ChapterPDF Available

Emotional Health Designing Games for Emotional Health


Abstract and Figures

Key Summary Points There is a growing understanding of key skills that can help individuals better manage emotions to improve well-being, such as emotional understanding, executive functioning, and emotion regulation skills. In promoting emotional health, games can operate at the low-order brain training level (e.g., drill-and-skill), as well as the higher order meaning-making level. Emotional health is broad, and efficacious approaches to skills development in emotional health are highly contextual, taking into account expected outcomes, environmental context, and individual psychometric conditions.
Content may be subject to copyright.
Emotional Health
Designing Games for Emotional Health
Ralph Vacca, New York University, New York, New York, U.S.,
Meagan Bromley, New York University, New York, New York, U.S.,
Jakob Leyrer, University of Vienna, Vienna, Austria,
Manuel Sprung, University of Vienna, Vienna, Austria,
Bruce Homer, City University of New York, New York, New York, U.S.,
Key Summary Points
There is a growing understanding of key skills that can help individuals beer manage
emotions to improve well-being, such as emotional understanding, executive functioning,
and emotion regulation skills.
In promoting emotional health, games can operate at the low-order brain training level (e.g.,
drill-and-skill), as well as the higher order meaning-making level.
Emotional health is broad, and ecacious approaches to skills development in emotional
health are highly contextual, taking into account expected outcomes, environmental context,
and individual psychometric conditions.
Key Terms
Emotional health
Emotional regulation
Emotional intelligence
Emotional understanding
Executive functioning
Mental health
It is not oen we think about emotional health. Physical health, yes. We have heard of mental health.
But what do we mean by emotional health? Furthermore, what are we referring to when we talk about
games for emotional health?
In this chapter we ask: can games help us develop specific skills that can in turn improve our emotional
health? If so, what are the best practices for designing and using games to develop such skills?
Defining emotional health
First o, we should define what we mean by emotional health. In short, it means dierent things to
dierent people, but for the purposes of this chapter, we are defining emotional health as how we
manage our emotional responses in interacting with the world around us that partly contributes to our
overall well-being.
While some use the term mental health interchangeably with emotional health, there is a key distinction
worth making. Mental health refers to a general state of well-being that allows us to cope with the
normal stresses of life and make a contribution to one’s community (WHO, 2004). Emotional health
refers specifically to the positive and negative aect resulting from life events that contributes to our
overall mental and physical health (Hendrie et al., 2006).
One can conceptualize emotional health along a continuum of poor to excellent, much like our physical
health. A common misconception is that “good” emotional health would resemble an individual that
is always happy or stress-free. This is not the case, however. Research in positive psychology, among
other research, has aempted to look at emotional health as falling within a particular positivity ratio
which examines the ratio of “positive” and “negative” emotions that make up one’s aectivity (Watson,
Clark, & Carey, 1988). In other words, good emotional health merely suggests that an individual has the
ability to manage their emotional responses in ways that contribute positively to their overall sense of
well-being, rather than an absence of “negative” emotions. For instance, they may have the capacity to
assume dierent perspectives, or relax their bodies to beer manage stress responses, or simply bounce
back faster from highly stressful experiences. On the other hand, at the heart of poor emotional health
is severe diculty in responding to environmental demands in ways that do not hamper one’s physical
and mental health. Oen such challenges coincide with emotion disorders or traumatic experiences
that have shaped the way we emotionally respond to stimuli such as stressful situations or relationship
Games and emotional health
When thinking about how to design games to promote emotional health, a common question oen
emerges. What skills are we really teaching and can they actually be learned? In other words, what
are we really teaching when we teach individuals to more eectively manage their emotions, and can
games help teach these skills?
First o, it is important to note that there exists a well-established and rather large field of
psychotherapeutic interventions dedicated to improving mental and emotional health, which primarily
rely on in-person interactions. For instance there is Cognitive Behavioral Therapy (CBT), Emotional
Processing Therapy, Rational Emotive Behavior Therapy (REBT), Dialectical Behavior Therapy (DBT),
and dozens of others, all varying on how the interaction between therapist and client occurs. Many
of these interventions have been fairly successful in addressing some of more prominent emotional
health challenges such as managing depression and coping with anxiety (Aldao, Nolen-Hoeksema, &
Schweizer, 2010; Ellard, Fairholme, Boisseau, Farchione, & Barlow, 2010; Fava & Tomba, 2009).
One core challenge with such interventions is access. According to the World Mental Health Surveys
of the World Health Organization (WHO), one in three people in the U.S. suer from a mental disorder
in their lifetime (Kessler et al., 2009), but only a portion of those people receive treatment, ranging from
26% to 60% for mild and severe mental disorders respectively. Many of these disorders have a significant
emotional health component (Aldao et al., 2010). Taking into consideration large diversity in the
population and treatment quality, one other major challenge is arition and low adherence (Thompson
& McCabe, 2012), meaning individuals may not stick to treatment protocols and recommendations.
Some are seeing games as one tool that can, and already has, made headway in addressing these
challenges, among others. Games can increase accessibility to populations that may not be able to gain
access to traditional interventions, and they oen provide high levels of repeated engagement with
exercises that can improve or match traditional intervention outcomes (e.g., Tate, Haritatos, & Cole,
2009). Furthermore, games provide a new avenue for emotional health, allowing individuals that may
not be diagnosed with disorders access to tools that may empower them to improve their emotional
health or overcome emotional health challenges.
Why should we care about emotional health?
According to the WHO (2004), at any point in time, there are an estimated 450 million people in the
world who are aicted by some sort of mental, neurological, or behavioral problem. Furthermore, there
are increasing numbers of individuals that are undiagnosed or have emotional health challenges that
are not disorders, yet still compromise their overall well-being.
About this Chapter
The increasing popularity and role of mobile technology and games in daily life continues to present
new opportunities in the emotional health space. There are two key questions framing this chapter.
First, can games help us develop specific skills that can in turn improve our emotional health? Second,
are there best practices for designing and using games to develop such skills?
Case Study One: EmoJump, A Game Targeting Emotional Understanding Skills
EmoJump is a computer game being developed by the games4resilience lab at the University of Vienna
to enhance children’s understanding of external causes of emotions, belief-based emotions, and mixed
emotions. It is designed as a “forced-speed” jump and run game. In every level the player is shown
several cartoons, where he or she has to decipher the emotional state of a specific character using only
story-based visuals or lines of dialogue in the scene. Faces communicate emotions very eectively
and the training focuses on emotion understanding beyond facial recognition, so the faces of game
characters are not shown. Thus, the player has to understand the situation the cartoon depicts and hold
in his or her mind which emotion one would feel in that particular situation.
Aer watching the cartoon, the player enters the “forced speed” jump and run sequence where he or
she encounters “coins” with faces expressing one of four basic emotions (happy, sad, fear, anger) and is
tasked with collecting the appropriate coins that correspond to the situation depicted in the cartoon.
