Access to this full-text is provided by SAGE Publications Inc.
Content available from International Journal of Advanced Robotic Systems
This content is subject to copyright.
International Journal of Advanced Robotic Systems
A Web-Based Integration Procedure
for the Development of Reconfigurable
Robotic Work-Cells
Regular Paper
Paulo Ferreira1,*, Victoria Reyes1 and João Mestre2
1 Polytechnic Institute of Setúbal, Campus do Instituto Politécnico de Setúbal, Setúbal, Portugal
2 Halla Climate Control, USA
* Corresponding author E-mail: paulo.ferreira@estsetubal.ips.pt
Received 4 Jun 2012; Accepted 2 Jan 2013
DOI: 10.5772/DOI
© 2013 AUTOR et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
AbstractConceptsrelatedtothedevelopmentof
reconfigurablemanufacturingsystems(RMS)and
methodologiestoprovidethebestpracticesinthe
processingindustryandfactoryautomation,suchas
systemintegrationandweb‐basedtechnology,aremajor
issuesindesigningnext‐generationmanufacturing
systems(NGMS).Adaptableandintegrabledevicesare
crucialforthesuccessofNGMS.Inroboticcellsthe
integrationofmanufacturingcomponentsisessentialto
acceleratesystemadaptability.Sensors,control
architecturesandcommunicationtechnologieshave
contributedtoachievingfurtheragilityinreconfigurable
factories.Inthisworkaweb‐basedroboticcellintegration
procedureisproposedtoaidtheidentificationof
reconfigurableissuesandrequirements.This
methodologyisappliedtoanindustrialrobot
manipulatortoenhancesystemflexibilitytowardsthe
developmentofareconfigurableroboticplatform.
KeywordsRoboticCells,ReconfigurableSystems,Control
Architecture,SystemIntegration,WebBasedRemote
Control
1.Introduction
Automatedworkcellsplayamajorroleinmodern
industry,increasingflexibility,productivityandquality,
minimizingenergyconsumption,wasteandoperation
timetoensuresustainability[1].Mattersconnectedtothe
developmentofnext‐generationmanufacturingsystems
(NGMS)areidentifiedin[2]andthedevelopmentof
methodologiestoprovidethebestpracticesinindustry,
suchasenterpriseintegrationandthedevelopmentof
web‐basedsystemstosupportcomputer‐based
cooperativeworkaremajorissuesforthedesignand
developmentofNGMS.Adaptable,integrableequipment
andreconfigurablesystemshavebeenrecognizedasvital
forthesuccessofNGMS[2].Theintegrationof
manufacturingcomponentsinroboticcellperformanceis
crucialtoacceleratetheadaptabilityoftheroboticcellto
environmentalchangesaswellasfornewproductsthat
canrefiguretheroboticcellaccordingtotherequirements
ofaspecifictask.Areconfigurablemanufacturedsystem
(RMS)hastheabilitytoreconfigurehardwareandcontrol
resourcesatthefunctionalandorganizationallevelsin
ordertoquicklyadjustitscapabilitiesinresponseto
1
Paulo Ferreira, Victoria Reyes and João Mestre: A Web-Based Integration
Procedure for the Development of Reconfigurable Robotic Work-Cells
www.intechopen.com
ARTICLE
www.intechopen.com Int. j. adv. robot. syst., 2013, Vol. 10, 295:2013
suddenchangesinrequirements[3].Forsmalland
mediumenterprises(SME)thischaracteristicensuresa
moreflexiblemanufacturingprocessabletovary
productionvolumeandparttypesandadapttothe
introductionofnewproducts[4].Machinevision
applicationsandsensortechnologieshavecontributedto
achievingfurtheragilityinreconfigurablefactoriesor
processplantsabletorapidlyadjustproductioncapacity
andfunctionality[5].
Aroboticcellistheresultofcustomizedplanning,
integration,programming,andconfiguration,requiringa
significantamountofengineering[6].Thewiderangeof
devices,theiruncertaintiesandmodellingmeanitis
difficulttocreatestandardizedintegrationprocedures
andevaluateandidentifyissuesrelevanttoindustry
practice.Communicationtechnologies,inparticular
wirelesstechnology,havealsobeenrecognizedas
facilitatingflexibilityandfactoryagility[7].The
requirementsassociatedwiththedesignofanopen
architecturenecessitateasystemizedprocedureforthe
integrationofaroboticcell.Aweb‐basedsupervisory
systembenefitshigh‐levelreconfigurability[8],which
enhancesdiagnosability.Thisworkdescribesa
methodologyforthedesignandimplementationofweb‐
basedsupervisoryroboticcellintegration.Requirements,
functionalitiesandspecificationsareidentifiedtofurther
enhancesystemflexibilityandreconfigurability.The
methodologyisappliedtoanindustrialrobot
manipulatorinanautomotivecompressormanufacturing
cell.
