Article

Contribution to the knowledge of Chinese Phasmatodea I: A review of Neohiraseini (Phasmatodea: Phasmatidae: Lonchodinae) from Hainan Province, China, with descriptions of one new genus, five new species and three new subspecies, and redescriptions of Pseudocentema Chen, He & Li and Qiongphasma Chen, He & Li

Authors:
  • Hong Kong Entomological Society
To read the full-text of this research, you can request a copy directly from the author.

Abstract

This study deals with three genera, seven species and four subspecies of the tribe Neohiraseini Hennemann & Conle, 2008 from Hainan Province, China. The genera Pseudocententa Chen, He & Li, 2002 and Qiongphasma Chen, He & Li, 2002 are revised and redescribed, including descriptions of four new species, P. liui spec. nov., Q. bispinosus spec. nov., Q. huishanensis spec. nov. and Q. wuzhishanense spec. nov., and three new subspecies, Q. bispinosus bispinosus subspec. nov., Q. b. minor subspec. nov. and Q. jianfengense obtusicristata subspec. nov. First descriptions are given for the male and egg of Pseudocentema bispinatum Chen & He, 2002 and for the female of Q. jianfengense jianfengense Chen & He, 2002 sen. str. A new genus, Neoqiongphasma gen. nov., is established for N. diaoluoshanensis spec. nov., distinguished from Pseudocentema by its spinose thorax and from Qiongphasma by its unarmed head.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... Our taxon sampling represents 15 of the 18 traditional phasmid subfamilies sensu Günther (1953) and also some recently erected families/subfamilies such as Agathemeridae (Bradler, 2003) and Clitumninae (Hennemann & Conle, 2008), 46 genera, and includes all major lineages of Necrosciinae as outlined by Sellick (1997). Included in our sampling are three exemplars belonging to Neohirasea Rehn resp. the Neohirasea complex of Hennemann (2007) as well as Leprocaulinus Uvarov and Baculofractum Zompro, whose systematic treatment was controversial in the past with suggested placements either in Lonchodinae or Necrosciinae (Brunner von Wattenwyl, 1907;Zompro, 1995;Bragg, 2005;Brock & Hasenpusch, 2007Hennemann & Conle, 2008;Ho, 2013). As an outgroup we used the North American genus Timema Scudder, which has been repeatedly demonstrated to form the sister group of all remaining stick and leaf insects (= Euphasmatodea) (Kristensen, 1975;Tilgner, 2002;Whiting et al., 2003;Terry & Whiting, 2005;Bradler, 2009;Klug & Bradler, 2006;Tomita et al., 2011;Friedemann et al., 2012;Wan et al., 2012) or less often, to lie outside the phasmatodean clade (Zompro, 2004a;Kjer et al., 2006;Jintsu et al., 2010;Kômoto et al., 2011Kômoto et al., , 2012Djernaes et al., 2012). ...
... In previous molecular analyses, Neohirasea appeared unrelated to Lonchodinae, either as sister to Necrosciinae or even nested within the latter (Kômoto et al., , 2012Tomita et al., 2011). Hennemann & Conle (2008) and Ho (2013) also considered the possibility of a close relationship between Neohirasea resp. Neohiraseini, which also include Andropromachus Carl, Pseudocentema Chen, He & Li, Qiongphasma Chen, He & Li, Spinohirasea Zompro, and the recently established Neoqiongphasma Ho, with Necrosciinae, but the authors did not formally transfer them. ...