This sequence continues through several rounds of cartoons, providing the player with level feedback
and trophies that can be earned for high scores.
In line with Pons and Harris’ (2000) Test of Emotional Comprehension, the game’s level design is
aligned with levels of emotion, ranging from a surface level understanding of emotions to higher-
order thinking used to regulate emotional responses. Using story-based challenges as described above,
early levels focus on understanding external causes of emotions and identifying internal processes
(e.g., interpretations) that form belief-based emotions. The challenge of collecting the correct coin to
correspond with an emotion is situated through the point of view of the main character, causing players
to not only analyze a situation, but also to engage in a task requiring perspective-taking, a component
of theory of mind. Later levels deal with mixed emotions and dierent possible interpretations of a
situation or associated thoughts. As a result, the task of collecting coins to correspond to the appropriate
emotion requires holding multiple, oen conflicting, emotions in mind and collecting more than one
target item while completing the “forced speed” run sequence.
Given that the ability to comprehend emotional states and their contexts is crucial for successful
engagement in highly social environments, the game targets these skills. As emotional understanding
is also a prerequisite to successfully engage in emotion regulation (Jacob et al., 2011) the designers
wanted to target deficits in emotion understanding first before teaching emotion regulation strategies.
Key Frameworks
Before designing any game that seeks to improve individual emotional health it is important to
understand two things. First, scientific research in the area of human emotion continues to grow each
year, bringing with it new insights into how we generate and manage our emotions. This means it is extra
important to be up to date on the latest research around the specific approach you may be integrating
into your designs. Second, there are many existing perspectives on how to improve emotional health,
which means one major task (even more than usual) for designers is to understand how the learning
context, expected outcomes, and learner profiles may lend itself to a specific approach. In this section,
we will briefly describe a few key approaches taken to improving emotional health that may serve as
the focal point of a game-based intervention.
Emotional understanding
A precursor to any discussion on managing emotions oen assumes individuals possess some degree
of emotional understanding. For example, our ability to label emotions using specific language (e.g.,
anger), identify related facial expressions (e.g., smiling), and understand how belief systems influence
our emotions, are all examples of skills underlying emotional understanding (Garner, 1999). Sometimes
referred to as emotional knowledge, or as a subset of emotional intelligence (Nelis, Quoidbach,
Mikolajczak, & Hansenne, 2009), emotional understanding is all about making sense of information
to beer understand our own and others’ emotional states. Deficits in emotional understanding
can be found in a range of psychopathologies and problem behaviors (Southam-Gerow, 2002), and
knowledge of facial expressions and labels is a major predictor of academic achievement (Izard et al.,
2001). Interventions focusing on emotional understanding oen target children, but have also included
adolescent and adult populations.
Inherent aspects of many games such as multiple sensory representations (i.e., visual, auditory)
and narratives that provide a context for decision-making, have been used to tackle emotional-
understanding skills. See Case Study One for an in-depth example that is situated in this emotional
understanding focus.
Executive functioning
The term executive functioning (EF) is broad and can be an amorphous concept to get across, if you are
not well versed in psychological theories of cognitive systems. In short, the idea is that there exists a
set of cognitive processes (i.e., brain functioning) that controls our ability to deal with novel situations—
situations where we do not just automatically respond without thought. In dealing with these novel
situations, EF helps us inhibit our responses, or resolve conflicting thoughts on how best to respond (e.g.,
going on a first date). As you can imagine, these cognitive processes include quite a few things such as
directing our aention, self-monitoring, planning, organizing, remembering and inhibiting impulsivity
(Tang, Yang, Leve, & Harold, 2012).
So what does this have to do with emotional health? Simply put, EF is essential to our ability to resolve
conflict between competing emotions or tendencies in how we respond to something (Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Rothbart, 2011). Research has shown that deficits in components
of EF are strongly associated with various negative outcomes across one’s lifespan, such as behavior
problems, aggression, antisocial behavior, inaention, aention deficit hyperactivity disorder (ADHD),
problems with peers, school failure, depression, and substance abuse during childhood and adolescence
(Eigsti et al., 2006; Floyd & Kirby, 2001; Ivanov, Schulz, London, & Newcorn, 2008; Perner, Kain, &
Barchfeld, 2002; Riggs, Blair, & Greenberg, 2004). On the flipside, higher levels of EF are associated with
beer perspective-taking skills, self esteem, relationship success, as well as positive social, emotional,
behavioral, economic, and physical health outcomes (Blair & Peters, 2003; Carlson & Moses, 2001;
Mo et al., 2011).
Games present interesting opportunities in EF training, in that repetition and escalating diculty oen
serve as key design paerns found in training interventions targeting EF skills. In other words, cognitive
processes are modified through repeated exercise before moving on to more challenging exercises that
push related cognitive processes (e.g., memorization, paying aention to changing instructions). See
Case Study Three for an example that illustrates a game-based approach to executive functioning
training for emotional health.
Emotion regulation
So far we have covered emotional understanding and executive functioning, as they relate to emotional
health, yet perhaps the most direct approach found in emotional health interventions is to focus on
emotion regulation—the use of specific strategies to manage one’s own emotional response to varying
situations. One useful model to conceptualize emotion regulation is the Emotion Regulation Process
Model (Gross & Barre, 2011), illustrated in Figure 1, which outlines five strategies we can use to
influence our eventual emotional response.
Figure 1. Emotion Regulation Model. Adapted from Gross & Barre (2011).
The ability to eectively use such strategies is commonly referred to as emotion regulation skills,
because these skills regulate the nature, frequency, and duration of one’s own emotions (Gross &
Muñoz, 1995). Two emotion regulation strategies commonly focused on are aentional deployment and
cognitive change—more commonly referred to as cognitive appraisal. Aentional deployment skills
refer to our ability to direct our aention to specific aspects of a situation to modulate our emotional
response. Cognitive appraisal skills refers to our ability to re-interpret stimuli in dierent ways to in
turn manage our emotional response.
Games for emotion regulation training can provide valuable decision-making and feedback experiences
situated in contexts that largely influence the relevance of specific strategies. In other words, games allow
players to experience the results of using specific strategies within specific contexts in ways in-person
role-playing exercises may be unable to do. Furthermore, games provide interesting opportunities for
using in-game data collected to aid in post-game reflection as well as monitoring changes in players.
Additional perspectives
There are several other approaches that may be relevant for game designers. Designers interested in
working in conjunction with in-person therapy or leveraging specific therapeutic exercises may want to
explore therapeutic frameworks that aempt to work across dierent diagnosed disorders. For instance,
the Unified Protocol (UP) seeks to work across diagnosed disorders seeking to provide a more holistic
approach that entails: 1) increasing emotional awareness, 2) supporting flexibility in appraisals, 3)
identifying and preventing emotional avoidance, and 4) situational exposure to emotion cues (Ellard
et al., 2010).