Theworkisorganizedasfollows.Section2describesthe
configurationofaroboticcell.Section3introducessome
architectureissues.Communicationandsensor
technologyregardingRMSisreviewedinsection4.The
developedsystemintegrationprocedurewithan
industrialapplicationisdescribedinsection5.Finally,in
section6conclusionsandissuesforfutureresearchare
presented.
2.AutomatedRoboticCell
Automatedroboticcellsare iscomposedbyseveral
devices,suchasbeltconveyors,fixturesystems,robot
manipulators,loadingandunloadingperipherals,
controllersandsensors[9,10]whereprogrammable
automationisusedtocontrolunitdevices.PC‐based
controlactionsareconcernedwiththesynchronizingand
coordinatingofallactivitiesinvolvedinatasksequence.
Intheplantcontrolstructure,thelow‐level
synchronizationcontrolisusuallyatasksequence
executedbyPLCcontrollers.APC‐basedcontrol
approachoffersgreaterflexibilityintermsofdifferent
programminglanguagesthatcanbeusedforthe
implementationofthereal‐timecontrolsoftware;suchan
approachalsoenablesnetworkconnectivityandreal‐time
monitoring.AmajorproblemwithPC‐‐basedcontrol,
however,istheincompatibilityofthesoftware
programminglanguagesandthehardware’sproprietary
languages[11].Object‐orientedarchitecturessuchas
OpenModularArchitectureController(OMAC)and
OpenSystemArchitectureforControlinAutomation
(OSACA)constitutereferencemodelsforthe
developmentofunifiedmodellinglanguagesandthe
designofI/Oplatformsandcommunicationprotocolsfor
PC‐basedcontrol.
Advancedsensorandcontroltechniquesconstitutekey
elements[12]ofthedevelopmentofnewtechniques
enablingrobotstooperatein3Dnon‐structured
environments.Model‐basedcontroltechniqueshave
improvedroboticsystemsperformingindustrialtasks
andhaveincreasedmaximumspeedandreductionof
patherrors[13].Theuseofproprietarylanguagesisa
conventionalmethodinindustrialmanipulators,
allowingfastlearning.However,theselanguages
togetherwithmanufacturedprocessprogramming
languageshavehamperedtheintegrationoftherobot
manipulator,controllersandfielddevicesinthe
productioncell[14],andprocedurescarriedoutto
performrepetitivetaskshavenotyieldedoptimal
accuracylevels.Duetotherequiredhighspeedand
accuratemovementperformance,theautomotive
industryhasstimulatedthedevelopmentofindustrial
robotcontroltechniquesinthefieldofcontinuousevents
[15].Advancedsoftwareapplicationstogetherwiththe
robotunitandperipheralshaveenabledcellmodelling,
avoidingcollisionsandoptimizingtasks.Inmodel‐based
methods,amodelthatpredictstheresponseto
perturbationssuchasanticipatedworkloadvariationsis
requiredtoguaranteerobotposeaccuracyandprecise
predictionofgeneratedforcesduringthemanufacturing
process.Therobotpositioningiscorrectedaccordingto
thekinematicsanddynamicsstatevariablespredictedby
themodel.Inthisapproach,therobotspecificationsfrom
themanufactureaswellastheuncertaintyofdynamic
parameterareconsidered.Developedcontrolsystems
techniques,visualservoingandnewmechanical
structureshavebeenusedinordertoachievehigh
productivityperformance.Sensor‐basedcontrolstrategy
hasbecomehighlyimportantinthesearchforrobot
controlperformanceandperceptionimprovements[12].
Inthistechnique,deviationsbetweenmeasuredand
desiredpositionarecorrected.Withhigh‐speedrobot
movements,timeresponsesensorsarecrucialtoperform
thecontrolloop.Reconfigurableapproachescombining
bothmodel‐ andsensor‐basedmethodshavebeen
proposedassolutions[5].
2.SystemIntegrationArchitectures
InRMS,architectures,modellingandcontrol,sensorsand
communicationsystemsarekeyissuesincontrollingand
2Int. j. adv. robot. syst., 2013, Vol. 10, 295:2013 www.intechopen.com
monitoringofroboticsystems[3].Theseissuesinclude
architectureconfigurationandcontroldesign.Inarobotic
cell,thearchitecturecharacterizesthesystemstructure
anddefinestheinformationandsignalsflowbetween
subsystemsinordertoenabletheintegrationoftherobot
controltaskexecutionandthesynchronizingofsupply
andunloadingperipheralsofthemanufacturingprocess.
InanRMS,andinparticularinaroboticcell,atthe
systemdesignstagethearchitectureassumesthateach
deviceisamodule[16].Eachmoduleshouldincorporate
aninterfacetoprovidephysicalinformationenabling
controlandmonitoringoperations.Accordingtoa
specifictask,atthesystemapplicationstagethe
configurationdesigncorrespondstothemoduleselection
foranassemblyoptionduringacertainperiodoftime[5].