Article
The phasmatodeans or stick and leaf insects are considered to be a mesodiverse insect order with more than 3000 species reported mainly from the tropics. The stick insect subfamily Necrosciinae comprises approximately 700 described species in more than 60 genera from the Oriental and Australian region, forming the most species-rich subfamily traditionally recognized within Phasmatodea. However, the monophyly of this taxon has never been thoroughly tested and the evolutionary relationships among its members are unknown. We analyse three nuclear (18S and 28S rDNA, histone 3) and three mitochondrial (CO II, 12S and 16S rDNA) genes to infer the phylogeny of 60 species of stick insects that represent all recognized families and major subfamilies sensu Günther and the remarkable diversity within Necrosciinae. Maximum parsimony, maximum likelihood and Bayesian techniques largely recover the same substantial clades, albeit with highly discordant relationships between them. Most members of the subfamily Necrosciinae form a clade. However, the genus Neohirasea – currently classified within Lonchodinae – is strongly supported as subordinate to Necrosciinae, whereas Baculofractum, currently classified within Necrosciinae, is strongly supported within Lonchodinae. Accordingly, we formally transfer Neohirasea and allied taxa (namely Neohiraseini) to Necrosciinae sensu nova (s.n.) and Baculofractum to Lonchodinae s.n. We also provide further evidence that Leprocaulinus, until recently recognized as Necrosciinae, belongs to Lonchodinae, and forms the sister taxon of Baculofractum. Furthermore, Lonchodinae is paraphyletic under exclusion of Eurycantha and Neopromachus. We reinstate the traditional view that Neopromachus and related taxa (Neopromachini sensu Günther) are a subgroup of Lonchodinae and transfer those taxa + the New Guinean Eurycanthinae accordingly. Morphological evidence largely corroborates our molecular-based findings and also reveals that Menexenus fruhstorferi is a member of the genus Neohirasea and is thus transferred from Menexenus (Lonchodinae) to Neohirasea, as Neohirasea fruhstorferi comb.n. (Necrosciinae s.n.). Other phylogenetic results include Areolatae and Anareolatae each supported as polyphyletic, Heteropteryginae and Lanceocercata (Bayesian analysis) are monophyletic, albeit with low support, and Necrosciinae s.n. and Lonchodinae s.n. are recovered as sister taxa (Bayesian analysis).
... The terminology used for the description of the body armature is the acanthotaxy proposed by Rehn & Rehn (1939), Bragg (2001) and Ho (2013b). Ootaxonomic terminology refers to Clark (1976aClark ( , 1976bClark ( , 1979Clark ( , 1988Clark ( , 1998, Clark-Sellick (1997) and Zompro (2004). ...
Article
Full-text available
A new genus of stick insects, Brockphasma Ho gen. nov., with the type-species, Brockphasma spinifemoralis Ho, Liu, Bresseel & Constant spec. nov., is described and illustrated from Vietnam. Both sexes, the egg and the first instar nymph are described and figured. Data on the habitat and natural foodplants are provided. Brockphasma Ho gen. nov. is differentiated from other genera in Neohiraseini by spinose occiput, anterior region of mesonotum with a spinose hump and spinose anterodorsal and posterodorsal carinae of femora. A key to the genera of Neohiraseini from Vietnam is given.
Article
Full-text available
This is the first investigation of stick insect from the Yintiaoling National Nature reserve, Chongqing of China. Totally seven species were collected. Four of them belong to the subfamily Clitumninae of Phasmatidae: Interphasma emeiense Chen & He, 2008, Paraentoria sichuanensis Chen & He, 1997, Parabaculum wushanense (Chen & He, 1997) and Baculonistria alba (Chen & He, 1990). The other three belong to the subfamily Necrosciinae of Lonchodidae, including two new species: Micadina conifera Chen & He, 1997, Hemisosibia yintiaolingensis sp. nov. and Dianphasma chongqingensis sp. nov.
Article
Full-text available
The recently described genus Spinomarmessoidea is comprised of only 2 species from Peninsular Malaysia. The 3rd species of this genus, Spinomarmessoidea damingensis sp. nov. is described from Guangxi Province, China. The new species represents the first record of this genus in China. The granulose head of new species without large spines and mesonotum with short spines are distinguished from the other 2 species. A key to the female of this genus is compiled. Type materials are deposited in the Yunnan Agricultural University (YNAU).
