen(195°C)oronblocksofdryice(79°C)whenliquid
nitrogenisnotavailableoristoodangeroustouse(e.g.onaboat).Ethanol(95%)canbesprayedonblocks
ofdryicetoaccelerateheattransfer.Thisfreezingprocesssuspendsmetabolicactivityinthesoiland
preservesinsitubacterialabundance.Second,replicationshouldbelargeenoughtoaccountforthehigh
levelofvariationinsoilmicrobialcommunitycompositionandstructure,witheachreplicaterepresentinga
homogeneousmixtureofmultiplesamples(oftensoilcores)takeninthefield.Biogeochemicalgradients
acrossphysicalinterfacesandwithinsedimentscanbeverysteep.Therefore,preservationandassessment
oflayersispreferable(seedeGruijteretal.,2006,foracomprehensivediscussionofsamplingdesignsspecific
tonaturalresourcemonitoring).Asmicrobialcommunitiesdependverystronglyonlocalconditions
(water/soilchemistryandbiologicalinteractions),sufficientmetadatashouldberecordedalongwitheach
sampletoenablethisvariationtobedescribedforaparticularcommunity.Asaminimum,thisshouldinclude
pH,temperature,dissolvedoxygen,conductivity,nitrate,nitriteandphosphorus.Finally,becauseoftheir
abilitytobringoxygenandcarbonresourcesintootherwiseanaerobicsoils,plantrootingzonescanplaya
pivotalroleindeterminingmicrobialcommunitycomposition(Marschneretal.,2001;Marschneretal.,
2004),andsamplestakenfromvegetatedsubstratesshouldaccountforthecompositionandcharacteristics
ofcooccurringplantcommunities.
2.2Extraction
DNAextractioninvolvestwosteps:(1)breakingapartcellwallsandmembranes(celllysis)throughsome
combinationofheating,sonicationand/orchemicaltreatment,and(2)isolation/concentrationofDNAvia
filtration(Picardetal.,1992;Zhouetal.,1996).Althoughconceptuallysimilar,differentlysismethodscan
produceconflictingresults(MartinLaurentetal.,2001;Carriggetal.,2007).
Therearethreemajorchallengestoconsistencyintheextractionprocess.First,manymicroorganismsform
coloniesorcrustsonsubstratecomponents(sandgrainsandsmallstones).Thesecoloniescanbedifficultto
breakapart,andfundamentallyprotectmanycellsfromthelysisprocedure.Thiscanleadtodifferencesin
perceivedcommunitycompositionwhencomparingsampleswithdifferentsubstrategrainsizes.Pre
washingprocedureshavebeendevelopedtosuspendadheredcommunitiesinsolutionbeforebreakingapart
cells,leadingtomorerepresentativeextractions(Fortinetal.,2004;Heetal.,2005).
Second,thethicknessandmaterialpropertiesofcellwallsandmembranesarenotuniformforall
microorganisms.Developinglysisproceduresthereforeinvolvesidentifyingthemajorgroupsof
microorganismsofinteresttothestudy,andconsideringperformingparallelextractionstoisolatedistinct
groupsforcomparison.Sulphatereducingbacteria(SRB)andmethanogenicarchaeaareofparticularinterest
totheminingindustryfortheirprevalenceandactivityinminedsubstrates.Bacterialandarchaealcellwalls
comprisedifferentmaterials(seeKandlerandKönig,2014,forachemicalandfunctionaldescriptionofthese
differences).Asaresult,usingasinglelysisprocedurewillinvariablyunderrepresentoneofthesegroups,
andmultiplelysisproceduresshouldbeevaluatedifacomprehensiveunderstandingofmicrobialcommunity
compositionandprevalenceisdesired.
Finally,highlydegradedorganicmaterialincarbonrichsoils(humicacids)aredifficulttoseparatefromDNA,
oftenleadingtocontaminationofDNAextractsandpoorsequencereads(Yeatesetal.,1998).Procedures
havebeendevelopedtoaccommodatesamplesrichinorganicacids;theseinvolveremovalofhumicacids
withadditionalfiltrationsteps(TsaiandOlson,1992)orionexchangechromatography(TebbeandVahjen,
1993).
UsinggenomicsinminereclamationL.H.Fraser,H.W.Garris,S.A.Baldwin,J.D.VanHammeandW.C.Gardner
4MineClosure2015,Vancouver,Canada
2.3Amplificationandsequencing
DNAextractedfromthemineenvironmentsampleprovidesinformationaboutthemicrobialcommunityand
metabolicprocessesatthatsite.Onemethodtodescribethemicrobialcommunityusesspecificcomponents
oftheDNA,suchasgenesknowntovaryamongspecies,thatareamplifiedviapolymerasechainreaction
(PCR)(Valentinietal.,2009).Thesereferencegenesfoundintheminesamplearecomparedtocurated
databasesofknownannotatedsequences(BOLD,GenBank,MGRAST)(RatnasinghamandHebert,2007;
Meyeretal.,2008;Bensonetal.,2013),therebyidentifyingwhichspeciesarepresentattheminesite.Early
usesofgenomicstechnologyforbacterialcommunitycharacterisationfocusedonthe16SrRNAgene,a
segmentofDNAcriticalfortheproductionofproteinsbyprokaryoticcells,andthatisgenerallyuniqueto
eachspecies(Weisburgetal.,1991).Sequencingof16SrRNAgeneshasbeenusedtoquantifymicrobial
diversitywithsufficientresolutiontodetectshiftsalongmajorecologicalgradients(Schmidtetal.,2014).
However,thisapproachislimitedtodeterminingwhichmicrobialspeciesarepresentandprovideslittle
informationabouttheactualmetabolicprocessestakingplace(Eisen,2007).Stableisotope(with13C)
probinghasbeenusedinrecentyearsincombinationwithenvironmentalDNAsequencingtoisolate
microbialcommunityfractionsinvolvedinspecificmetabolicprocesses(DumontandMurrell,2005;
Verasteguietal.,2014),whichmakestheimportantlinkbetweenbacterialcommunitycompositionand
specificmetabolicfunctions.
Withtheadventofhighthroughputsequencingtechnologies,targetingonlyspecificregionswithinDNAhas
givenwayto“shotgun”andwholegenome/metagenomesequencingusingalloftheDNAinthesample
(Tringeetal.,2005).Thetermmetagenomeisusedwhenthesamplecontainsmanyorganisms(andthus
genomes),asisthecaseinsoils.Shotgunsequencinginvolvesbreakingthemetagenomeintomanysmall
fragmentsviaphysicalshearingorenzymaticprocesses(Sharpton,2014).Aftersequencing,thesefragments
canbeusedtoreconstructentiregenomesfortheorganismspresentatthesitebyaligningthesequences
wheretheyoverlap.Themetagenomeincludesbothfunctionalinformation(genemarkerslinkedtospecific
metabolicproducts)andcompositionalinformation(e.g.16Sandotherspeciesspecificreferencesequences)
(Xiaetal.,2011).Thecomputationaltechniquesrequiredtocompile,alignandinterpretthesemillionsof
basesofgeneticcodearrangedintoshortfragmentsistermedbioinformatics(discussedinthenextsection).
AnadditionaluseofenvironmentalDNAfragmentsisfunctionalscreening.Cloningofthesefragmentsinto
livehostssuchasthebacteriumE.coliortheyeastP.pastorisenablesexpressionoftheproteinproducts
andtheirfunctionalscreening.Forexample,growingofE.colicellscontainingenvironmentalDNAon
mediumcontainingcelluloseallowedfordirectidentificationofnovelcellulaseenzymes(Mewisetal.,2013)
fromamineremediationenvironment.