Atthelow‐leveloperationstage,controlsystemdesign
definesthemanufacturedandprocessvariablestorealize
controlactions.Forthispurposesensorsandactuators
shouldbeabletobeactivatedonline.
Anopenarchitectureassuresadaptabilityand
interoperabilitytosupporttheinformationexchange
betweenelectronicdevices.Thismethodologyisbasedon
modellingtechniquesandinternationalstandards.The
IEC61499[17]definesfunctionblocksforindustrial
processmeasurementsandcontrolsystems.This
standardassumesamoduleasafunctionblock(FB)
representingafunctionalsoftwareassociatedtoa
controllerdevicehardware.Asaresponsetoevent
inputs,theexecutioncontrolchartinvokestheexecution
ofanalgorithmcomputinginternalandoutputdata.
Referencemodelsforthedesignofautomationsystem
architecturearebasedonobject‐orientedmodelling
conceptswherecomplexautomationsystemsare
simplifiedintosmallerandmoremanageablemodules.
Hierarchicalarchitecturesallowthedecompositionof
planningandcontrolfunctions.
Inheterarchicalarchitectureonlyhorizontalflowof
distributedcontrolsignalsisallowed,assuringgreater
flexibilitybutdisablingglobalcontrol.Inthisapplication
anevolution‐basedcontrolarchitecturecombiningthe
flexibilityofheterarchicalarchitectureandtheglobal
controlofahierarchicalarchitectureaspresentedinFig.
1.isproposed.Inthisarchitecturethehardwareand
softwarereconfigurabilityrequirementsfollowthe
illustratedevolution.Inaroboticcell,fixturesystems[11],
materialhandleconveyorsystems,robotmanipulatorand
controllersshouldmeetreconfigurabilityrequirements[3,
18].Theseelements,togetherwithsensors,actuatorsand
communicationtooldevicesshouldmeetmodularized
propertiesregardingconnectivitytoRMS.This
modularizedframeworkallowstheimplementationof
conventionalandweb‐basedsupervisorysystemsaswell
asswitchingbetweenmanufacturedandprocessdevices,
combiningprocessandcontrol.Eachmoduleis
encapsulatedwithitsowninternalintelligenceinorderto
interactwiththeothermodularizedsystemcomponents
[11].Thisarchitectureshouldcomprisecontrolactions
andallowtheonlineactivationofthedataprocessing
programaccordingtosensorsdetectingeventssuchas
variationsinparttypesinthesupplysystemoratypical
behaviourrequiringerrorcompensationorrecovering
functionality.
Thebenefitsofthisarchitectureareconnectedwith
factorymanagement,collaborationwithpartnersat
differentlocalplaces,datasharingandprovision[19].
Eachcontroldevicehasitsownreal‐timecontroller.The
integrationofcontrolfunctionsintotheshop‐floor‐level
programmablecontrollerlineratherthanusingdedicated
programmingisachallenge,butallowsthedirectcontrol
oftherobotinaCartesianworkspace,avoiding
instabilityproblemsandincreasingaccuracy.InFigure1,
thecontrollermoduleaggregatesdynamicmodeland
motioncontrolsub‐modules.
Figure1.ArchitectureDesignforaSupervisoryRoboticCell
architecture
Robotcontrollerleveliscomprisedoftwosub‐modules:
motionplanning,resultingfromtheaggregation,
trajectoryplanning,trajectorycontrollerandkinematic
modelsub‐modules.Axiscontrollerresultsfromthe
aggregationofdynamicsmodelandmotioncontrolsub‐
modules.
2.1Web‐BasedArchitecture
Duetothecomplexityofweb‐basedcontrolintegration
problems,astandardizedmethodologyisrequired.A
systematicprocedureunderlyingthearchitecture
selectionresultingfromtherequirementsspecificationis
RECONFIGURABLEHARDWARE
RECONFIGURABLESOFTWARE
WORK CELL
SUPERVISION AND COMMUNICATION INTERFACE
LOGIC OR INDUSTRIAL
PC CONTROLLER
ROBOT
CONTROLLER
FIELD DEVICES: SENSORS AND ACTUATORS
ROBOT
CONVEYOR
PERIPHERALS
TOOL
PLANT
3
Paulo Ferreira, Victoria Reyes and João Mestre: A Web-Based Integration
Procedure for the Development of Reconfigurable Robotic Work-Cells
www.intechopen.com
presentedin[19].Here,a web‐basedcontrolhierarchical
structurefortheroboticcellisproposed,showninFig.2.