Lastly, but certainly not least, is a social approach where human-to-human interaction is the key
focus. Research has shown that social interactions are closely linked to emotional health (Umberson &
Montez, 2010) and there may be opportunities for designing social games situated in this focus.
Each of these approaches has a hey body of literature that is worth diving into for more details. In
the next section, we will consider what the psychological, game studies, and design research say about
creating games to support the development of dierent skills linked to emotional health. In short, if
enhancing emotional health is the goal, then how can we beer design games or use them within
Case Study Two: Leela, A Commercial Game Targeting Mindfulness
In terms of emotion regulation training, mindfulness is one approach that has become increasingly
popular. Typically when one hears mindfulness they imagine an individual in meditation or chanting.
From an emotion regulation perspective, mindfulness is commonly defined as the process of directing
aention on the present in a non-judgmental way (Kabat-Zinn, 2003) and incorporates emotion
regulation strategies such as aentional deployment and cognitive reappraisal. In fact, emerging
research in neuropsychology has shown that mindfulness can have profound emotional health benefits
in managing anxiety, depression, pain, and psycho-regulatory activity (Chiesa, Calati, & Serrei,
2011). While traditionally mindfulness has been taught through in-person or audio-guided meditation,
emerging technology incorporating physical interaction has expanded our possible approaches to
developing such emotion regulation skills.
Deepak Chopra’s Leela (N-Fusion Interactive, 2011) is a game for the Microso Xbox 360/Kinect that
combines traditional relaxation with meditation techniques to cultivate mindfulness. The unique aspect
of the game is the use of the Kinect platform, which allows players to use their body and movements
to interact with the game in ways standard game controllers cannot enable. For instance, the “chakra”
mini-games that are at the heart of the game make use of embodied game interactions such as twisting
one’s body, swinging one’s arms, and controlling one’s rate of breathing. Each of these mechanics is tied
to traditional game mechanics such as win/lose states, escalating challenges, mastery sequences, and
various feedback mechanisms.
The embodied approach—where you use your body—taken by Leela addresses one core limitation of
many games designed to provide aspects of emotion regulation training, which is to involve the body
in addition to our cognitive processes (Vacca, 2013). Research suggests that regulatory eort involving
body-mind states and not just a cognitive focus can promote long-term engagement in that over time
physiological involvement can relieve stress associated with engaging in self-control (Tang & Posner,
2009). Some key challenges in Leela and other game-based approaches that rely on promoting a “relaxed
state” is balancing this goal with the tension that oen comes with competitive win/loss mechanics
incorporated into games (Sweetser & Wyeth, 2005). In addition, embodied learning experiences that
require focusing on internal activity (e.g., shiing focus away from a wandering mind) oen instead
have to focus on external activity (e.g., breathing and gestures) (Mizen, 2009) to take advantage of
commercial sensor technology, although that may quickly change in the coming years.
Key Findings
In the past few years, a number of research studies have suggested compelling directions for teaching
skills related to emotional health through games, from a variety of dierent fields and with varying
Executive functioning
There have been several interesting findings on the use of games to improve executive functioning (EF)
skills. As mentioned earlier, EF skills such as planning, inhibiting behavior, and remembering can also
influence our ability to manage emotional responses.
In designing interventions targeting EF skills, repetition and escalating levels of challenges have been
found to be eective (Diamond & Lee, 2011). For instance, the game-based intervention Play Aention,
which targets learners with ADHD to train aention skills and improve memory, makes extensive
use of repetition and varying diculty levels, and has been found to improve performance on tasks
requiring aentional control (Unique Logic and Technology, 2011). While the game does not directly
target emotional health outcomes, the EF skills that are targeted, such as inhibiting impulsivity and
shiing aention, could have implications for emotional health training. Other examples include the
Cogmed program, which has been used with individuals who have ADHD and Autism as a means of
improving working memory and by extension, aentional control (Klingberg et. al., 2005). For the most
part, interventions focusing on executive functioning have largely targeted children, where research
has shown that wider eects can be achieved (Wass, Scerif, & Johnson, 2012).
Lastly, interventions focusing on executive functions have been found to be more eective when the
focus is broader so as to include emotional and social development (Diamond & Lee, 2011), in addition to
physical engagement requiring body movement and awareness (Tang & Posner, 2009). In other words,
games that make use of emerging physical gaming platforms such as the Nintendo Wii and Microso
Kinect, may also be able to augment existing EF training approaches through physical engagement.
Emotion regulation
Interventions targeting emotion regulation skills—the use of emotion regulation strategies to beer
manage emotional responses—have been found to be more eective when designed with certain
criteria in mind.
One such criterion has to do with the kind of strategies targeted. As you can recall from our earlier
discussion on emotion regulation, particular strategies for response come earlier in the emotion
regulation model. Research has shown that such strategies—oen referred to as antecedent strategies—
are generally more eective in managing emotional responses than inhibiting an emotional response
generated (Goldin, McRae, Ramel, & Gross, 2008). For example, researchers from the University of
Auckland designed a game called SPARX to help young people learn such antecedent strategies to deal
with feeling down, depressed, or stressed using methods from Cognitive Behavioral Therapy (CBT).
Results from research by Merry et al. (2012) indicate that the game was as eective as standard care
for adolescents and significantly reduced depression, anxiety, feelings of hopelessness, and improved
quality of life. This game provides the player a first-person experience where he or she engages in mini-
games that present challenges and prompt the player to make decisions and then receive feedback.
Another criterion is situational context in which strategies are learned. Research has shown that emotion
regulation strategies are context dependent and training interventions should reflect the importance
of such situational context. For instance, researchers have found dierences in the eectiveness of
dierent strategies based on the strength (i.e., magnitude) of the aect (e.g., anger) (McRae, Misra,
Prasad, Pereira, & Gross, 2012). Games such as Bravemind from USC’s Institute for Creative Technologies
situates the use of strategies such as inhibition within situational reenactments so as to significantly
improve the emotional health of individuals with post-traumatic stress disorder (PTSD) (USC ICT, 2013).
Lastly, there is increasing interest in expanding emotion regulation training to include physiological
awareness. For example, researchers in Spain designed a video game to increase emotional and
impulsivity self-control for individuals struggling with Bulimia Nervosa, which incorporates a motion-
tracking suit equipped with various sensors. Results show that players saw improved abilities (Fagundo
et al., 2013).
There are additional findings emerging from a variety of fields that overlap with findings in interventions
to improve emotional health. Such findings include research in spacing or optimal repetition paerns,
embodied cognition (how our body helps us think), and ambient computing (how our environment
influences our thoughts and behavior).
Assessment Considerations
In understanding whether games can truly change skills associated with emotional health, it seems
logical that we understand how emotions constantly change over time. How we can actually measure
emotions, however, is an evolving and highly contextual endeavor. Emotional reactivity can be
measured biologically, using fMRI to capture brain activity through changes in blood flow, heart
rate and nerve activity via vagal tone monitoring, and facial muscle electrical activity through EMG
(electromyography) measurements, to name a few. These measures can be combined and interpreted in
dierent ways based on what you are interested in understanding and the context of the research (Cole,
Martin & Dennis 2004).