2.4Bioinformatics
Bioinformaticsreferstothecomputationalproceduresusedtoextractmeaningfulinformationfromthevery
largedatasetsproducedinmetagenomicstudies.Bioinformaticspipelinesrequireconsiderable
computationalpoweranduniquealgorithmstocarryoutthestepsfromqualitycontrolofthesequencesto
assemblingfunctionalcomponents(i.e.sequencescodingforproteinsusedincellularfunctionscalledopen
readingframesorORFs)thatyieldinformationaboutthemetabolicpotentialoftheorganismspresentatthe
site.Bioinformaticsformetagenomicsarecomplex,ascompositionalaswellasfunctionalreconstructionis
required.Toidentifycompositionalstructure,themarkergenes(i.e.16SrRNA)arebinned,basedontheir
similarity,intooperationaltaxonomicunits(OTUs)thatarelikelytobederivedfromthesamespecies.
Assembledfunctionalcomponents(theORFs)andOTUsareinterrogatedagainstproteinandgenedatabases
inbioinformaticspipelinesusingtheblasttools(Altschuletal.,1990)inordertoassignputativefunctions
andidentitiestothemicrobialcommunityfoundintheminesitesample(seeSharpton,2014,fora
comprehensivediscussionofprocessingandinterpretationofshotgunderivedsequences).
KeynotesandPlenaries
MineClosure2015,Vancouver,Canada5
3Applications
3.1DNAbarcoding
Giventhemuchlarger,morecomplexgenomesfoundinplantandanimalspecies,themoleculartoolsfor
identifyingthemhavedevelopedmoreslowlythanthoseformicroorganisms.Whereasthe16SrRNAgeneis
foundinallbacteriaandarchaea,thecorresponding18SrRNAgeneinhighereukarya,andevenfungi,isnot
asreliableasaspeciesidentifier.Assuch,mucheffortisbeingputintofindingsignaturegenes,called“DNA
barcodes,”fordifferentgroupsofplants,invertebratesandvertebrates(Hebertetal.,2003).Eachspecies
collectedcanberapidlyandcosteffectivelyidentified,andwiththepropersamplingprotocols,quantifiedin
termsofrelativeabundanceanddiversitybysite.
NewGold’sNewAftonMinenearKamloops,BritishColumbia,Canada,beganoperationin2012.Although
themineisinitsearlydaysofoperation,ithastakenaproactiveapproachtofuturemineclosureplansby
implementingapartnershipwiththeBiodiversityInstituteofOntariotoimplementDNAbarcodingfor
environmentalimpactassessments.Thepilotprograminvolvedfoursites:twograsslandsites(disturbedand
undisturbed)andtwowetlandsites(disturbedandundisturbed).Invertebratesamplesfromthesefoursites
werecollectedinthesummerof2013,andDNAbarcodeanalyseswerecompletedinAugust2014.Between
294and5,560individualinvertebrateswerecapturedinMalaisetrapseachweek,and3,956specieswere
identified(D.WilsonandS.Davidson,personalcommunication8May,2015).Differenceswereobserved
betweenhabitattypessuchthatwetlandscontainedmorespeciesthangrasslands,andthenaturalgrassland
hadmorespeciesthanthedisturbedgrassland.Theintentionistocontinuemonitoringonafour‐tofive
yeartimescale.Suchbaselinedataprovideinvaluableinformationforfuturemineclosureandsite
reclamation.
3.2Metaomics
Thankstotheconservednatureof,andrelativelylonghistoryofcollectingsequencedatafor,the16SrRNA
geneinbacteriaandarchaeaand,toalesserextent,the18SrRNAgeneinfungi,researchersinterestedin
microbialcommunities(e.g.environment,health,industry)havereachedastagewhereusingthese
referencegenestodescribemicrobialcommunitycompositionanddiversityisnowroutine(Schmidtetal.,
2014).Ashortnumberofyearsago,publicationswouldbebasedsolelyon16SrRNAgenesurveysof
microbialcommunities,whereastodaythesesurveysareconsideredoneofmanystandardanalyticaltools
forscanningmicrobiallandscapes.While16Sand18SrRNAgenesurveyswillcontinuetobepowerfultools,
microbiologistshaverealisedthatthesereferencegenesdonotuniversallyreflectthemetabolicpotential
andbiochemicalactivitiesofindividualmicroorganisms,letalonecomplexmicrobialcommunities.This
realisationcontinuestomotivatethedevelopmentof“meta”toolstoqualifyandquantifyalloftheDNA,
mRNAandproteinsinmicrobialcommunities(metagenomics,metatranscriptomicsandmetaproteomics)
andtorelatethesedatatobiochemicalfluxes(metabolomics)and,ultimately,ecosystemfunctions(Krause
etal.,2014).
Atthepresenttime,therearegoodgenomicdatabasesforpurebacterialculturesgrownunderlaboratory
conditions.Generatinggooddraftsofmicrobialgenomescannowbedoneindaysratherthanyears,by
individualsratherthanteams,forhundredsratherthanmillionsofdollars.Thisisamajorshiftfromlessthan
adecadeago(Kyrpidesetal.,2014).Highthroughputtranscriptomicandproteomictoolshavecomeonline
andarebeingincreasinglyusedforpureculturablemicroorganismsaswell.Thetoolsareavailableto
characterisenaturalmicrobialcommunities,butanalysingdatafromevenafewsamplesinameaningfulway
stillrequirestheuseofsupercomputersorpowerfulcomputerclusters,andisbasedonimperfectdatabases
establishedintheearlydaysofgenomics(Howeetal.,2014).A“metaomics”studyisnotforthefaintof
heart,butthefieldisshiftingrapidly,andthesetypesofstudiesarebecomingmorecommondespitethe
needforlargemonetaryandpersonnelinvestments.Majorbreakthroughsarecurrentlybeingmadeto
advanceourunderstandingofthedominantrolesmicroorganismsplayinthemetabolismandlifestylesofall
macroorganisms.Further,biotechnologicalapplicationsarebeingrealisedinanarrayoffields,including
UsinggenomicsinminereclamationL.H.Fraser,H.W.Garris,S.A.Baldwin,J.D.VanHammeandW.C.Gardner
6MineClosure2015,Vancouver,Canada
forestry,agriculture,animalhusbandry,humanhealth,andfood,beverageandfuelproduction(Ekkersetal.,
2012).
Giventherichliteratureonmetalmicrobeinteractions(Gadd,2010),thereistremendousscopeforapplying
metaomicstominereclamation,particularlygiventhesmallbutsolidfoundationofgenomicworkbeing
doneinphytoremediation(Baietal.,2014),metalplantinteractions(HanikenneandNouet,2011;Bhargava
etal.,2012)andsoilecology(Howeetal.,2014)onwhichtobuild.Lookingtothefuture,oncecurrentmeta
omicstoolshavesufficientlymaturedformicrobialcommunities,thegene,transcript,proteinandmetabolic
signaturesfromplantsandothermacroorganismsmustbeintegratedinholisticmodelsinordertobetter
appreciatetheholobionts(macroorganismsandtheirassociatedmicrobialandviralcommunities)essential
tohealthyecosystems.
