Article

Computational Learning in Climate Change Adaptation Support

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Natural disasters such as floods and droughts resulting from climate variability and weather extremes cause catastrophes like food insecurity which is most severe in the drier parts of Uganda like Karamoja region. This study examined the effectiveness of computational learning as applied in the forecast of stimulus to increase in agricultural crop prices and subsequent prediction of food insecurity. Secondary rainfall data from 1986 to 2008 were obtained from Meteorology Department for two weather stations and six-years data on consumer price index of maize were obtained from Uganda Bureau of Statistics. Auto Regressive Integrated Moving Average time series analysis algorithm was used to forecast the liner pattern of rainfall and crop price while artificial neural networks (ANN), a computational model inspired by functional aspect of biological neural network, was used to forecast the non-liner pattern. Cross validation was performed using training and validation data to evaluate learning capability of the algorithms. Prediction accuracy of the two algorithms were compared and the hybrid model produced better results than the single model. ANN produced high sensitivity which demonstrated the effectiveness of applying computational learning in the prediction of catastrophes such as food insecurity. The prediction results can be used by decision makers for informed decisions on climate change adaptation where the local community still has low adaptation capability. It is recommended that the local community should participate in planning interventions to address disasters such as famine to enhance their understanding of the disaster and increase communication between them and disaster managers.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Official link: http://dx.doi.org/10.1080/02626667.2013.778412 New wavelet and artificial neural network (WA) hybrid models are proposed for daily streamflow forecasting at 1, 3, 5 and 7 days ahead, based on the low-frequency components of the original signal (approximations). The results show that the proposed hybrid models give significantly better results than the classical artificial neural network (ANN) model for all tested situations. For short-term (1-day ahead) forecasts, information on higher-frequency signal components was essential to ensure good model performance. However, for forecasting more days ahead, lower-frequency components are needed as input to the proposed hybrid models. The WA models also proved to be effective for eliminating the lags often seen in daily streamflow forecasts obtained by classical ANN models. Editor D. Koutsoyiannis; Associate editor L. See Citation: Santos, C.A.G. and Silva, G.B.L., 2014. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59 (2), 312–324.