In the clinical space, the Test of Emotion Comprehension has been developed by Pons & Harris (2000)
as a useful tool for measuring children’s understanding of emotion. The test is particularly useful for
revealing hidden emotions that may be dicult for children to articulate depending on their self-
awareness and level of development. The test consists of nine levels of emotion, spanning surface level
understanding and emotion identification, to higher order emotional functioning. The children must
determine whether emotions are real using false belief tasks that test a child’s understanding of another
person’s emotions by aributing behaviors in given scenarios to how a character is feeling (Pons &
Harris, 2000). This test can serve as a blueprint for mapping dierent levels of emotional comprehension
onto game mechanics and levels, as will be discussed in the later case study of EmoJump (see Case
Study One).
There are a few methods for measuring and assessing player emotion skills and behavior in games.
Among these methods are:
1. Observation: Oen conclusions about a player’s emotional experience can be reached
through simple observations by a researcher, either in person or via video recordings.
Researchers and designers may use checklists of emotional responses, including
expressions such as smiles and frowns to determine the emotional climate of the play
session and specific responses to notable in-game actions and events. A drawback of this
method is the issue of subjectivity among observers. People’s observations and perception
of the emotional climate of a given experience will vary and this can create inconsistency
as well as problems establishing inter-rater reliability for the data collected.
2. Player self-report: Researchers can conduct emotional evaluations of players before,
during, and aer gameplay sessions. Typically, this involves a player responding to a series
of questions posed by the researcher, or pointing to a visual cue to indicate the emotion
he or she is feeling. Many game systems can actually embed this assessment within the
play experience by having the player answer a quick question with a controller or gestural
interaction, before moving onto the next segment in the game.
3. Think-alouds: Guided think-aloud methods require players to verbalize their internal
thoughts and feelings to determine the eects of a game’s design and the overall
experience on the player’s emotional state. Researchers moderate and guide the talk aloud.
Information gathered from this method can also help designers and researchers learn more
about strategies a player may engage in to address his or her emotional responses.
4. Biometrics: Biometrics are physiological measures of heart rate, respiration, skin galvanic
response, eye tracking, postural movement, facial EMG and even brain activity via
fMRI, which can help to determine a player’s emotional states. Physical responses from
a player’s body allow researchers to chart when a player is in a heightened positive or
negative emotional state, and at which point they are able to recover from it. In addition,
there is increasing use of brain sensor interfaces (e.g., reading brain waves to control in-
game elements) that designers can use for assessment that can be linked to neuroscience
frameworks such as Davidson’s (1999; 2012) emotional styles that outlines specific neural
circuits underlying specific emotional response paerns.
5. In-game data collection: This growing field of research uses in-game actions in the form of
clicks, level completions, and failures, and a number of other important in-game decisions,
and aligns the resulting data with behavioral measures, such as biometric measures
as described above, or data from psychological rating scales like the BASC, Behavior
Assessment System for Children, which may include self-reports or teacher reports of
behavior (Reynolds & Kamphaus, 2013). Analysis of the paerns in the game can reveal
emotional regulation strategies and key moments for further evaluation.
Future Needs
Simply put, there is a growing consensus that emotion regulation skills in particular, are highly
contextual and interventions must consider context as a design priority. For instance, particular
strategies to improve emotional health that might serve high-poverty populations may not serve those
with terminal illness. As such, game designers need to truly understand the situational contexts, as
well as the psychometric contexts of their populations to design interventions that are helpful and not
irrelevant or in worst case, harmful. Along the same lines with situational context, are limitations of
one’s target population, so as to consider a strengths-based focus rather than a deficit-based perspective.
In other words, in particular contexts it may serve learners beer to focus on leveraging skills that
come easy to them, rather than build up skills that “fall short.” Furthermore, there is a growing need
to go beyond cognitive-only approaches and adopt mind/body approaches that incorporate embodied
experiences such as the integration of physical sensors in gameplay. The increased ubiquity of new
sensor technology will likely present needs around frameworks that connect in-game behaviors with
target emotional health outcomes. Lastly, there is greater need for cross-disciplinary collaboration that
can combine practical and theoretical knowledge to address specific populations. For instance, early
childhood educators, counselors, and game designers can benefit from more formal collaborative spaces
where they can share their practical and theoretical knowledge to improve relevant skills influencing
emotional health.
Case Study Three:
Space Ranger Alien Quest, A Game Targeting Executive Functioning
Space Ranger Alien Quest is an action video game developed through an international collaboration
among New York University’s CREATE lab, CUNY’s CHILD lab, the games4resilience lab at the
University of Vienna, and the University of Applied Sciences Technikum Wien. Researchers in this
consortium are currently investigating the alignment of game performance with executive functioning
(EF) (a clear set of cognitive skills tied to self-regulation), with the intention of implementing the game
as an intervention to train children and improve health and academic outcomes in the near future. The
game has been designed to focus on shiing between mental sets of information while also incorporating
design features known to influence emotional response. Research on games such as Space Ranger Alien
Quest seeks to fulfill a need to assess individuals’ self-regulation skills while also testing the capability
of a specific game mechanic (e.g., sorting items based on new rule sets) to improve a specific cognitive
strategy (e.g., mental set shiing).
The game, designed for children between the ages of seven and eleven, puts players in the role of a
space ranger who must take care of aliens by giving them food and drinks. Specific aliens that appear
on the screen have very specific needs, however the aliens are incredibly fickle and live on a strange
planet with an unstable environment that is always changing. Players have to keep up with an ever-
changing series of rule hierarchies and changes to advance through levels. For example, red aliens
may be hungry and need food given to them at the beginning of a level, but then change their minds a
series of times due to environmental changes like rapid sunsets and sunrises, strange storms or bolts
of lightning appearing on-screen. Actions in the game are largely driven by empathic goals in which
players are caregivers and emotionally driven feedback from the characters. The narrative, character
design, and visual design of the interface are based on emotional design research on how the role of
color, lighting and character design in games can induce positive states in players (Bura, 2008, Knez &
Niedenthal, 2008, Um, Plass, Hayward, & Homer, 2012). Lastly, a player’s success is measured in terms
of the aliens’ moods and his or her ability to make the aliens happy.
Thus far, validation research and a training study have been completed, and show promising results.
Preliminary results have found that the game produces a similar range of scores to those achieved on
established measures of EF in clinical seings (e.g., card sorting tasks, spatial aention tasks) and that
children who play the game over a period of time show improved skills in comparison to those who are
not exposed to the intervention (Bromley, et. al. 2013; Sprung, et. al., 2013). Additionally, children enjoyed
playing the game and were motivated to pursue more dicult levels featuring complex rule structures
with more rapid environmental changes and actions. Further studies unpacking the dierences in
behaviors resulting from an emotional response and cognitive skill development are planned for the
future. Implications of these findings suggest that children’s ability to self-regulate may benefit from
playing video games that are specifically designed to address such cognitive activities.