Article
This paper deals with four genera and eight species of the subfamily Dataminae Rehn & Rehn, 1939 from China. One new genus and four new species, Hainanphasma cristata Ho gen. nov. spec. nov., H. diaoluoshanensis Ho spec. nov., Pylaemenespui Ho spec. nov. and Pylaemenes shirakii Ho & Brock spec. nov., are described and illustrated. A new combination is proposed: Planispectrum hainanensis (Chen & He, 2008) comb. nov. is transferred from Pylaemenes Stål, 1875 and its male and egg are described for the first time. The occurrence of Orestes mouhotii (Bates, 1865) in China is reconfirmed assessed by an adult specimen collected from Yunnan Province. Pylaemenes guangxiensis (Bi & Li, 1994) is reported for the first time from Vietnam outside the range of China. Keys to the genera and species of the Chinese Dataminae are given.
Article
Full-text available
A brief glossary of descriptive terms used for external morphology of phasmids, including synonyms. Particular attention is paid to terms which are specific to phasmids or are used in a restricted sense when applied to phasmids. Some features are illustrated.
Article
Full-text available
The family Phasmatidae Gray, 1835 is reviewed and the subfamily Phasmatinae shown to be polyphyletic. Based on features of the exosceleton of the insects, egg-morphology and copulation habits a new arrangement of Phasmatidae is proposed. The monophyly of Lanceocercata Bradler, 2001 is confirmed but this name shown to be a synonym of Phasmatidae, hence Lanceocercata is here referred to as Phasmatidae sensu stricto. Six subfamilies belong in Phasmatidae sensu stricto all of which share several common and supposedly apomorphic characters: Phasmatinae, Tropidoderinae, Extatosomatinae (stat. nov.), Xeroderinae, Pachymorphinae and “Platycraninae”. The other two subfamilies contained in Phasmatidae sensu Bradley & Galil, 1977 (Eurycanthinae and Cladomorphinae) are not cosely related and here regarded as subfamilies of Phasmatidae sensu lato. The subfamily Phasmatinae sensu Bradley & Galil, 1977 is shown to be polyphyletic. The two tribes Pharnaciini and Clitumnini (= Baculini Günther, 1953) are removed from Phasmatinae and shown to be closely related to each other. They are transferred to the here established subfamily Clitumninae, a subordinate clade of Phasmatidae sensu lato. The subfamily Lonchodinae is closely related to Clitumninae, hence removed from Diapheromeridae and transferred to Phasmatidae sensu lato. The tribes Achriopterini and Stephanacridini (formerly in Phasmatinae) are shown to be not closely related to either Phasmatinae sensu stricto, Clitumninae or Lonchodinae, and provisionally must be treated as tribes of Phasmatidae sensu lato (incerte sedis). A re-arrangement of Phasmatidae sensu stricto is proposed along with determinating keys to all subfamilies and their tribes. The subfamilies Phasmatinae, Tropidoderinae and Extatosomatinae stat. nov. are re-described and discussed in detail. Full lists of genera are provided for each tribe. Only three of seven tribes formerly in Phasmatinae remain in the subfamily, this is Phasmatini, Acanthomimini and Acanthoxylini. The subfamily Tropidoderinae contains three tribes: Tropidoderini, Monandropterini and Gigantophasmatini trib. nov. The tribe Extatosomatini Clark-Sellick, 1997 is removed from Tropidoderinae and raised to subfamily level (Extatosomatinae stat. nov.). Several genera are transferred to other tribes or subfamilies. Didymuria Kirby, 1904 is removed from Tropidoderini, since it differs by having a closed internal micropylar plate in the eggs (open in all Tropidoderini). It here remains as a genus incerte sedis of Tropidoderinae