Real‐timemonitoringandcontroltaskapplication
performance,securityandinformationmanagementand
somecriteriaforthetopologyselectionarebasedona
“fourRs”principlewherebyResolution,ResponseTime,
ReliabilityandReparabilityareevaluated.InFig.2,
choosingpath(1)or(2)willresultinaconventionalrigid
structure.Byselectingconnection(3)theresulting
architectureisaflexibleclient/servertopologywhere
controllersareequippedwithawebservercontainingthe
programandtheuserinterface.Inthesequenceofthe
integrationprocedurepresentedin[20],asafirst
approach,thearchitectureresultingfromconnection(2)
wasselectedandimplemented.Inthisarchitecture,the
numberofendusersislimited.Acomparativestudy
shouldbeperformedonarchitectures(2)and(3).The
timelatencyproblemin(3)mustbeinvestigatedbasedon
compensationtechniquesandpredictivecontrol.
Figure2.WebConnectionsfortheHierarchicalControl
Architecture(basedon[23])
Fromarchitecture(3),presentationplatformssuchas
controlpanelsandPCsarefittedwithstandardbrowsers
thatcanbeuploadedfromthecontroller.This
architectureoffersexcellentadaptabilitysothatany
modificationappliedtothecontrollerisupdatedinthe
controlunits.Thecostsofthisapplicationarelow
comparedtothearchitectureobtainedfromconnection
(2).Controlpanelsdisplayhardwarewithabrowser
functionandareeasilynetworkedviaEthernetports.
Traditionalweb‐basedtechnologiesuseHMTLpagesand
JavaScriptinstructionstodesignHMIs.Another
approachcalledweb‐basedserviceorientedarchitecture
(SOA)hasdemonstrateditsabilitymeetreconfigurability
requirements[21];deviceconnectivityusesthestandard
DPWSprotocol(DeviceProfileWebService).SOAis
basedonprograms(services)thatperformspecific
functionsbeingavailableforremotesoftwareapplication.
Thisinterfaceshoulddeliversecuritysupportand
addressstandardself‐describingtechnologysuchas
XML,allowingeaseofimplementation.Inweb‐based
automation,input/outputsignalsfromPLCdevicesor
sensoroutputssignalsaremappedtothewebservice’s
logicalprogrammingandpresentedthroughDPWS
interfacesondevices.Device‐to‐deviceanddevice‐to‐
controlcommunicationarethenenabledandfunction‐
basedmodularizedembeddedcontrolprogramsprovide
adaptability,enablingrapidchangeoverinthesoftware
module.
3.SensorandNetworkCommunication
TechnologyinNGMS
Aflexibleroboticcellshouldbeabletoquicklyreactto
variationsinparttypesorsizesortooldevices,avoid
collisionsandchangetechnologicalparametersduring
themanufacturingprocess,Visualservoing
configurationshavebeenarticulatedwiththe
developmentofadvancedcontrolalgorithmstoraisethe
levelofadaptabilityofthecell.Otherapproaches
integratevisionresourcesdirectlyintothecontroller,
avoidingproblemsofprogrammingcamerasseparately.
Laserinterferometershavebeenusedinhigh‐precision
motioncontrolwithhighaccuracyanddirectlyatthe
load,reducingerrorstypicallygeneratedbylinear
encoder[22].Theseopticalsensorsalsoallowthe
detectionofthepresenceorvariationofdifferentpart
types.Inthisresearchtheuseofakineticmotionsensor,
includingacameraandadepthsensor,isinvestigated
withthegoalofachieving3Drecognition.Intermsofthe
controllerspeedproblem,amagneticenergyencoder
usinghigherenergymagnetsinsmallersizesprovides
betterperformance.MicroElectroMechanicalSystems
(MEMS)havereleasedinductivecoiltechnologyencoders
withexcellentpositionaccuracy.Piezoelectricmotor
applicationsinreconfigurableroboticcellshave
demonstratedlowerresponsetimesandincreased
stability[5].
3.1IndustrialNetworkCommunication
CommunicationprotocolssuchasTCP(Transport
ControlProtocol)andIP(InternetProtocol)areusedas
standardsinbuildingindustrialapplications.TheTCP/IP
protocolisthebasisofthecommunicationhierarchyofa
web‐basedapplication.Ethernet/IPprotocolbuiltintothe
standardTCP/IPtoremotelyconfigureandaccessdevice
controllersintheplantconstitutesanindustriallayer
applicationprotocol.