3.3Stateofthescience
3.3.1 Example 1: Bioreactors
Seepagefromminetailingsstoragefacilities,wasterockpiles,openpitsandundergroundworkings,aswell
asexcessprocesswater,containsmetalssuchasselenium,copper,molybdenum,zincandarsenic,often
alongwithsulphateandnitrate(McDonaldandStrosher,1998;WangandMulligan,2006).Highdensity
sludgetreatmentisusedatmanyminesitestotreatthismineinfluencedwater,butthischemicalprocess
consumeslargequantitiesofreagentsandproduceshighvolumesoftoxicsludgerequiringlongtermsafe
storage(ZinckandGriffith,2013).Bioreactorsofferasustainable,costeffectivealternativetoreagentbased
watertreatmenttechnologies.
Biologicalprocessesusenaturalmicroorganismstotreatmineinfluencedwater.Somebioreactorsreduce
sulphatetoproducesulphide,whichchemicallybindswithmetalions,causingthemtoprecipitateoutof
solutionasstablemetalsulphides(Barnesetal.,1994).Additionally,bioreactorshavebeendesignedto
selectivelyremovespecificvaluablemetals,suchascopperandzinc,thatcanberecycledtothemetal
extractionfacility(ZinckandGriffith,2013).Bioreactorsareusedtoremovenitrate,whichishighinsome
mineinfluencedwaterowingtotheuseofexplosivesonminesites(Korenetal.,2000).Seleniumandarsenic
aremetalsthatoccurasanions,andtherearenaturalmicroorganismsthattransformthesecompoundsin
ordertogainenergyforgrowth.Biologicalreactorsusingtheseorganismssuccessfullyremoveseleniumand
arsenicfrommineinfluencedwater(Moritaetal.,2007).
Giventhebenefitsineconomicsandeffectivenesspromisedbybiologicaltreatment,itissurprisingthatuse
ofbioreactorsisnotwidespreadonminesites.Afewreasonsforthishavebeenrevealedthroughthe
applicationofmetagenomics.Bioreactorscontainconsortiaofmicroorganisms,ratherthanonesingletype
(Baldwinetal.,2012),andtheperformanceofthesebioreactorsdependsonthetypesofmicroorganisms
usedtoinoculatethem(Prudenetal.,2007).Microbialcommunitiesaredynamic,andtheirmembers
fluctuateinabundanceandactivityinresponsetochangesintheinfluentwateroroperatingconditions(Dar
etal.,2008).Shiftsinmicrobialcommunitycompositioncanleadtofailuretomeetwaterquality
specifications,ultimatelyputtingthereceivingenvironmentatrisk(MirjafariandBaldwin,2011).To
overcomethislimitationofbiologicaltreatment,itisnecessarytomonitormicrobialcommunitycomposition
inbioreactorsandcorrelatethistooperationalsettingsandperformancemetrics.Themicrobialcommunity
inminebasedbioreactorscanbemonitoredusingthemetagenomicstechniques,suchasthosetargetingthe
16SrRNA,describedinSection2.3(SchmidtovaandBaldwin,2011;Baldwinetal.,2015).
Highthroughputsequencingcangenerateenoughinformationtocharacterisetheentiremicrobial
communityincludingveryraremembers.Oftentheimportantfunctionalgroupsformetalremovalin
bioreactorsarerare,eventhoughtheiractionachievessuccessfultreatment(Rezadehbashietal.,2012).
Someothermicrobespresentfacilitatetheactivityofthesedesiredgroups,orsomemightcompetefor
nutrientsandhindertheiractivity.Nutrientconsumptionisoneofthemajorcostsinrunningabioreactor,
andwhenundesiredmicrobescompetesuccessfullyformostofthenutrients,thedesiredorganismsdecline
innumberandbioreactorperformancefails(Silvaetal.,2012).
KeynotesandPlenaries
MineClosure2015,Vancouver,Canada7
Muchoftheworkdonetodateonmicrobialcommunitiesinbioreactors,especiallythoserelatedtomine
remediation,hasfocusedonmicrobialcommunitycompositionbasedonsurveysofthe16SrRNAgene.
Thesesurveyshaverevealedthatmicrobialgroupsassociatedwithmetalrichenvironmentsareunknown
anduncharacterised,suchthatnewtaxonomicgroupshavebeeninventedtoclassifythem(Khoshnoodiet
al.,2013).Thus,metagenomicstudiesareneededtodiscoverthepotentialfunctionsofthesenovel
organisms(Ellisetal.,2012).
SequencingofDNAprovidesinformationonmetabolicpotentialonly,anddoesnotrevealwhichofthegenes
arebeingactivelyexpressed.Activemetabolicprocessescanbedetectedbysequencingthetranscribed
genesusingatechniquereferredtoastranscriptomics(Luoetal.,2014).Althoughveryrecentlydeveloped
formicrobialcommunitiesinbioreactors(Luoetal.,2014),microbialtranscriptomicsispossiblebutrequires
carefulsamplingtopreservetheactivestateofthemicrobes.
Giventheaffordabilityofhighthroughputsequencing,useofmetagenomicsandtranscriptomicsfor
bioreactormonitoringisboundtoincrease.Sincethesedatasetsarenew,correlationofmicrobial
communitycomposition,metagenomicsandtranscriptomicswithbioreactoroperationandperformanceis
stillbeinginvestigated.Asthebioinformaticsimproves,thesemetagenomicstoolsshowpromiseforfuture
processcontrolofbioreactors.
3.3.2 Example 2: Passive treatment systems
Thebenefitofusingbioreactorsformineremediationisthattheycanbecontrolledusingtanks,pumps,
valves,instrumentationanddefinednutrientstoachievejusttherightconditionsandrapidkineticsfor
treatinglargeflowrates(ZinckandGriffith,2013).However,theircapitalandoperatingcostsaddtothe
expenseofmineoperationandclosure.Inaddition,althoughtheyarehighlyautomated,operatorsare
needed.
Thevastarrayofnaturalprocessesforbiogeochemicalcyclingofmetalsandnutrientscanbeharnessedin
socalledpassiveorsemipassivetreatmentsystems(Ziemkiewiczetal.,2003).Thesetypicallytaketheform
ofconstructedwetlands,eithersubsurfaceflowanaerobic,surfaceflowaerobicor,mostcommonly,
combinationsthereof.Insteadofdefinednutrients,mixturesofwasteorganicmaterialssuchaswooddebris,
hay,compost,pulpandpapermillbiosolidsareused.Thesecomplexorganicmaterialsaredecomposedinto
thesmallercarboncompoundsneededforthesulphate‐andmetalreducingbacteria.
Ifsuccessful,passivetreatmentcanremovemetalsatseepsdistributedacrosstheminesiteforafractionof
thecostofactivebioreactortreatment(ZinckandGriffith,2013,p.14).Themetalresidualsarecapturedand
securedinsidetheorganicmatrix,mostoftenassparinglysolublemetalsulphides(Khoshnoodietal.,2013).
Theecosystemofapassiveremediationsystemisascomplicatedasthatofsoils(Baldwinetal.,2015).Like
bioreactors,theyareconsortiaofinteractingspeciesthatshiftincompositionwithgeochemicalgradients,
seasonsandtheageofthesystem(vanderLelieetal.,2012).Theirperformancemaydeclineastheorganic
materialdecomposes,evolvingtowardsmicrobialcommunitieswithcompletelydifferentmetabolic
potentialthanatthestart(Mirjafari,2014).Preliminarystudiesofthemicrobialcommunitiesinthese
systemsrevealthatthemetabolicpotentialformetalremovalinthemismuchwiderthanpreviouslythought
(Baldwinetal.,2015).Theycontainspeciesthattoleratehighmetalconcentrations,manynovelunclassified
candidatedivisiongroupsfoundinothermetalcontaminatedenvironmentsandspeciescapableofusing
usuallyrecalcitrantaromaticcompoundsforgrowth.