Best Practices
The following design principles should be considered when creating games to build skills targeting
emotional health based on the current frameworks and findings.
1. Provide a situational context when providing training around emotion regulation
strategies: Environmental influences and social conditions can significantly influence the
utility of specific strategies in the learner’s real-world situations and needs.
2. Provide opportunities for repeated practice over time: While for younger populations
it may be easier to develop emotion regulation and understanding skills, for adult
populations it may require additional engagement to re-learn certain behaviors paerns.
3. A narrow focus on implementing a specific strategy can lead to more rigorous,
ecacious, and engaging gaming experiences: Whether your focus is on aentional
control, how to re-appraise body image, or emotional states that drive behaviors, keeping
a narrow focus allows for diversification of application contexts and increasing levels of
4. Consider focusing on strengths as much as focusing on needs: At times our ability to
respond in emotionally healthy ways to challenging life events relies on our use of specific
strengths rather than building up what may be considered deficiencies.
5. Where possible incorporate embodied experiences: We oen forget emotions are closely
linked to our physical states. Gaming experiences that allow us to engage in embodied
experiences can help us tap a broader spectrum of awareness and regulatory techniques
(e.g., breathing deeply, focusing on a sensation).
Beating the Blues (hp://
Braingame Brian: Toward an Executive Function Training Program with
Game Elements for Children with ADHD and Cognitive Control Problems
Deepak Chopra’s Leela (hp://
Lumosity Lab Brain Games & Brain Training (hp://
Mindbloom (hp://
Mood Gym (hps://
MoodHacker by ORCAs (hp://
Play Aention (hp://
Playmancer (hp://
RAGE-Control: A Game to Build Emotional Strength
Re-Mission (hp://
SuperBeer (hps://
Davidson, R.J. & Begley, S. (2013). The Emotional Life of Your Brain: How Its Unique Paerns Aect the Way You
Think, Feel, and Live—and How You Can Change Them. New York, NY: Penguin Group.
Fogg, B.J. (2003). Persuasive Technology: Using Computers to Change What We Think and Do.
San Francisco, CA: Morgan Kaufmann Publishers.
Games for Health Journal
Hanna, H. (2013). The Sharp Solution: A Brain-Based Approach for Optimal Performance.
Hoboken, N.J.: John Wiley & Sons, Inc.
Ledoux, J. (1996) Emotional Brain: The Mysterious Underpinnings of Emotional Life.
New York, NY: Simon and Schuster.
Rogers, S. (2010). Level Up!: The Guide to Great Video Game Design.
West Sussex, United Kingdom: John Wiley & Sons, Inc.
Institute for the Future (2012). Innovations in Games: Beer Health and Healthcare, Convened by the Oce of
the National Coordinator for Health IT and the White House Oce of Science and Technology Policy.
Lieberman, D. (2009). Designing Serious Games for Learning and Health in Informal and Formal Seings. In U.
Rierfeld, M. Cody, & P. Vorderer (Eds.), Serious Games: Mechanisms and Eects. New York: Routledge
Primack, B.A., Carroll, M.V., McNamara, M., Klem, M.L., King, B., Rich, M. Chan, C.W. & Nayak, S, (2012).
Role of Video Games in Improving Health-Related Outcomes: A Systematic Review, American
Journal of Preventative Medicine, 42(6); 630-8.
Robert Wood Johnson Foundation (2011). Advancing the Field of Health Games: A Progress Report
on Health Games Research, RWJF Program Results Progress Report.
Richie Davidson, Center for Investigating Healthy Minds at the Waisman Center, University of Wisconsin,
Madison (hp://
Steve Cole and team at HopeLab (hp://
Joseph LeDoux, Center for Neural Science at NYU (hp://
Manuel Sprung, Games4Resilience Lab at University of Vienna (hp://
Ben Sawyer, Digitalmill (hp://
Nick Yee, Ubiso (hp://
Albert “Skip” Rizzo, Institute for Creative Technologies, USC (hp://
Katherine Isbister, Game Innovation Lab, NYU (hp://
Research Labs
Center for Investigating Healthy Minds Lab at University of Wisconsin, Madison
Games4Resilience Lab at University of Vienna (hp://
CREATE Lab at New York University (hp://
Emotion Regulation Lab at Hunter College City University of New York
Institute for Creative Technologies at University of Southern California (hp://
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A
meta-analytic review. Clinical Psychology Review, 30(2), 217–37. doi:10.1016/j.cpr.2009.11.004
Blair, C., & Peters, R. (2003). Physiological and neurocognitive correlates of adaptive behavior in preschool among
children in Head Start. Developmental Neuropsycholog y, 24(1), 479–97. doi:10.1207/S15326942DN2401_04
Bromley, M., Homer, B., Sprung, M., Hayward, E., Leyrer, J., Homan, A., Scharl, J., Puhringer, S., Was, V., &
Bellmore, J. (2013). Can an action video game measure executive functioning? The validation of a game
designed to assess EF skills. Paper presented at the Sixth Annual Subway Summit on Cognition and
Education Research, New York, NY.
Botvinick, M., Braver, T., & Barch, D. (2001). Conflict monitoring and cognitive control. Psychological …, 108(3),
624–652. doi:10.1037//0033-295X.I08.3.624
Bura, S. (2008). Emotion engineering: A scientific approach for understanding game appeal. Gamasutra.
Retrieved December 12, 2012 from: hp://
Carlson, S. M., & Moses, L. J. (2001). Individual dierences in inhibitory control and children’s theory of mind.
Child Development, 72(4), 1032–1053. doi:10.1111/1467-8624.00333
Chiesa, A., Calati, R., & Serrei, A. (2011). Does mindfulness training improve cognitive abilities? A systematic
review of neuropsychological findings. Clinical Psychology Review, 31(3), 449-64.
Cole, P.M., Martin, S.E., & Dennis, T.A. (2004). Emotion regulation as a scientific construct: Challenges and
directions for child development research. Child Development, 75, 317-333.
Davidson, RJ, & Begley, S. (2012). The emotional life of your brain: How its unique paerns aect the way you
think, feel, and live—and how you can change them. New York, NY: Hudson Street Press.
Davidson, R, & Irwin, W. (1999). The functional neuroanatomy of emotion and aective style. Trends in cognitive
sciences, 3(1), 11–21. Retrieved from hp://
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4–12 years
old. Science. 333(6045), 959–964.
Eigsti, I.-M., Zayas, V., Mischel, W., Shoda, Y., Ayduk, O., Dadlani, M. B., … Casey, B. J. (2006). Predicting
cognitive control from preschool to late adolescence and young adulthood. Psychological Science, 17(6),
478–84. doi:10.1111/j.1467-9280.2006.01732.x
Ellard, K. K., Fairholme, C. P., Boisseau, C. L., Farchione, T. J., & Barlow, D. H. (2010). Unified protocol for the
transdiagnostic treatment of emotional disorders: Protocol development and initial outcome data.