Theadoptionofwirelesscommunicationnetworksisan
economicalsolutionsincethisavoidstheproblemof
havingnumeroussensorsandtheassociatedcomplexity
andcostsofcabling;suchanetworkhasbeenadoptedin
theapplicationdescribedinsection5.Thistechnology
allowsanincreaseddataacquisitionrate,enablingbetter
levelsofmeasurementuncertaintyandmodelsfor
processcontrol.Beyondthesefactors,wirelessnetworks
3
2
SUPERVISIONSYSTEM
Intranet/Intern
1
MANAGEMENT
INFORMATION
FACTORYAUTOMATIONAND
INSTRUMENTATIONSYSTEMS
WORKCELL
4Int. j. adv. robot. syst., 2013, Vol. 10, 295:2013 www.intechopen.com
allowtheintegrationofmeasuringdevicesorcollectionof
datafromsensorsinplacesthataredifficulttoaccess.
Anotherbenefitistheabilitytocontrolandmonitor
regardlessofdistance,placeorobstacles.Wireless
communicationisapowerfulresourceforagilefactories;
however,thereisstilltheneedtostimulateitsadoption.
Standardizationisamajorconcerntosimplify
implementationof:interfaceexchangedata,
radiofrequencyspectrumallocationinindustrial
automationapplications,safetystandardprocedures,
mobileterminalsforindustrialapplications,comparative
performanceofdifferentwirelesstechnologies,and
variousdevices,webservicesandcontrolarchitectures
[7].Noisespectrumfeaturesandsensitivityofdevicesto
wirelesssignalsareessentialmattersofresearch.The
industrialapplicationdescribedinsection5useswireless
connectivitybetweenhigh‐levelandlow‐levelcontrol.
4.RoboticWorkCellIntegration
TheintegrationprocedureresultinginaPC‐based
supervisoryroboticworkcellwaspresentedin[20].A
web‐basedarchitectureincludesanotherstructurelevel.
Withtheaimofachievingreconfigurablefeaturesthis
procedureiscomposedofthefollowingmainactivities:
1. Definitionofthesystemtobeintegrated:
specificationofeachparticipatingdevice,their
operationsandthedesiredsynchronismbetween
them.Atthisstageitisimportanttodefinethe
expectedautomatedbehaviourfromthehigh‐level
controldesignaswellasthecontrolledand
monitoredvariablesinordertofacilitatetherequired
supervisoryandcontrolactivitiesatthecontrol
designstage.
2. Referencearchitecturedefinition:fortheweb‐based
integratedroboticcellanarchitectureresultingfrom
thecombinationofthearchitecturesshownin
Figures1and2shouldbeadopted.Thisprocedure
willgiverisetoanevolution‐basedarchitecture
allowingdevice‐todeviceanddevice‐to‐control
communicationaswellastheirconnectivitytothe
web.Thewholewebcontrolandmonitoringofthe
integratedcellwillbeenabled.
3. Reconfigurableactivitiesdefinition:thisstep
comprisestheconfigurationdesign,correspondingto
themoduleselectionforanassemblyoptionduringa
certainperiodoftime.
4. Controldesignforlow‐leveloperations:
manufacturedandprocessvariablesaswellassensor
andactuatorspecificationsandprogrammingforthe
controlactionactivities.
5. Definitionofhardwareprogrammingandobject‐
oriented/service‐orientedsoftwarerequirementsfor
theremotemanipulationofsensors,actuatorsand
controllerdevicesforapre‐definedtaskor
unpredictedevents.
6. Definitionofpracticalissues:safety;development
andimplementationofinterfacesbetweendevices,
suchasthecell‐manipulator‐conveyorshownin
Figure3;calibrationandprogrammingofrobot
manipulator.
7. Functionalitiesimplementationformanipulationand
reconfigurablerequirementssuchastool
implementationandsensorsenablingtheprocess
accelerationandtheimprovingofsystem
adaptability.
8. Productioncellcontrolandprogramming,design
andimplementationofloadstations,supplyand
unloadsystemprogramming.
9. Tasksequencedefinitionfortheautomaticcell
performanceandonlinedeviceactivationforremote
controlandmonitoring.
10. Thewholeintegratedsystemperformanceistested
andreported.
Beforereal‐timeimplementation,eachactivityandthe
resultingsystemshouldbetestedthroughavirtual
prototype.Toachievecooperativeworkandfactory
agilityaunifiedtechnologyshouldbeadopted.Theuse
ofSOAtogetherwiththeconceptofmodularized
architectureprovidesanopensolutionfortheintegration
ofalltheenterprisecontrollevels.Othermechanismsfor
thestructure’sdevices,suchasaddressing,description,
discovery,dataexchange,controlandeventdriving,are
illustratedinFig.4.Forthereconfigurabilityand
flexibility,modulesshouldformafunctionblockmodel
incorporatingcontrolapplication,network
communicationdevice,hardwareconfiguration,
electronicinterfaceandphysicalinputsandoutputs.