and its systematic position clearly deserves further clarification. Gigantophasma Sharp, 1898 from the Loyalty Islands is removed from Pharnaciini, and becomes the type genus of the tribe Gigantophasmatini trib. nov.. Anophelepis Westwood, 1859 is removed from “Platycraninae” and shown to belong in Phasmatinae: Acanthomimini. The two Australian genera Arphax Stål, 1875, and Vasilissa Kirby, 1896 are removed from Acanthoxylini and provisionally transferred to Acanthomimini, but their position remains as yet debatable. Echetlus Stål, 1875 is misplaced in “Platycraninae” and shown to be a likely member of Phasmatinae. The two Brazilian species Echetlus evoneobertii Zompro & Adis, 2001 and Echetlus fulgens Zompro, 2004b are obviously misplaced and belong in the New World Diapheromeridae: Diapheromerinae: Diapheromerini. The subfamily Pachymorphinae is briefly discussed and considered polyphyletic. Three genera of Pachymorphinae: Gratidiini Bragg, 1995 (Parapachymorpha Brunner v. Wattenwyl, 1893 and Cnipsomorpha Hennemann et al., 2008) are transferred to Clitumninae: Medaurini trib. nov. The genus Gongylopus Brunner v. Wattenwyl, 1907 is transferred from Pachymorphinae: Gratidiini to Clitumninae: Clitumnini. The subfamily Xeroderinae is briefly discussed and shown likely to be polyphyletic, due to it contains two fundamentally different types of genitalia in the males. Only the genera Xeroderus Gray, 1835 and perhaps Epicharmus Stål, 1875 clearly belong in Phasmatidae sensu stricto. Both, the Pachymorphinae and Xeroderinae certainly deserve more detailed investigation to clarify their systematic positions with confirmation. Two generic groups are recognized within Clitumnini (subfamily Clitumninae). Due to differing by genital features and egg-morphology Medaura Stål, 1875 and Medauroidea Zompro, 2000 are removed from Clitumnini and transferred to the newly described Medaurini trib. nov.. The new tribe furthermore contains two genera formerly included in Pachymorphinae: Gratidiini and transferred here, Cnipsomorpha Hennemann et al., 2008 and Parapachymorpha Brunner v. Wattenwyl, 1893. Phryganistria Stål, 1875 is removed from Clitumnini and transferred to Pharnaciini. Nesiophasma Günther, 1934 is shown to belong in the tribe Stephanacridini. The Australasian subfamily Lonchodinae Brunner v. Wattenwyl, 1893 has formerly been included in Diapheromeridae Zompro, 2001 (= Heteronemiidae by Bradley & Galil, 1977). However, numerous features of the genitalia and egg morphology show close relation to the Oriental subfamily Clitumninae instead. Thus, Lonchodinae is here transferred to the family Phasmatidae (sensu lato). Within Lonchodinae the new tribe Neohiraseini trib. nov. is recognized and contains the five genera formerly placed in the “Neohirasea-complex” of that subfamily, namely Andropromachus Carl, 1913, Neohirasea Rehn, 1904, Pseudocentema Chen, He & Li, 2002, Qiongphasma Chen, He & Li, 2002 and Spinohirasea Zompro, 2001. It differs from all other Lonchodinae (= tribe Lonchodini) by the well developed vomer of males and the lack of a capitulum in the eggs. The genus Cladomimus Carl, 1915 was previously misplaced in Clitumninae: Pharnaciini and is here transferred to Lonchodinae: Lonchodini. It appears to be close to the Australian Hyrtacus Stål, 1875. Leprocaulinus Uvarov, 1940 and Phenacocephalus Werner, 1930 are removed from the subfamily Necrosciinae and transferred to Lonchodinae: Lonchodini. Extensive research on the genera which belong to the tribe Pharnaciini Günther, 1953 and taking features of the genital exosceleton and egg-morphology into account, has shown this tribe to be polyphyletic. Based on such features two