Cognitive and Behavioral Practice, 17(1), 88–101. doi:10.1016/j.cbpra.2009.06.002
Fagundo, A. B., Santamaria, J.J., Forcano, L., Giner-Bartolome, C., Jimenez-Murcia, S., Sanchez, I., &
Fava, G. a, & Tomba, E. (2009). Increasing psychological well-being and resilience by psychotherapeutic methods.
Journal of Personality, 77(6), 1903–34. doi:10.1111/j.1467-6494.2009.00604.x
Floyd, R. G., & Kirby, E. a. (2001). Psychometric properties of measures of behavioral inhibition with preschool-
age children: Implications for assessment of children at risk for ADHD. Journal of Aention Disorders,
5(2), 79–91. doi:10.1177/108705470100500202
Garner, P. (1999). Continuity in emotion knowledge from preschool to middle-childhood and relation to
emotion socialization. Motivation and Emotion, 23(4). Retrieved from hp://
Goldin, P., McRae, K., Ramel, W., & Gross, J. (2008). The neural bases of emotion regulation: reappraisal and
suppression of negative emotion. Biological Psychiatry, 63(6), 577–586. Retrieved from hp://www.ncbi.
Gross, J.J. & Munoz, R.F. (1995). Emotion regulation and mental health. Clinical Psychology: Science and Practice,
2, 151-164.
Gross, J. J., & Barre, L. F. (2011). Emotion generation and emotion regulation: One or two depends on your point
of view. Emotion Review, 3, 8-16.
Hendrie, H. C., Albert, M. S., Buers, M. a, Gao, S., Knopman, D. S., Launer, L. J., … Wagster, M. V. (2006).
The NIH cognitive and emotional health project. Report of the critical evaluation study commiee.
Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 2(1), 12–32. doi:10.1016/j.
Ivanov, I., Schulz, K. P., London, E. D., & Newcorn, J. H. (2008). Inhibitory control deficits in childhood and risk
for substance use disorders: a review. The American Journal of Drug and Alcohol Abuse, 34(3), 239–58.
Izard, C., Fine, S., Schultz, D., Mostow, a., Ackerman, B., & Youngstrom, E. (2001). Emotion knowledge as a
predictor of social behavior and academic competence in children at risk. Psychological Science, 12(1),
18–23. doi:10.1111/1467-9280.00304
Jacob, M., Thomassin, K., Morelen, D., & Suveg, C. (2011). Emotion regulation in childhood anxiety.
Kabat-Zinn, J. (2003), Mindfulness-Based Interventions in Context: Past, Present, and Future. Clinical
Psychology: Science and Practice, 10: 144–156.
Kessler, R. C., Aguilar-Gaxiola, S., Alonso, J., Chaerji, S., Lee, S., Ormel, J., & Wang, P. S. (2009). The global
burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys.
Epidemiology Psychiatry Society, 18(1), 23-33.
Klingberg, T., Fernell, E., Olesen, P., Johnson, M., Gustafsson, P., Dahlström, K., Gillberg, C.G.,
Knez, I., & Niedenthal, S. (2008). Lighting in digital game worlds: Eects on aect and play performance.
Cyberpsychology & Behavior, 11, 129–137.
Kohn, R., Saxena, S., Levav, I., & Saraceno, B. (2004). The treatment gap in mental health care. Bulletin of the
World Health Organization, 82, 858-866.
Lieberman, D. A. (2009). Designing serious games for learning and health in informal and formal seings.
Serious games: Mechanisms and eects, 117-130.
McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Boom-up and top-down emotion
generation: implications for emotion regulation. Social Cognitive and Aective Neuroscience, 7(3), 253–62.
Merry, S. N., Stasiak, K., Shepherd, M., Frampton, C., Fleming, T., & Lucassen, M. F. G. (2012). The eectiveness
of SPARX, a computerised self help intervention for adolescents seeking help for depression: randomised
controlled non-inferiority trial. BMJ, 344, e2598-e2598.
Mizen, R. (2009). The embodied mind. The Journal of analytical psycholog y, 54(2), 253–72.
Mo, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2011). A gradient of
childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of
Sciences of the United States of America, 108(7), 2693–8. doi:10.1073/pnas.1010076108
Nelis, D., Quoidbach, J., Mikolajczak, M., & Hansenne, M. (2009). Increasing emotional intelligence: (How) is it
possible? Personality and Individual Dierences, 47(1), 36–41. doi:10.1016/j.paid.2009.01.046
N-Fusion Interactive, C. P. (2011). Deepak Chopra’s Leela. Agoura Hills, CA: THQ Inc.
Norman, D. A. (2002). Emotion and design: Aractive things work beer. Interactions Magazine, 9(4), 36-42.
Perner, J., Kain, W., & Barchfeld, P. (2002). Executive control and higher-order theory of mind in children at risk
of ADHD. Infant and Child Development, 158, 141–158. doi:10.1002/icd.
Pons, F., & Harris, P. L. (2000). Test of Emotion Comprehension-TEC. Oxford, UK: Oxford University Press.
Primack, B. a, Carroll, M. V, McNamara, M., Klem, M. Lou, King, B., Rich, M., … Nayak, S. (2012). Role of video
games in improving health-related outcomes: a systematic review. American Journal of Preventive
Medicine, 42(6), 630–8. doi:10.1016/j.amepre.2012.02.023
Reynolds, C.R., & Kamphaus, R.W. (1992). BASC: Behavior Assessment System for Children manual. Circle Pines,
MN: American Guidance Service.
Riggs, N., Blair, C., & Greenberg, M. (2004). Concurrent and 2-year longitudinal relations between executive
function and the behavior of 1st and 2nd grade children. Child Neuropsychology, (February 2014), 37–41.
Retrieved from hp://
Southam-Gerow, M. A., & Kendall, P. C. (2002). Emotion regulation and understanding: Implications for child
psychopathology and therapy. Clinical Psychology Review, 22(2), 189-222.
Sprung, M., Leyrer, J., Bromley, M., Homer, B., Hofmann, A., Scharl, J., Was, V., Bellmore, I., Pühringer, S.,
Kuczwara, J., Hayward., E., & Plass, J. (2013, August). Space Ranger Alien Quest: A video game to assess
and promote executive functioning skills. Poster presented at the Annual Convention of the American
Psychological Association. Honolulu, HI, USA.
Sweetser, P. & Wyeth, P. (2005) GameFlow: A model for evaluating player enjoyment in games. ACM Computers
in Entertainment, 3(3), 1-24.
Tang, Y.-Y., Yang, L., Leve, L. D., & Harold, G. T. (2012). Improving executive function and its neurobiological
mechanisms through a mindfulness-based intervention: Advances within the field of developmental
neuroscience. Child Development Perspectives, 6(4), n/a–n/a. doi:10.1111/j.1750-8606.2012.00250.x
Tang, Y.-Y., & Posner, M. I. (2009). Aention training and aention state training. Trends in cognitive sciences,
13(5), 222–7.