Adatabaseserverallowsaconnectiontotheprocessand
dataeventcollecting.Functionalitiestoaddress
diagnosability,suchastheincorporationofcooperating
sensors[24]anderrorrecoveringtoreporterrorstateto
therespectiveclient,mustbeadded.Inordertomeetthe
flexibleandreconfigurablerequirementsattherobot
level,andusingthecapabilitiesoftheoriginalrobot
control,anevolution‐basedarchitectureforthe
distributedclient/serverapproachshouldbeadopted
withthedevelopmentofthesoftwaretoprovide
communicationbetweenthecontrollerandtherobot
throughanEthernetconnection.Acontrollerdevicefor
eachrobotjointshouldbedesigned.
Theaccelerationofcontrollerperformancewillbecarried
outusingvisionsensorsfor3Drecognitionanderror
compensationtechniqueswillbeenhancedthroughthe
useofmagneticencoders.
4.1Integrationprocedureimplementation
ApartfromanABBIRB4400robotmanipulatorwithsix
degreesoffreedom,themainelementsoftheroboticcell
5
Paulo Ferreira, Victoria Reyes and João Mestre: A Web-Based Integration
Procedure for the Development of Reconfigurable Robotic Work-Cells
www.intechopen.com
arethemanufacturingprocess,theconveyors,peripherals
andtoolsasillustratedinFig.3.Alltheactivitiesare
coordinatedbyaweb‐basedsupervisorysystem,
accordingtoanevolution‐basedarchitectureresulting
fromthecombinationofarchitecturesproposedinFigs.1
and2.Theimplementedarchitectureisillustratedin
Figure5.Forhigh‐levelandlow‐levelcontrol
communication,aswellasforfielddeviceconnectivity,
anRS232communicationchartisimplementedinthePC
controlrack.SincetheRS232chartoperatesbyvoltage
levels,aproblememergesregardinglessimmunityto
noisefordistanceshigherthan10metres. Cableslimit
usersinexecutingsomespecialtasks.Thedistance
betweenthesupervisionstationandthecellcontrolleris
around15metres.Anotherlimitationisthelimited
numberofdeviceconnections.Toovercomethis
drawback,awirelessnetworkcommunicationarangeof
100metresbasedontheBLUETOOTHprotocolwas
implemented.Anopenstandardradiofrequency,
IndustrialScientificMedical(ISM),operatingintherange
of2.45GHz,wasadopted.Inordertoavoidinterference
thisprotocolusestheFrequencyHoping–CodeDivision
MultipleAccessscheme,whichdividesthefrequency
intomultiplechannels,decreasingthebandwidth.
4.2Tasksequencedefinition
Practicalissuestobeconsidered,suchastasksequence
definition,safetyandadaptabilityfunctionalities,have
beenpresentedin[20].Theflowdiagramoftasksequences
implementedinthisapplicationisshowninFig.5.
Figure3.RoboticCellDevices.
Figure4.Object‐Oriented/Web‐Service‐Baseddevicestructure
Figure5.Web‐basedsupervisoryintegratedroboticcell
Allunitdevicesinvolvedinaspecifictaskaredriven
throughaninterlocking‐basedcontrolframework
ensuringthecompleteactionofadevicebeforethenext
devicestarts.Differentprogramscanberunaccordingto
theworkcellconfiguration.Thetasksequenceperformed
isshowninFig.6.Notethatthesynchronismimprecision
betweentheend‐effector(magnetictool)activationand
itspositioncangiverisetopart‐typerejections.Theend‐
effectormanipulatesfourpartsatonetime;inthe
previoussystemthisdevicemanipulatedjustone.Forthe
RS232
WirelessCommunicationNetwork Web
Based
Control
USB
EmitterReceptor
LogicCell
Controller
Robot
Controller
SensorsandActuatorsField
Devices
Ethernet
IntranetHCC
Internet
SoftwareapplicationOO/WSB
Network– TCP/IP/Ethernet/Wireless
ControlA
pp
lication
Real‐TimeApplicationSystem
Dataserver(input/output/events)
Dataexchangeinterface
Hangar
Fixation
Unload
conve
y
or
Load
conveyor
6Int. j. adv. robot. syst., 2013, Vol. 10, 295:2013 www.intechopen.com
synchronismproblem,astructuredprogrammingis
developedwithsubroutinesforthedifferentsystem
slavescorrespondingtothecellmanufacturingunits.In
thisspecificapplication,inacycletimeof2minutesand
40seconds,correspondingtothehangarstep,therobot
shouldbeabletopickandplace24pulleysfrom
(painted)/into(tobepainted)thehangar.Forthispurpose
thereisaloadconveyorwithfourpulleyswithafixed
stopposition.Theconveyorshouldsupplythefour
pulleysindependentlyattimeintervalsof3to6seconds.
Theunloadconveyorreceivesfourpulleysinasinglerow
anddisplacesthepulleystoanotherzone.