SuccessfulmetalremovaloccurseveninplaceswhereSRBareextremelyrare,meaningeitherthatmany
othergroupsoforganismswedonotknowaboutarecapableofsulphatereductionand/ormetal
precipitation,orthatonlyafewsulphatereducersareneededforsuccessfultreatment(Khoshnoodietal.,
2013;Baldwinetal.,2015).Chartingofmicrobialcommunitiesinpassiveremediationbioreactorshas
revealedthattheyarenotstatic,butfluctuatecyclically(Baldwin,unpublisheddata).Usingmetagenomics
andmetatranscriptomics,wecanlearnmoreaboutthedynamicsoftheseecosystemsastheyrespondto
changingconditionsandusethisknowledgetodesignbettersystemsordiagnoseperformanceissues.
UsinggenomicsinminereclamationL.H.Fraser,H.W.Garris,S.A.Baldwin,J.D.VanHammeandW.C.Gardner
8MineClosure2015,Vancouver,Canada
3.3.3 Example 3: Novel gene discovery
Metalrichecosystemsareconsideredextremeenvironments.Theyharbourhighlyspecialised
microorganismsthathaveevolveduniquemetabolismstotransform,sequesterordetoxifymetalsinorder
tosurvive.Examplesincludesulphatereducers’overproductionofextracellularpolymericmaterialtobind
upcopperions,therebycreatingnucleationsitesforprecipitation(JalaliandBaldwin,2000),intracellular
mineralisationoftelluriumtosequesterthishighlytoxicmetal(AmoozegarandKhoshnoodi,2012),and
methylationandvolatilisationofarsenicbyMethanocorpusculumlabreanum,suggestingthatitmaybea
significantcontributortometalcyclinginanaerobicenvironments(Khoshnoodietal.,2012).
Enzymesinvolvedinmetalcycling,orbiochemicalcompoundswiththeabilitytosequesterspecificmetal
ions,canbeusedinfuturebiotechnologiestoimprovebioremediation,andevendevelopmethodsforinsitu
mining.Thefieldoffunctionalmetagenomics,firstmentionedinSection2.3,isbeingusedtoscreenlarge
DNAfragmentsfromminesites(Mewisetal.,2011).TheselargefragmentsofenvironmentalDNAmay
containnovelgenesformetalcycling,and,usingselectivemediainthelaboratory,wecanscreentheE.coli
clonesformetalresistance.Itmaybepossibleinthefuturetoconstructbiochemicalpathwaysformetal
removalusingsimpleandeasytogroworganismsandsyntheticbiology.
3.4Futureofthescience
3.4.1 Site-specific pre-assessments for closure targets
Theminingindustryhasrecognisedforsometimethatplanningformineclosurebeginsevenbefore
overburdenisremovedfromthesite(Thirgood,1986inPolster1989).Untilrecently,thishasnotincludeda
significantconsiderationofthepreimpactcommunityofplants,animalsandmicroorganismsresidinginthe
unalteredsubstrate,butseeMorrisonetal.(2005)andJasper(2007).Inthefuture,suchassessmentsshould
includeevaluationofbothunimpactedoverburdensoilcommunitiesandstockpilesofsuchmaterialfor
eventualrecoveringofthesite.Microbialgenomicsmayplayakeyroleinexpeditingminelandrestoration
byprovidinginformationonsoilcommunitydynamicsinoverburdenstockpiles,allowingmanagersto
maintainthesecommunitiesinawaythatexpeditesrecoveryoncethesesubstratesareusedtorecoverthe
minedsite.
Microbialgenomicsmayalsoserveasanindicatorforsuccessinthesesystems,providingadditionalevidence
ofsoilcommunityformationandecosystemtrajectory.Tobeabletosetobjectivesforeffectivemine
reclamationandevaluatewhatissuccessful,themeaningof“equivalentlandcapacity”needstobedefined
foreveryminesite.
Barcodingandmetagenomicscanbeincorporatedintomethodsforevaluatingecosystemservices.Microbial
communityanalysisprovidesvaluableinformationaboutnutrient(carbon,nitrogenandsulphur)cycling,
greenhousegasemissionsandmetaltransformationsthatcanbefedintodeterminingpreminingland
capacityassessment.Thiswillallowtargetstobespecifiedforpostminereclamation,andthesesametools
canbeusedtoevaluatewhetherremediationstrategiesareworking.
3.4.2 Whole-ecosystem modelling
Microbialgenomicsfillsacriticalgapineffortstosimulatetheformationofmetabolicnetworksin
ecosystems.Thepresenceorabsenceofkeymicrobialcommunitiesmaymeanthedifferencebetweena
successfullyremediatedsiteandpersistentdegradationofwaterquality(e.g.acidificationandmetal
leaching).Effortsareunderwaytodevelopcomprehensivepredictivenetworksforminesites,inwhich
environmentalgenomicsaretiedtoenvironmentalmonitoringdatatogenerateacomprehensive
understandingofecosystemfunction.Probabilisticmodellingframeworksmayverywellprovideearly
warningsignsofacidgenerationinminedsubstrates,andgenomicsdatamayyieldthenecessaryevidence
todeterminewhatremediationoptionswillbemostlikelytosucceedinboththeshortandlongterm.
KeynotesandPlenaries
MineClosure2015,Vancouver,Canada9
3.4.4 Defining benchmarks
Definingbenchmarksmayverywellbethekeycomponentnecessarytoleveragegenomicstoolsformine
sitemanagement.Bioinformaticsdataprocessingworkflows(pipelines)exist(sometimesincorporated
directlyintosequencinghardware)thatprovideforrapidprocessingandinterpretationofsequencingruns.
Thegreatquestionsfortheminingindustrycanbeputquitesimply:(1)Whatdowesequence?,and(2)How
doweusetheresultingdatatoimprovemanagement,reclamationandcontainment?
Section2.1providesguidelinesforsamplingofthesesites,buttheindustryrequiresawealthofcontext
dependentvalidationoftheseapproachestobecomewidespread.Therefore,researchanddevelopment
resources(bothacademicandindustrial)shouldbeleveragedinsuchawaythatsamplingprocedurescanbe
standardisedtothesortsofquestionsofinterestatminesites(e.g.Howdosoilmicrobialcommunitiesform
onminedsubstrate?Whatsoilconditionspromoterecoveryofnativespecies?).
Ultimately,withstandardsamplingprocedures,bioinformaticspipelinescanbetailoredtoindustryspecific
questions.Forexample,asamplingprotocolmightbedevelopedtoevaluatediffuseleachateexposurein
ripariansubstrates,withthequestion:Doesexposuretoleachateaffectmicrobialcommunitycomposition
anddynamicsinawaythatcouldlimitcontainmentinthefuture?Fieldsamplingandsequencingfollowing
establishedprotocolswouldbeprocessedthroughatailoredbioinformaticspipelinethatyieldsthefollowing
outputs:
1. Communitycompositionmatricesandplannedcomparisons(diversity,similarity,etc.)
2. Compositionaldifferencesandknownassociations(i.e.variationsingroupsoforganismsknown
tobeinvolvedincertaingeochemicalpathways)
3. Managementrecommendationsandreferencestosimilarscenarios/responses.
4Conclusions
Wehaveoutlinedarangeofgenomicsapplicationstomineclosure,fromcharacterisingnaturalsubstrates
beforeoverburdenremoval,towatertreatment,tobioremediationandmonitoringofhealthyreclaimed
ecosystems.Inperformingthisreview,weidentifiedtwokeyconstraintsonthewidespreadapplicationof
genomicsformineclosure.First,industrywidestandardoperatingprotocolsneedtobedevelopedformine
closure,includingsamplingproceduresdesignedforrepresentativenessandcomparability(spatialextent,
replication,temporalfrequency).Second,sequencinganddatainterpretationpipelinesmustbeestablished
inparallelwiththedevelopmentofthesestandards,allowingminemanagerstomoreeasilydiscoverwhat
worksinagivensystemandtoestablishbenchmarksforreclamationsuccess.Miningisakeyglobalindustry
fordevelopmentandforqualityoflife.Theintegrationofgenomicstechnologiesintomineclosureplanning
andimplementationmaydrasticallyimprovethestabilityandreliabilityofecosystemreclamation.