Tate, R., Haritatos, J., & Cole, S. (2009). HopeLab’s approach to Re-Mission. International Journal of Learning and
Media, 1(1), 29–35. doi:10.1162/ijlm.2009.0003
Thompson, L., & McCabe, R. (2012). The eect of clinician-patient alliance and communication on treatment
adherence in mental health care: a systematic review. BMC Psychiatry, 12, 87. doi:10.1186/1471-244X-12-87
Tuckman, B. W., & Hinkle, J. S. (1986). An experimental study of the physical and psychological eects of aerobic
exercise on schoolchildren. Health Psychology : Ocial Journal of the Division of Health Psychology,
American Psychological Association, 5(3), 197–207. Retrieved from hp://
Umberson, D., & Montez, J. (2010). Social relationships and health: A flashpoint for health policy. Journal of Health
and Social Behavior, 51, 1–16. doi:10.1177/0022146510383501.Social
Um, E., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of
Educational Psychology, 104(2), 485.
Unique Logic and Technology (2011). PlayAention. Retrieved from hp://
USC ICT (2013) Bravemind. A project from the USC Institute for Creative Technologies. Retrieved from: hp://
Vacca, R. (2013). Leela: Taking the mind-body journey. Proceedings of DiGRA: DeFragging Game Studies, pp. 198-
199. Atlanta, Georgia.
Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training aentional control and working memory – Is younger,
beer? Developmental Review, 32(4), 360–387. doi:10.1016/j.dr.2012.07.001
Watson, D., Clark, L. a, & Carey, G. (1988). Positive and negative aectivity and their relation to anxiety and
depressive disorders. Journal of Abnormal Psychology, 97(3), 346–53. Retrieved from hp://www.ncbi.
WHO. Mental health. World Health Organization (WHO) 2004. Retrieved from: hp://
... Other authors suggest that games can support the development of social and emotional skills in addition to more disciplinary skills. Skills related to compassion and empathy such as perspective-taking, cultural awareness, and reflection (Belman & Flanagan, 2010;Darvasi, 2016;Schrier & Farber, 2018); ethics and ethical thinking, such as argumentation, deliberation, and consideration of others viewpoints (Ryan, Staines, & Formosa, 2016;Schrier, 2015Schrier, , 2017; other skills such as communication, social awareness, personal expression, and collaboration (Foster & Shah, 2016a;Foster & Shah, 2016b;Shah & Foster, 2018;Steinkeuhler, 2007;Steinkuehler & Oh, 2012;) and emotion expression and emotional and mental health (Dunlap, 2018;Isbister, 2016;Vacca, Bromley, Leyrer, Sprung, & Homer, 2014;). However, more work is needed to understand how to better design games that both support these types of social and emotional skills, while also supporting and encouraging STEM knowledge acquisition and understanding. ...
... Other authors suggest that games can support the development of social and emotional skills in addition to more disciplinary skills. Skills related to compassion and empathy such as perspective-taking, cultural awareness, and reflection (Belman & Flanagan, 2010;Darvasi, 2016;Schrier & Farber, 2018); ethics and ethical thinking, such as argumentation, deliberation, and consideration of others viewpoints (Ryan, Staines, & Formosa, 2016;Schrier, 2015Schrier, , 2017; other skills such as communication, social awareness, personal expression, and collaboration (Foster & Shah, 2016a;Foster & Shah, 2016b;Shah & Foster, 2018;Steinkeuhler, 2007;Steinkuehler & Oh, 2012;) and emotion expression and emotional and mental health (Dunlap, 2018;Isbister, 2016;Vacca, Bromley, Leyrer, Sprung, & Homer, 2014;). However, more work is needed to understand how to better design games that both support these types of social and emotional skills, while also supporting and encouraging STEM knowledge acquisition and understanding. ...
Full-text available
In this study, we examine how we might design and use games to support Science, Technology, Engineering, and Mathematics (STEM) learning as well as relevant social and emotional learning skills such as self-efficacy, curiosity, and STEM identity. We investigate a deck-building card game, Assassins of the Sea (Killer Snails, 2017), which teaches about marine biology, ecology, and environmental science. 178 middle school participants played the game and took an assessment before and after the game. Our results suggest that players’ STEM knowledge increased significantly. We also share social and emotional learning results, identify gaps, and make initial recommendations for creating and using games for STEM learning.
... The specific type or genre of a game used is less important than the notion that games can be used for educational purposes. For example, games have been suggested as effective in literature and literacy acquisition (e.g., Ferdig & Pytask, 2014), learning research methods and statistics (Boyle, et al., 2014), STEM education (Bertozzi, 2014;Werner, et al., 2014), music education (Hein, 2014), and emotional health education (Vacca et al., 2014). How a game is designed, its goals, the context where it is used, a teacher's guidance and use of the game, and the audience and community playing the DESIGNING ROLE-PLAYING VIDEO GAMES FOR ETHICAL THINKING game, among many other factors, contribute to the effectiveness of a game for educational purposes (Schrier, 2014d). ...
Full-text available
How can we better design games, such as role-playing video games (RPGs), to support the practice of ethical thinking? Ethical thinking is a critical component of twenty-first century citizenship and we need to design ways to creatively support its practice. This study investigates how male participants, ages 18–34, make ethical decisions in three in-game scenarios in Fable III, an RPG, and one additional scenario. The decision-making processes of thirty participants were analyzed; twenty were randomly assigned to play Fable III and ten were assigned to a control condition of written ethical scenarios. Results suggested that participants practiced a variety of ethical thinking skills and thought processes in both conditions, including reasoning-, empathy-, reflection-, and information gathering-related skills and thought processes. Three hypotheses were investigated and detailed, and any significant differences or similarities that emerged between conditions and across game scenarios were explored. Based on this analysis, four preliminary design principles were described.
... For over twenty years researchers have been using games in education, providing the following reasons as to why games are useful tools in teaching and learning concept. For instance [11]- [16]: ...
... For over twenty years researchers have been using games in education, providing the following reasons as to why games are useful tools in teaching and learning concept. For instance [11]- [16]: ...
Full-text available
Abstract— Computer games have grown in many directions. Many studies and systems deals with different elements such as ”Fun” and ”pleasure” in the game structure to improve a learners motivation in the field of educational learning. In this paper, we will explain different theoretical support for the benefit of using game in education and learning. We will also demonstrate the difference among those methods such as , Game Base Learning(GBL), educational game and Gamification in education. A clear description among these new terms with explanation of the possible impact on teaching and learning will be presented. Games can make learning concept more enjoyable for students and provide a platform for their creative thought. Games will of- ten act as learning triggers inducing lively discussion on learning concepts amongst students following game play. A couple of new ways of teaching like Game Based Learning and Gamification can be applied to enhance the learning procedure of students in various age levels.