Figure6.Flowdiagramoftasksequence[20]
AsshowninFigure7,thesensorsdetectparttypesand
measuretheirsizes,andthesystemthatretainsthemis
activateduntiltheorderisgiventodeliver.The
manipulatorcanthenperformatask.Themainmodel
differencesmayberelatedtothehangarandconveyor
positionsduetothepart‐typesize.Inthereconfigurable
approachtheredefinitionofhardwarecontroland
softwarefunctionsinordertoperformataskshouldbe
easytoexecutefromthewebsupervisorystationusingan
object‐orientedmodularizedformulationand/oraweb‐
service‐basedformulation.
Figure7.Opticalsensordetectingparttypes
4.3IntegratedRoboticCell
Aweb‐basedarchitectureasdescribedinsection3.1(2)is
adopted.DatatransmissionisenabledbytheEthernet/IP
protocol.Usingthisframework,theremotecontrolofthe
robottask,thesynchronismbetweenthehandlerobot
manipulatorandtheconveyormotion,peripherals,and
thecontrolandmonitoringofprocessvariablesinvolved
inthemanufacturingprocessareperformed.
Synchronismproblemsgivingrisetodelays,highercycle
times,conflictssuchastaskfaultsandpartsrejectionare
thusovercome.Productionstoppagesarealsoreduced.
Theimplementedsystemenablesagreatercooperation
betweenthemanufacturingcellandmanagementand
informationsystems,allowingdailyexchange
informationonthemanufacturingprocess.
Theintegratedsystemincreasesproductivity,asshownin
Fig.8.Thiseffectisfurtherenhancingbythe
implementationofopticalsensorstoimproveprecisionin
end‐effectormanipulationtasks;thesealsocontributeto
improvingthesystem’scapacitytorespondto
unpredictableevents.Qualityandsafetyarealso
improved,sincethissystemavoidspart‐typedamage,to
pulleysinthiscase,throughimproperhuman
manipulation.Thesupervisionstationincreasescontrol
capabilityandthereactionspeedtoeventchanges,
improvingsystemadaptability.Dataarestoredenabling
futureanalysis.Theweb‐basedsupervisorysystem
improvesdiagnosabilityissues,enablingremote
surveillanceandmaintenance.
Figure8.Levelsofproductivityaftertheroboticcellintegration
in2010
6000
6500
7000
7500
8000
7
Paulo Ferreira, Victoria Reyes and João Mestre: A Web-Based Integration
Procedure for the Development of Reconfigurable Robotic Work-Cells
www.intechopen.com
5.Conclusions
Thispaperhaspresentedareal‐timeimplementationofa
roboticwork‐cellintegrationallowingtheidentificationof
themainissuesinvolvedindevelopingtherequired
technologytoachievereconfigurableroboticcells.The
designofanopen,modularized,evolution‐based
architecturewiththecapacityforwebconnectivity,
softwareapplication,controlandevent‐drivenapplication,
aswellasadataexchangeelectronicinterface,areessential
forthedevelopmentoftherequiredtechnologytoaddress
themainissuesinreconfigurablesystems.Theadoptionof
SOAforthedevelopmentofaweb‐basedunified
technologywiththecapacityforremotehardware
configurationenablingcooperativeworkisanother
importantstep.Theintegrationofcontrolfunctions,either
fordiscreteorcontinuousevents,atshop‐floorlevelallows
directcontroloftherobot.Thedesignandimplementation
ofsensor‐basedandmodel‐basedcontrolapproaches
incorporatingvisionsensors,aswellastheadoptionofa
newgenerationofactuatorsasasolutiontothetime‐delay
controllerproblem,areissuestobeinvestigated.The
adoptionofpredictivecontrolandcompensation
techniquestoovercometheproblemoftimelatency
networkcommunicationinweb‐basedcontrolisamajor
topicofresearch.Theadoptionofwirelesscommunication
hasbroughtflexibilitytoplantconfigurationandhas
contributedtoovercominglayoutandcostproblems;
however,therearestillsomematterstoberesearchedin
thefieldofindustrialautomationintermsofthe
developmentofreconfigurableplatforms.
6.References
[1]D.Chen,F.Cheng,IntegrationofProductandProcess
DevelopmentUsingRapidPrototypingandWorkcell
SimulationTechnology.JournalofIndustrial
Technology,16(1),pp.2‐5,2000.
[2]M.Naumann,K.Wegener,R.D.,Schraft,L.Lacello.
RobotCellintegrationbyMeansofApplication‐
P’N’P.In,InProceedingsoftheJointConferencein
Robotics,ROBOTIK2006.
[3]Z.Bi,Z.Bi,Y.T.Lang,S.,W.ChenandL.Wang,
ReconfigurableManufacturingSystems,thestateof
theart.InternationalJournalofProductionResearch,Vol
.46,2008,pp.967‐992.
[4]Z.Bi,Y.T.Lang,M.VernerandP.Orban,
DevelopmentofReconfigurableMachines.IntJAdv
ManufTechnol,39,2008.
