plenty of media elements like text, still images, video, sprites, and so on.
Aware of the difficulties that color-blind people may face in interpreting colored contents, a significant number of recoloring algorithms have been proposed in the literature with the purpose of improving the visual perception of those people somehow. However, most of those algorithms lack a systematic study of subjective assessment, what undermines their validity, not to say usefulness. Thus, in the sequel of the research work behind this Ph.D. thesis, the central question that needs to be answered is whether recoloring algorithms are of any usefulness and help for colorblind people or not.
With this in mind, we conceived a few preliminary recoloring algorithms that were published in conference proceedings elsewhere. Except the algorithm detailed in Chapter 3, these conference algorithms are not described in this thesis, though they have been important to engender those presented here. The first algorithm (Chapter 3) was designed and implemented for people with dichromacy to improve their color perception. The idea is to project the reddish hues onto other hues that are perceived more regularly by dichromat people.
The second algorithm (Chapter 4) is also intended for people with dichromacy to improve their perception of color, but its applicability covers the adaptation of text and image, in HTML5-compliant web environments. This enhancement of color contrast of text and imaging in web pages is done while keeping the naturalness of color as much as possible. Also, to the best of our knowledge, this is the first web recoloring approach targeted to dichromat people that takes into consideration both text and image recoloring in an integrated manner.
The third algorithm (Chapter 5) primarily focuses on the enhancement of some of the object contours in still images, instead of recoloring the pixels of the regions bounded by such contours.
Enhancing contours is particularly suited to increase contrast in images, where we find adjacent regions that are color indistinguishable from dichromat’s point of view. To our best knowledge, this is one of the first algorithms that take advantage of image analysis and processing techniques for region contours.
After accurate subjective assessment studies for color-blind people, we concluded that the CVD adaptation methods are useful in general. Nevertheless, each method is not efficient enough to adapt all sorts of images, that is, the adequacy of each method depends on the type of image (photo-images, graphical representations, etc.).
Furthermore, we noted that the experience-based perceptual learning of colorblind people throughout their lives determines their visual perception. That is, color adaptation algorithms must satisfy requirements such as color naturalness and consistency, to ensure that dichromat people improve their visual perception without artifacts. On the other hand, CVD adaptation algorithms should be object-oriented, instead of pixel-oriented (as typically done), to select judiciously pixels that should be adapted. This perspective opens an opportunity window for future research in color accessibility in the field of in human-computer interaction (HCI).