Acknowledgements
WewouldliketothankJonTaylor(UniversityofBritishColumbia)forhelpfultroubleshootingandadvisement
onsamplingdesignforminesiteapplications.WewouldliketothankGenomeBC,GenomeCanada,NSERC
EngageandMitacsAccelerateforfundingtosupportpreliminaryR&Donmetagenomicstechnologies.We
wouldalsoliketothankDennisWilsonandScottDavidsonofNewGoldforprovidingdetailsabouttheir
project.Finally,wewouldliketothankMountPolleyMineCorporationandparticularlyKatieMcMahon,
ColleenHughes,LukeMogerandArtFryefortheirpartnershipinprojectsaimedataddressingmanyofthe
questionsaddressedinthisreview.
UsinggenomicsinminereclamationL.H.Fraser,H.W.Garris,S.A.Baldwin,J.D.VanHammeandW.C.Gardner
10MineClosure2015,Vancouver,Canada
References
Allan,R.(1995)Impactofminingactivitiesontheterrestrialandaquaticenvironmentwithemphasisonmitigationandremedial
measures,inHeavymetals:problemsandsolutions,U.Förstner,W.SalomonsandP.Mader(eds),SpringerBerlinHeidelberg,
Berlin/Heidelberg,Germany,pp.119–140.
Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.&Lipman,D.J.(1990)Basiclocalalignmentsearchtool,JournalofMolecularBiology,
Vol.215,pp.403–410.
Amoozegar,M.andKhoshnoodi,M.(2012)Telluriteremovalbyatelluriumtoleranthalophilicbacterialstrain,Thermoactinomyces
sp.QS2006,Annalesdel’InstitutPasteurMicrobiologie,Vol.62,pp.1031–1037.
Bai,Y.,Liang,J.,Liu,R.,Hu,C.andQu,J.(2014)Metagenomicanalysisrevealsmicrobialdiversityandfunctionintherhizospheresoil
ofaconstructedwetland,EnvironmentalTechnology,Vol.35,pp.2521–2527.
Baldwin,S.A.,Resadehbashi,M.,Taupp,M.,Mattes,A.,andHallam.S.J.(2012)Thegeneticdiversityofmicrobesinananaerobic
biologicalreactortreatingmetalrichlandfillleachate:whatthistellsusabouttreatmentmechanisms,Proceedingsofthe9th
InternationalConferenceonAcidRockDrainage.2026May,Ottawa,Canada.Vol.1.pp.128–139.
Baldwin,S.A.,Khoshnoodi,M.,Rezadehbashi,M.,Taupp,M.,Hallam,S.,Mattes,A.andSanei,H.(2015)Themicrobialcommunityof
apassivebiochemicalreactortreatingarsenic,zincandsulfaterichseepage,FrontiersinBioengineeringandBiotechnology,
Vol.3(27),pp.1–13.
Barnes,L.J.,Scheeren,P.J.M.andBuisman,C.J.N.(1994)Microbialremovalofheavymetalsandsulfatefromcontaminated
groundwaters,inEmergingtechnologyforbioremediationofmetals,Volume2,J.L.MeansandR.E.Hinchee(eds),CRCPress,
BocaRaton,USA,pp.38–49.
Benson,D.A.,Cavanaugh,M.,Clark,K.,KarschMizrachi,I.,Lipman,D.J.,Ostell,J.andSayers,E.W.(2013)GenBank,NucleicAcids
Research,Vol.41,pp.D36–42.
Bhargava,A.,Carmona,F.F.,Bhargava,M.andSrivastava,S.(2012)Approachesforenhancedphytoextractionofheavymetals,
JournalofEnvironmentalManagement,Vol.105,pp.103–120.
Britton,J.M.(1998)AnevaluationofpublicinvolvementinreclamationdecisionmakingatthreemetalminesinBritishColumbia,MA
Thesis,UniversityofBritishColumbia,Canada.
Carrigg,C.,Rice,O.,Kavanagh,S.,Collins,G.andO’Flaherty,V.(2007)DNAextractionmethodaffectsmicrobialcommunityprofiles
fromsoilsandsediment,AppliedMicrobiologyandBiotechnology,Vol.77,pp.955–964.
Cidu,R.,Biagini,C.,Fanfani,L.,LaRuffa,G.andMarras,I.(2001)MineclosureatMonteponi(Italy):effectofthecessationof
dewateringonthequalityofshallowgroundwater,AppliedGeochemistry,Vol.16,pp.489–502.
Dar,S.A.,Kleerebezem,R.,Stams,A.J.M.,Kuenen,J.G.andMuyzer,G.(2008)Competitionandcoexistenceofsulfatereducing
bacteria,acetogensandmethanogensinalabscaleanaerobicbioreactorasaffectedbychangingsubstratetosulfateratio,
AppliedMicrobiologyandBiotechnology,Vol.78,pp.1045–1055.
deGruijter,J.,Brus,D.J.,Bierkens,M.F.P.andKnotters,M.(2006)Samplingfornaturalresourcemonitoring,SpringerVerlagBerlin
Heidelberg,NewYork,USA.
Dumont,M.G.andMurrell,J.C.(2005)Stableisotopeprobinglinkingmicrobialidentitytofunction,NatureReviews:Microbiology,
Vol.3,pp.499–504.
Eisen,J.A.(2007)Environmentalshotgunsequencing:Itspotentialandchallengesforstudyingthehiddenworldofmicrobes,PLoS
Biology,Vol.5,pp.384–388.
Ekkers,D.M.,Cretoiu,M.S.,Kielak,A.M.andvanElsas,J.D.(2012)Thegreatscreenanomalyanewfrontierinproductdiscovery
throughfunctionalmetagenomics,AppliedMicrobiologyandBiotechnology,Vol.93,pp.1005–1020.
Ellis,J.T.,Sims,R.C.andMiller,C.D.(2012)Monitoringmicrobialdiversityofbioreactorsusingmetagenomicapproaches,SubCellular
Biochemistry,Vol.64,pp.73–94.
Ficetola,G.F.,Miaud,C.,Pompanon,F.andTaberlet,P.(2008)SpeciesdetectionusingenvironmentalDNAfromwatersamples,
BiologyLetters,Vol.4,pp.423–425.
Fisher,B.,Turner,R.K.andMorling,P.(2009)Definingandclassifyingecosystemservicesfordecisionmaking,EcologicalEconomics,
Vol.68,pp.643–653.
Fortin,N.,Beaumier,D.,Lee,K.andGreer,C.W.(2004)SoilwashingimprovestherecoveryoftotalcommunityDNAfrompolluted
andhighorganiccontentsediments,JournalofMicrobiologicalMethods,Vol.56,pp.181–191.