generic groups are easily recognized within Pharnaciini sensu Günther, 1953. Males of the first group have a longitudinally split anal segment, which consists of two separate, more or less elongate semi-tergites and forms a clasping apparatus, the vomer is strongly reduced or lacking, the profemora have a prominent, lamellate medioventral carina which is strongly displaced towards the anteroventral carina and the eggs have an open internal micropylar plate with a clear median line. Only the genera falling into this group remain in Pharnaciini. Males of the second group in contrast have an anal segment which is not split, but possess a clearly visible, well sclerotised, triangular or hook-like external vomer, an indistinct medioventral carina on the profemora and eggs with a closed internal micropylar plate. Most of the genera which fall into the second group are here transferred to the tribe Stephanacridini Günther, 1953, this is Diagoras Stål, 1877b, Eucarcharus Brunner v. Wattenwyl, 1907, Phasmotaenia Návas, 1907 and Sadyattes Stål, 1875. A detailed discussion of the differences between Pharnaciini and Stephanacridini is provided along with distinguishing keys, illustrations and maps showing the distinct geographic distributions. The five genera that belong in Pharnaciini are: Baculonistria gen. nov., Pharnacia Stål, 1877a, Phobaeticus Brunner v. Wattenwyl, 1907 (= Baculolonga Hennemann & Conle, 1997a, = Lobophasma Günther, 1934b syn. nov. , = Nearchus Redtenbacher, 1908 syn. nov. ), Tirachoidea Brunner v. Wattenwyl, 1893 stat. rev. and Phryganistria Stål, 1875. Pharnacia annulata Redtenbacher, 1908 and Pharnacia enganensis Redtenbacher, 1908 were misplaced in Pharnacia Stål, 1877 (tribe Pharnaciini) and are transferred to the genus Sadyattes Stål, 1875 (tribe Stephanacridini, comb. nov.). Phobaeticus kuehni Brunner v. Wattenwyl, 1907 is removed from Phobaeticus Brunner v. Wattenwyl, 1907 (Phasmatinae: Pharnaciini) and shown to belong in Nesiophasma Günther, 1934c (tribe Stephanacridini, comb. nov.). Phobaeticus incertus Brunner v. Wattenwyl, 1907 (= Nearchus grubaueri Redtenbacher, 1908 syn. nov.) is unlikely to belong in Pharnaciini and here only retained in the original genus Phobaeticus Brunner v. Wattenwyl, 1907 with doubt, it may belong in Nesiophasma Günther, 1934c (tribe Stephanacridini). Based on a total of almost 700 examined specimens, the Oriental tribe Pharnaciini Günther, 1953 is revised at the species level. The new genus Baculonistria gen. nov. (Type species Baculonistria alba (Chen & He, 1990) comb. nov.), is described to contain three species from Central and Eastern China. Tirachoidea Brunner v. Wattenwyl, 1893 was erroneously synonymised with Pharnacia Stål, 1877 and is here re-established as a valid genus (stat. rev.). All five genera are re-diagnosed and differentiated, their systematic position within Pharnaciini discussed, and complete synonymic and species-listings as well as distribution maps and determination keys to the insects and eggs are provided. Detailed descriptions, diagnoses, synonymic listings, illustrations, material listings, distribution maps and measurements are provided for all 40 valid species. The type material of a further two species appears to be lost. Seven new species are described: Pharnacia borneensis spec. nov. from Borneo; Pharnacia palawanica spec. nov. from Palawan, Phobaeticus mucrospinosus spec. nov. from Sumatra, Phobaeticus palawanensis spec. nov. from Palawan, Tirachoidea herberti spec. nov. from Borneo, Tirachoidea siamensis spec. nov. from Thailand and S-Vietnam and Phobaeticus chani Bragg spec. nov. from Borneo. Phobaeticus chani Bragg spec. nov. is the world’s