Full-text available
Authors have argued that various forms of interventions may be more effective in younger children. Is cognitive training also more effective, the earlier the training is applied? We review evidence suggesting that functional neural networks, including those subserving attentional control, may be more unspecialised and undifferentiated earlier in development. We also discuss evidence suggesting that certain skills such as attentional control may be important as ‘hub’ cognitive domains, gating the subsequent acquisition of skills in other areas. Both of these factors suggest that attentional training administered to younger individuals ought to be relatively more effective in improving cognitive functioning across domains. We evaluate studies that have administered forms of cognitive training targeting various subcomponents of attention and the closely related domain of working memory, and we contrast their reported transfer to distal cognitive domains as a function of the age of the participants. Although negative findings continue to be common in this literature we find that cognitive training applied to younger individuals tends to lead to significantly more widespread transfer of training effects. We conclude that future work in this area should concentrate on understanding early intensive training, and discuss a number of practical steps that might help to achieve this aim.
Full-text available
Measures of behavioral inhibition offer promise in research with young children with ADHD. This study investigated the factorial validity, ecological validity, and temporal reliability of five performance-based measures of behavioral inhibition in a sample of 70 3-, 4-, and 5-year-old children. An exploratory factor analysis yielded a single factor that accounted for 45% of the variance in the analysis. This factor was found to significantly correlate with teacher ratings of aggression and inattention and was found to differentiate both between sexes and between older and younger children. Several individual measures of behavioral inhibition demonstrated statistically significant correlations with teacher ratings of aggression and inattention. Adequate 1-to 2-week test-retest reliability was demonstrated for only two measures. Some limitations of the study are discussed and suggestions for future research are presented.
Full-text available
Background Nonadherence to mental health treatment incurs clinical and economic burdens. The clinician-patient alliance, negotiated through clinical interaction, presents a critical intervention point. Recent medical reviews of communication and adherence behaviour exclude studies with psychiatric samples. The following examines the impact of clinician-patient alliance and communication on adherence in mental health, identifying the specific mechanisms that mobilise patient engagement. Methods In December 2010, a systematic search was conducted in Pubmed, PsychInfo, Web of Science, Cochrane Library, Embase and Cinahl and yielded 6672 titles. A secondary hand search was performed in relevant journals, grey literature and reference. Results 23 studies met the inclusion criteria for the review. The methodological quality overall was moderate. 17 studies reported positive associations with adherence, only four of which employed intervention designs. 10 studies examined the association between clinician-patient alliance and adherence. Subjective ratings of clinical communication styles and messages were assessed in 12 studies. 1 study examined the association between objectively rated communication and adherence. Meta-analysis was not possible due to heterogeneity of methods. Findings were presented as a narrative synthesis. Conclusions Clinician-patient alliance and communication are associated with more favourable patient adherence. Further research of observer rated communication would better facilitate the application of findings in clinical practice. Establishing agreement on the tasks of treatment, utilising collaborative styles of communication and discussion of treatment specifics may be important for clinicians in promoting cooperation with regimens. These findings align with those in health communication. However, the benefits of shared decision making for adherence in mental health are less conclusive than in general medicine.
Recently, there has been a convergence in lesion and neuroimaging data in the identification of circuits underlying positive and negative emotion in the human brain. Emphasis is placed on the prefrontal cortex (PFC) and the amygdala as two key components of this circuitry. Emotion guides action and organizes behavior towards salient goals. To accomplish this, it is essential that the organism have a means of representing affect in the absence of immediate elicitors. It is proposed that the PFC plays a crucial role in affective working memory. The ventromedial sector of the PFC is most directly involved in the representation of elementary positive and negative emotional states while the dorsolateral PFC may be involved in the representation of the goal states towards which these elementary positive and negative states are directed. The amygdala has been consistently identified as playing a crucial role in both the perception of emotional cues and the production of emotional responses, with some evidence suggesting that it is particularly involved with fear-related negative affect. Individual differences in amygdala activation are implicated in dispositional affective styles and increased reactivity to negative incentives. The ventral striatum, anterior cingulate and insular cortex also provide unique contributions to emotional processing.
Poor executive function (EF) has been associated with a host of short- and long-term problems across the lifespan, including elevated rates of attention deficit hyperactivity disorder, depression, drug abuse, and antisocial behavior. Mindfulness-based interventions that focus on increasing awareness of one's thoughts, emotions, and actions have been shown to improve specific aspects of EF, including attention, cognitive control, and emotion regulation. Reflecting a developmental neuroscience perspective, this article reviews research relevant to one specific mindfulness-based intervention, integrative body-mind training (IBMT). Randomized controlled trials of IBMT indicate improvements in specific EF components, and uniquely highlight the role of neural circuitry specific to the anterior cingulate cortex and the autonomic nervous system as two brain-based mechanisms that underlie IBMT-related improvements. The relevance of improving specific dimensions of EF through short-term IBMT to prevent a cascade of risk behaviors for children and adolescents is described and future research directions are proposed.
Can computers change what you think and do? Can they motivate you to stop smoking, persuade you to buy insurance, or convince you to join the Army? "Yes, they can," says Dr. B.J. Fogg, director of the Persuasive Technology Lab at Stanford University. Fogg has coined the phrase "Captology"(an acronym for computers as persuasive technologies) to capture the domain of research, design, and applications of persuasive computers.In this thought-provoking book, based on nine years of research in captology, Dr. Fogg reveals how Web sites, software applications, and mobile devices can be used to change peoples attitudes and behavior. Technology designers, marketers, researchers, consumers-anyone who wants to leverage or simply understand the persuasive power of interactive technology-will appreciate the compelling insights and illuminating examples found inside. Persuasive technology can be controversial-and it should be. Who will wield this power of digital influence? And to what end? Now is the time to survey the issues and explore the principles of persuasive technology, and B.J. Fogg has written this book to be your guide.
The Behavior Assessment System for Children, Second Edition (BASC–2; Reynolds & Kamphaus, 2004) is a multimethod, multidimensional system used to evaluate the behavior and self-perceptions of children, adolescents, and young adults aged 2 through 25 years. The BASC–2 is multimethod in that it has the following components, which may be used individually or in any combination: (1) two rating scales, one for teachers (Teacher Rating Scales, or TRS) and one for parents (Parent Rating Scales, or PRS), which gather descriptions of the child's observable behavior, each divided into age-appropriate forms; (2) a self-report scale (Self-Report of Personality, or SRP), on which the child or young adult can describe his or her emotions and self-perceptions; (3) a Structured Developmental History (SDH) form; (4) a form for recording and classifying directly observed classroom behavior (Student Observation System, or SOS), which is also available for PDA applications as an electronic version known as the BASC–2 POP or Portable Observation Program; and (5) a self-report for parents of children ages 2–18 years, designed to capture a parent's perspective on the parent-child relationship in such domains as communication, disciplinary styles, attachment, involvement, and others. Keywords: diagnosis; behavior; behavioral assessment; psychopathology