Foster,R.C.(1988)Microenvironmentsofsoilmicroorganisms,BiologyandFertilityofSoils,Vol.6,pp.189–203.
Frouz,J.,Prach,K.,Pižl,V.,Háněl,L.,Starý,J.,Tajovský,K.,Materna,J.,Balík,V.,Kalčík,J.,andŘehounková,K.(2008)Interactions
betweensoildevelopment,vegetationandsoilfaunaduringspontaneoussuccessioninpostminingsites,EuropeanJournal
ofSoilBiology,Vol.44,pp.109–121.
Gadd,G.M.(2010)Metals,mineralsandmicrobes:geomicrobiologyandbioremediation,Microbiology,Vol.156,pp.609–643.
GovernmentofBritishColumbia(2008)Health,safetyandreclamationcodeforminesinBritishColumbia,viewed10February2015,
http://www.empr.gov.bc.ca/Mining/HealthandSafety/Documents/HSRC2008.pdf.
Hanikenne,M.andNouet,C.(2011)Metalhyperaccumulationandhypertolerance:amodelforplantevolutionarygenomics,Current
OpinioninPlantBiology,Vol.14,pp.252–259.
Harris,J.A.(2003)Measurementsofthesoilmicrobialcommunityforestimatingthesuccessofrestoration,EuropeanJournalofSoil
Science,Vol.54,pp.801–808.
Harris,J.(2009)Soilmicrobialcommunitiesandrestorationecology:facilitatorsorfollowers?Science,Vol.325,pp.573–574.
He,J.,Xu,Z.andHughes,J.(2005)PrelysiswashingimprovesDNAextractionfromaforestsoil,SoilBiologyandBiochemistry,Vol.
37,pp.2337–2341.
KeynotesandPlenaries
MineClosure2015,Vancouver,Canada11
Hebert,P.D.N.,Cywinska,A.,Ball,S.L.anddeWaard,J.R.(2003)BiologicalidentificationsthroughDNAbarcodes,ProceedingsofThe
RoyalSocietyB:Biologicalsciences,Vol.270,pp.313–321.
Holl,K.D.(2002)LongtermvegetationrecoveryonreclaimedcoalsurfaceminesintheeasternUSA,JournalofAppliedEcology,
Vol.39,pp.960–970.
Howe,A.C.,Jansson,J.K.,Malfatti,S.A.,Tringe,S.G.,Tiedje,J.M.andBrown,C.T.(2014)Tacklingsoildiversitywiththeassemblyof
large,complexmetagenomes,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,Vol.111,
pp.4904–4909.
Hugenholtz,P.,Goebel,B.M.andPace,N.R.(1998)Impactofcultureindependentstudiesontheemergingphylogeneticviewof
bacterialdiversity,JournalofBacteriology,Vol.180,pp.4765–4774.
Jalali,K.andBaldwin,S.A.(2000)Theroleofsulphatereducingbacteriaincopperremovalfromaqueoussulphatesolutions,Water
Research,Vol.34,pp.797–806.
Jasper,D.(2007)BeneficialsoilmicroorganismsoftheJarrahForestandtheirrecoveryinbauxiteminerestorationinsouthwestern
Australia,RestorationEcology,Vol.15,pp.S74S84.
Kandler,O.andKönig,H.(2014)CellwallpolymersinArchaea(Archaebacteria),CellularandMolecularLifeSciencesCMLS,Vol.54,
pp.305–308.
Khoshnoodi,M.,Rezadehbashi,M.,Taupp,M.,Hallam,S.andBaldwin,S.A.(2012)CorrelationofthemicrobialdiversityIna
biochemicalreactortreatingmetalrichwaterwithenvironmentalfactors,CanadianSocietyofMicrobiology,Vancouver,
Canada.
Khoshnoodi,M.,Dipple,G.,andBaldwin,S.A.(2013)Mineralogicalstudyofabiologicallybasedtreatmentsystemthatremoves
arsenic,zincandcopperfromlandfillleachate,Minerals,Vol.3,pp.427449.
Koren,D.W.,Gould,W.D.andBédard,P.(2000)Biologicalremovalofammoniaandnitratefromsimulatedmineandmilleffluents,
Hydrometallurgy,Vol.56,pp.127–144.
Krause,S.,LeRoux,X.,Niklaus,P.A.,VanBodegom,P.M.,Lennon,J.T.,Bertilsson,S.,Grossart,H.P....Bodelier,P.L.E.(2014)Trait
basedapproachesforunderstandingmicrobialbiodiversityandecosystemfunctioning,FrontiersinMicrobiology,Vol.5,pp.
1–10.
Kyrpides,N.,Woyke,T.andEisen,J.(2014)Genomicencyclopediaoftypestrains,phaseI:Theonethousandmicrobialgenomes
(KMGI)project,StandardsinGenomicSciences,Vol.9,pp.628–634.
Luo,F.,Gitiafroz,R.,Devine,C.E.,Gong,Y.,Hug,L.A.,Raskin,L.andEdwards,E.A.(2014)Metatranscriptomeofananaerobicbenzene
degrading,nitratereducingenrichmentculturerevealsinvolvementofcarboxylationinbenzeneringactivation,Appliedand
EnvironmentalMicrobiology,Vol.80,pp.4095–4107.
Marschner,P.,Crowley,D.andYang,C.H.(2004)Developmentofspecificrhizospherebacterialcommunitiesinrelationtoplant
species,nutritionandsoiltype,PlantandSoil,Vol.261,pp.199–208.
Marschner,P.,Yang,C.H.,Lieberei,R.andCrowley,D.(2001)Soilandplantspecificeffectsonbacterialcommunitycompositionin
therhizosphere,SoilBiologyandBiochemistry,Vol.33,pp.1437–1445.
MartínezRuiz,C.andMarrs,R.H.(2007)Somefactorsaffectingsuccessionalchangeonuraniumminewastes:Insightsforecological
restoration,AppliedVegetationScience,Vol.10,pp.333–342.
MartinLaurent,F.,Philippot,L.,Hallet,S.,Chaussod,R.,Germon,J.C.,Soulas,G.andCatroux,G.(2001)DNAextractionfromsoils:
Oldbiasfornewmicrobialdiversityanalysismethods,AppliedandEnvironmentalMicrobiology,Vol.67,pp.2354–2359.
McDonald,L.andStrosher,M.(1998)SeleniummobilizationfromsurfacecoalminingintheElkRiverBasin,BritishColumbia:Asurvey
ofwater,sedimentandiota,MinistryofEnvironment,LandsandParks:KootenayRegion,Cranbrook,Canada.
Mewis,K.,Armstrong,Z.,Song,Y.C.,Baldwin,S.A.,Withers,S.G.andHallam,S.J.(2013)Biominingactivecellulasesfromamining
bioremediationsystem,JournalofBiotechnology,Vol.167,pp.462–471.
Mewis,K.,Taupp,M.andHallam,S.J.(2011)Ahighthroughputscreenforbiominingcellulaseactivityfrommetagenomiclibraries,
JournalofVisualizedExperiments:JoVE,Vol.48(2461),pp.14.
MeyerF,PaarmannD,D’SouzaM,OlsonR,GlassEM,KubalM,PaczianT,RodriguezA,StevensR,WilkeA,WilkeningJ,andEdwards
RA.(2008)ThemetagenomicsRASTserverapublicresourcefortheautomaticphylogeneticandfunctionalanalysisof
metagenomes,BMCBioinformatics,Vol.9(386),pp.18.