[5]S.H.Minhas,C.Lehmann,J.P.Städter,U.Berger,
ReconfigurableStrategiesforManufacturingSetups
toConfrontMassCustomizationChallenges.21st
InternationalConferenceonProductionResearch,
2011,http://www.cometproject.eu/publications/icpr_
Minhas_013.pdf
[6]M.Hägele,K.Nilsson,N.Pires.IndustrialRobotics.
HandbookofRobotics,PartF,42,pp.963‐986,2008.
[7]PerspectivesontheAgile,WirelessManufacturing
Plant:Co‐operatingObjectsforInformationand
Control,ConsultationWorkshopReport,2007.
http://cordis.europa.eu/projects/
[8]S.Y.Liang,R.L.Hecker,R.G.Landers,Machining
ProcessMonitoringandControl:TheState‐of‐the‐
Art.JournalofManufacturingScienceandEngineering,
Vol.126(2),pp.297‐310,2004.
[9]M.Chen,RapidResponseManufacturingThrougha
RapidlyReconfigurableRoboticWorkcell.Robotics
andComputerIntegratedManufacturing,Vol.17(3),pp.
299‐310,2001.
[10]G.Veiga,J.N.Pires,K.Nilsson,OntheUseofService
OrientedSoftwarePlatformsforIndustrialRobotic
Cells.IFACInternationalWorkshopforIntelligent
IndustrialRoboticCells,2007.
[11]M.Buccoreli,Reconfigurablecontrolofrobotized
manufacturingcell.RoboticsandComputer‐Integrated
Manufacturing,Vol.23(1),pp.94‐106,2007.
[12]K.Ono,T.Hayashi,M.Fujii,N.Shibasaki,M.
Sonehara,DevelopmentsforIndustrialRobot
Applications.IHIEngineeringReview,42(2),pp.103‐
107,2009.
[13]T.Brogardh,RobotControlOverview:AnIndustrial
Perspective.Modelling,IdentificationandControl,30(3),
pp.167‐180,2009.
[14]http://www.robot.lth.se/about/index.shtml
[15]L.Sciavicco,B.Sicilianno,ModellingandControlof
RobotManipulators.Springer‐Verlag,London,2005.
[16]E.Carpanzano,F.Jovani,AdvanceAutomation
SolutionsforFutureAdaptiveFactories.Annalsofthe
CIRP,56(1),pp.435‐438,2007.
[17]TC65,I.E.C.,WG6,IEC61499‐FunctionBlocksfor
IndustrialProcessMeasurementandControl
Systems,Geneva,InternationalElectrotechnica
Comission(IEC),2004.
[18]A.Ferrolho,M.Crisóstomo,IntelligentControland
IntegrationSoftwareforFlexibleManufacturing
Systems.TransactionsonIndustrialInformatics,Vol.3
(1),pp.3‐11,2007.
[19]S.H.Yang,L.Yang,GuidanceonDesignofInternet‐
BasedProcessControlSystem.ACTAAUTOMATICA
SINICA,31(1),pp.56‐63,2005.
[20]P.Ferreira,V.Reyes,J.Mestre,ControlArchitecture
foraSupervisedIndustrialRoboticWorkcell
Integration.InProc.ofthe16thIEEEInternational
ConferenceonEmergingTechnologiesandFactory
Automation(ETFA),pp.1‐4,2011.
[21]P.Phaithoonbuathong,R.Monfared,T.Kirkham,R.
Harrison,A.West,Webservices‐basedautomation
forthecontrolandmonitoringofproduction
systems.InternationalJournalofComputerIntegrated
Manufacturing,Vol.23(2),pp.126‐145,2010.
[22]Y.Kwon,R.Chiou,B.Tseng,T.Wu,Network‐based
VisionGuidanceofRobotsforRemoteQuality
Control.RobotVision,pp.479‐500,InTech2010.
8Int. j. adv. robot. syst., 2013, Vol. 10, 295:2013 www.intechopen.com
[23]R.Johansson,A.Robertsson,K.Nilsson,T.Brogardh,
P.Cederberg,M.Olsson,T.Olsson,G.Bolsmjo,Sensor
IntegrationinTaskLevelProgrammingandIndustrial
RoboticTaskExecutionControl.IndustrialRobot:An
InternationalJournal,31,(3),pp.284‐296,2004.
[24]http://www.acsmotioncontrol.com/our‐company/
news‐a‐events/71‐centralized‐automation‐control‐
increases‐performance‐and‐reduces‐costs.
9
Paulo Ferreira, Victoria Reyes and João Mestre: A Web-Based Integration
Procedure for the Development of Reconfigurable Robotic Work-Cells
www.intechopen.com
Available via license: CC BY 3.0
Content may be subject to copyright.