Mirjafari,P.andBaldwin,S.A.(2011)Factorsaffectingthestartup,operationanddeclineofalaboratorybasedpassivetreatment
systemforseleniumandsulfateremoval,inProceedingsConferenceofMetallurgy,2–5October2011,Montreal,Canada.
Mirjafari,P.(2014)Complexbiochemicalreactorsforseleniumandsulphatereduction:organicmaterialbiodegradationand
microbialcommunityshifts.UBCDissertation,pp.1181.http://hdl.handle.net/2429/46013.
Morita,M.,Uemoto,H.andWatanabe,A.(2007)Reductionofseleniumoxyanionsinwastewaterusingtwobacterialstrains,
EngineeringinLifeSciences,Vol.7,pp.235–240.
Morrison,B.,Lamb,D.andHundloe,T.(2005)Assessingthelikelihoodofminesiterevegetationsuccess:AQueenslandcasestudy,
AustralianJournalofEnvironmentalManagement,Vol.12,pp.165–182.
Mummey,D.L.,Stahl,P.D.andBuyer,J.S.(2002)Soilmicrobiologicalproperties20yearsaftersurfaceminereclamation:Spatial
analysisofreclaimedandundisturbedsites,SoilBiologyandBiochemistry,Vol.34,pp.1717–1725.
Muscatello,J.R.andJanz,D.M.(2009)Seleniumaccumulationinaquaticbiotadownstreamofauraniumminingandmillingoperation,
TheScienceoftheTotalEnvironment,Vol.407,pp.1318–1325.
Picard,C.,Ponsonnet,C.,Paget,E.,Nesme,X.andSimonet,P.(1992)DetectionandenumerationofbacteriainsoilbydirectDNA
extractionandpolymerasechainreaction,AppliedEnvironmentalMicrobiology,Vol.58,pp.2717–2722.
UsinggenomicsinminereclamationL.H.Fraser,H.W.Garris,S.A.Baldwin,J.D.VanHammeandW.C.Gardner
12MineClosure2015,Vancouver,Canada
Polster,D.(1989)SuccessionalreclamationinwesternCanada:newlightonanoldsubject.CanadianLandReclamationAssociation
andAmericanSocietyforSurfaceMiningandReclamationConference,2731August,Alberta,Canada.pp.333337.
PrudenA,MessnerN,PereyraL,HansonRE,HiibelSR,ReardonKF(2007)Theeffectofinoculumontheperformanceofsulfate
reducingcolumnstreatingheavymetalcontaminatedwater.Waterresearch,Vol.41,pp.904–914.
Ranjard,L.andRichaume,A.(2001)Quantitativeandqualitativemicroscaledistributionofbacteriainsoil,ResearchinMicrobiology,
Vol.152,pp.707–716.
Ratnasingham,S.andHebert,P.D.N.(2007)BarcodingBOLD:Thebarcodeoflifedatasystem(www.barcodinglife.org),Molecular
EcologyNotes,Vol.7,pp.355–364.
Rezadehbashi,M.,Khoshnoodi,M.,Taupp,M.,Hallam,S.andBaldwin,S.A.(2012)Microbialdiversityofabiochemicalreactor
removingmetalsfromsmelterwasteleachate,CanadianSocietyofMicrobiology,Vancouver,Canada.
Schmidt,T.S.B.,MatiasRodrigues,J.F.andvonMering,C.(2014)EcologicalconsistencyofSSUrRNAbasedoperationaltaxonomic
unitsataglobalscale,PLoSComputationalBiology,Vol.10,pp.1–10.
Schmidtova,J.andBaldwin,S.(2011)Correlationofbacterialcommunitiessupportedbydifferentorganicmaterialswithsulfate
reductioninmetalrichlandfillleachate,WaterResearch,Vol.45,pp.1115–1128.
Sharpton,T.J.(2014)Anintroductiontotheanalysisofshotgunmetagenomicdata,FrontiersinPlantScience,Vol.5(209),pp.114.
Silva,A.F.,Carvalho,G.,Oehmen,A.,LousadaFerreira,M.,vanNieuwenhuijzen,A.,Reis,M.A.M.,Crespo,M.T.B(2011)Microbial
populationanalysisofnutrientremovalrelatedorganismsinmembranebioreactors.AppliedMicrobiologyand
Biotechnology,Vol.93(5),pp.21712180.
Skousen,J.,Ziemkiewicz,P.andVenable,C.(2009)Treerecruitmentandgrowthon20yearold,unreclaimedsurfaceminedlandsin
WestVirginia,InternationalJournalofMining,ReclamationandEnvironment,Vol.20,pp.142–154.
Tebbe,C.C.andVahjen,W.(1993)InterferenceofhumicacidsandDNAextracteddirectlyfromsoilindetectionandtransformation
ofrecombinantDNAfrombacteriaandayeast,AppliedEnvironmentalMicrobiology,Vol.59,pp.2657–2665.
Thirgood,J.(1986)Reclamationpast,presentandfuture,inProceedings11thAnnualMeetingCanadianLandReclamation
Association,36June,Vancouver,Canada.
Tordoff,G.,Baker,A.J.andWillis,A.(2000)Currentapproachestotherevegetationandreclamationofmetalliferousminewastes,
Chemosphere,Vol.41,pp.219–228.
TringeS.G.,vonMeringC,KobayashiA,SalamovAA,ChenK,ChangHW,PodarM,ShortJM,MathurEJ,DetterJC,BorkP,Hugenholtz
P,andRubinEM.(2005)Comparativemetagenomicsofmicrobialcommunities,Science,Vol.308,pp.554–557.
Tsai,Y.L.andOlson,B.H.(1992)RapidmethodforseparationofbacterialDNAfromhumicsubstancesinsedimentsforpolymerase
chainreaction,AppliedEnvironmentalMicrobiology,Vol.58,pp.2292–2295.
Valentini,A.,Pompanon,F.andTaberlet,P.(2009)DNAbarcodingforecologists,TrendsinEcologyandEvolution,Vol.24,pp.110–
117.
vanderLelie,D.,Taghavi,S.andMcCorkle,S.(2012)Themetagenomeofananaerobicmicrobialcommunitydecomposingpoplar
woodchips,PloSOne,Vol.7(5),No.e36740,pp.1–6.
Verastegui,Y.,Cheng,J.,Engel,K.,Kolczynski,D.,Mortimer,S.,Lavigne,J.,Montalibet.J.andNeufeld,J.D.(2014)Multisubstrate
isotopelabelingandmetagenomicanalysisofactivesoilbacterialcommunities,mBio,Vol.5(4),No.e0115714,pp.112.
Wang,S.andMulligan,C.N.(2006)OccurrenceofarseniccontaminationinCanada:sources,behavioranddistribution,Scienceof
TheTotalEnvironment,Vol.366,pp.701–721.
Weisburg,W.G.,Barns,S.M.,Pelletier,D.A.andLane,D.J.(1991)16SribosomalDNAamplificationforphylogeneticstudy,Journalof
Bacteriology,Vol.173,pp.697–703.
Xia,L.C.,Cram,J.A.,Chen,T.,Fuhrman,J.A.andSun,F.(2011)Accurategenomerelativeabundanceestimationbasedonshotgun
metagenomicreads,E.DiasNeto(ed),PloSOne,Vol.6,No.e27992,pp.1–13.
Yeates,C.,Gillings,M.R.,Davison,A.D.,Altavilla,N.andVeal,D.A.(1998)MethodsformicrobialDNAextractionfromsoilforPCR
amplification,BiologicalProceduresOnline,Vol.1,pp.40–47.
Zhou,J.,Bruns,M.andTiedje,J.(1996)DNArecoveryfromsoilsofdiversecomposition,AppliedEnvironmentalMicrobiology,Vol.
62,pp.316–322.
Ziemkiewicz,P.F.,Skousen,J.G.andSimmons,J.(2003)Longtermperformanceofpassiveacidminedrainagetreatmentsystems,
MineWaterandtheEnvironment,Vol.22,pp.118–129.
Zinck,J.andGriffith,W.(2013)Reviewofminedrainagetreatmentandsludgemanagementoperations,MENDreport3.43.1,viewed
10February2015,http://mendnedem.org/wpcontent/uploads/MEND3.43.1ReviewofMineDrainageTreatmentSludge
ManagementOperations.pdf.
... Indeed, plant growthpromoting bacteria (PGPB) can improve the vegetation in mine sites, providing bioavailable phosphorous and fixing N for plant use (Sheoran et al., 2010;Thavamani et al., 2017). The knowledge about the structure of diazotrophic and other microbial communities, even in complex environments like post-mining sites, have been elucidated by molecular-based techniques, such as Denaturing Gradient Gel Electrophoresis (DGGE) (Torsvik & Øvreås, 2002;Zhan & Sun, 2012), and should be increased mainly through the advent of next-generation sequencing (NGS) (Fraser et al., 2015;Garris et al., 2016;Thavamani et al., 2017). However, the gaps in the application of microbial genomics to mining sites monitoring range from lack of continuous assessments in preserved reference sites, and/or in pre-disturbance sites, before overburden is removed, to completely recovered sites (Garris et al., 2016;Gastauer et al., 2019). ...
Article
Prokaryotes play crucial roles in rehabilitation process to restore the ecological integrity of disturbed areas. This work reports the profiles of N‐fixing microorganisms and Actinobacteria, from DGGE, the prokaryotic composition from next‐generation sequencing (NGS) and physicochemical soil characteristics. We compared a deactivated mining site about 10 years ago, when the revegetation process was begun (RV), and a reference site, with natural vegetation (NT), both located at Retiro das Almas mine, in the Quadrilátero Ferrífero region, Minas Gerais, Brazil. In both sites, the most abundant archaeal and bacterial groups included Euryarchaeota, Thaumarchaeota, Proteobacteria, Actinobacteria, Acidobacteria, and Verrucomicrobia revealed differences in their ecological metrics and distribution. Proteobacteria and Actinobacteria were most abundant in RV, while Acidobacteria and Verrucomicrobia were most abundant in NT. Less abundant phyla as Bathyarchaeota (Archaea) and GAL 15 (Bacteria) were found only in NT, while Gracilibacteria, Ignavibacteriae BJ‐169, and BRC1 were only found in RV. The majority of identified bacterial genera were shared by RV and NT. Soil P, pH, and particle density were most significant (p < 0.05) in RV, while Fe, Ca, organic matter, potential acidity and dispersed clays, were most significant (p < 0.05) in NT, showing differences in soil characteristics, which led the prokaryotic composition in these sites. DGGE profiles of N‐fixing microorganisms revealed N‐fixing predominance in both sites, although after 10 years prokaryotes diversity increased in RV site. Our results revealed that prokaryotic structure and composition are indicative of RV soil resilience. This article is protected by copyright. All rights reserved.
Article
Full-text available
Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution.
Article
Full-text available
Sulfidogenic biochemical reactors (BCRs) for metal removal that use complex organic carbon have been shown to be effective in laboratory studies, but their performance in the field is highly variable. Successful operation depends on the types of microorganisms supported by the organic matrix, and factors affecting the community composition are unknown. A molecular survey of a field-based BCR that had been removing zinc and arsenic for over 6 years revealed that the microbial community was dominated by methanogens related to Methanocorpusculum sp. and Methanosarcina sp., which co-occurred with Bacteroidetes environmental groups, such as Vadin HA17, in places where the organic matter was more degraded. The metabolic potential for organic matter decomposition by Ruminococcaceae was prevalent in samples with more pyrolyzable carbon. Rhodobium- and Hyphomicrobium-related genera within the Rhizobiales order that have the metabolic potential for dark hydrogen fermentation and methylotrophy, and unclassified Comamonadaceae were the dominant Proteobacteria. The unclassified environmental group Sh765B-TzT-29 was an important Delta-Proteobacteria group in this BCR that co-occurred with the dominant Rhizobiales operational taxonomic units. Organic matter degradation is one driver for shifting the microbial community composition and therefore possibly the performance of these bioreactors over time.
Conference Paper
Full-text available
Mine drainage contains metals and sulfate, which may be toxic to aquatic life at certain concentrations and should be removed to acceptable levels before release of any drainage to the environment. One method for treating mine drainage is passive treatment, which is increasing in popularity due to lower construction and operating costs. This method is based on the activity of sulfate reducing bacteria (SRB) respiring on sulfate while using fermentation products from decomposing complex organic materials. The product of this biological process is hydrogen sulfide, which reacts with metals in mine drainage and precipitates them as metal sulfides. However, in practice passive treatment systems are not always effective, reducing the reliability of this approach. In this study, a mixture of hay, cow manure and wood chips was tested in continuous flow experiments for efficacy at sustainable treatment of sulfate and selenium containing water from a mine tailings pond. Factors that contributed to a decline in performance included lowering of the pH due to acids leaching out of the organics, re-oxidation of sulfide back to sulfate and a reduction in dissolved organic compounds over time. In this paper we describe methods to overcome these problems so that treatment is more reliable.
Article
Stable isotope probing (SIP) is a technique that is used to identify the microorganisms in environmental samples that use a particular growth substrate. The method relies on the incorporation of a substrate that is highly enriched in a stable isotope, such as 13C, and the identification of active microorganisms by the selective recovery and analysis of isotope-enriched cellular components. DNA and rRNA are the most informative taxonomic biomarkers and 13C-labelled molecules can be purified from unlabelled nucleic acid by density-gradient centrifugation. The future holds great promise for SIP, particularly when combined with other emerging technologies such as microarrays and metagenomics
Article
Land degradation is of concern in many countries. In order for timely and effective interventions to be made to reverse this degradation it is necessary to have objective measurements of ecosystem status. By measuring characteristics of the soil microbial community we can assess the status of the microbial ecosystem and in that sense the quality of the soil, and the potential for, and progress of, restoration after degradation. Recent research has shown quantitatively how by measuring the soil microbial community we can assess degradation and the effects of management designed to reverse it. The size, composition and activity of the soil microbial community convincingly distinguish between systems, and between the impact of management strategies upon them. Measurements of these characteristics of the microbial community provide invaluable information for restoring degraded land and are ready for routine use. Specifically, profiles of phospholipid fatty acid contents, and substrate induced respiratory responses to different carbon substrates, will yield significant data upon which management decisions may be based.
Article
Mining activities have both local and regional impacts on terrestrial and aquatic ecosystems. Mines produce large quantities of waste-rock and tailings which must be disposed of on land or into aquatic ecosystems. The major results in terms of contamination by heavy metals are areas of wasteland and sources of acid and metal-rich runoff from land-sited tailings piles or waste-rock heaps and the subsequent pollution of soils, lakes, rivers, and coastal areas. After the fact remediation or control of leachates from tailings and waste-rock on land or remediation of waterways polluted by mine tailings are being found to be complicated and expensive. New mines often successfully incorporate mitigation measures that are economically sound in the long-term. This paper overviews these problems and concerns with examples from around the world.