longest known insect with a maximum body length of 357 mm and an overall length of 567 mm in the female. Twelve new synonymies were discovered: Bactridium grande Rehn, 1920 = Phobaeticus serratipes (Gray, 1835) syn. nov.; Pharnacia rigida Redtenbacher, 1908 = Phobaeticus sumatranus Brunner v. Wattenwyl, 1907, syn. nov.; Clitumnus irregularis Brunner v. Wattenwyl, 1907 = Phibalosoma tirachus Westwood, 1859, syn. nov.; Pharnacia magdiwang Lit & Eusebio, 2008 = Pharnacia ponderosa Stål, 1877 syn. nov.; Pharnacia spectabilis Redtenbacher, 1908 = Phibalosoma hypharpax Westwood, 1859, syn. nov.; Pharnacia semilunaris Redtenbacher, 1908 = Eucarcharus inversus Brunner v. Wattenwyl, 1907, syn. nov.; Pharnacia chiniensis Seow-Choen, 1998c = Pharnacia biceps Redtenbacher, 1908, syn. nov.; Nearchus grubaueri Redtenbacher, 1908 = Phobaeticus incertus Brunner v. Wattenwyl, 1907, syn. nov.; Phibalosoma maximum Bates, 1865 = Cladoxerus serratipes Gray, 1835, syn. nov.; Phobaeticus lambirica Seow-Choen, 1998a = Eucarcharus rex Günther, 1928, syn. nov.; Phobaeticus sichuanensis Cai & Liu, 1993 = Baculum album Chen & He, 1990, syn. nov. and Phobaeticus beccarianus Brunner v. Wattenwyl, 1907 is shown to represent the previously unknown female of Phobaeticus sobrinus Brunner v. Wattenwyl, 1907 (syn. nov.) Lectotypes are designated for: Nearchus redtenbacheri Dohrn, 1910, Pharnacia biceps Redtenbacher, 1908, Pharnacia ingens Redtenbacher, 1908, Pharnacia heros Redtenbacher, 1908, Phibalosoma westwoodi Wood-Mason, 1875, Phobaeticus sinetyi Brunner v. Wattenwyl, 1907, and Phobaeticus sumatranus Brunner v. Wattenwyl, 1907. A neotype is designated for Nearchus maximus Redtenbacher, 1908 and Phobaeticus magnus nom. nov. introduced as a replacement name for Nearchus maximus Redtenbacher, which is a junior homonym of Phibalosoma maximum Bates, 1865. The previously unknown males of Pharnacia heros Redtenbacher, 1908, Phobaeticus ingens (Redtenbacher, 1908), Tirachoidea jianfenglingensis (Bi, 1994), Pharnacia sumatrana (Brunner v. Wattenwyl, 1907), Phryganistria fruhstorferi (Brunner v. Wattenwyl, 1907) and Tirachoidea westwoodii (Wood-Mason, 1875) as well as the females of Pharnacia ponderosa Stål, 1877a and Pharnacia tirachus (Westwood, 1859) are described and illustrated for the first time. A brief description on the basis of colour photos of the so far unknown male of Pharnacia kalag Zompro, 2005 are presented. Detailed descriptions and illustrations are provided for the eggs of 24 species. The eggs of the following 18 species are described and illustrated for the first time: Pharnacia borneensis spec. nov., Pharnacia palawanica spec. nov., Pharnacia ponderosa Stål, 1877a, Pharnacia sumatrana (Brunner v. Wattenwyl, 1907), Pharnacia tirachus (Westwood, 1859), Phobaeticus hypharpax (Westwood, 1859), Phobaeticus chani Bragg spec. nov., Phobaeticus incertus Brunner v. Wattenwyl, 1907, Phobaeticus magnus nom. nov., Phobaeticus philippinicus (Hennemann & Conle, 1997a), Phobaeticus sinetyi Brunner v. Wattenwyl, 1907, Phryganistria grandis Rehn, 1906, Phryganistria virgea (Westwood, 1848), Tirachoidea biceps (Redtenbacher, 1908), Tirachoidea herberti spec. nov., Tirachoidea jianfenglingensis (Bi, 1994) and Tirachoidea siamensis spec. nov.. Several species were originally placed in or subsequently transferred into wrong genera by various authors. Consequently, numerous taxa are here transferred or re-transferred to other genera, which results in 22 new or revised combinations or status of genera and species (comb. nov. / stat. rev. / stat. nov.). A list of the taxonomic changes made in this revision is provided in the summary (see 9.2), which in all lists 70 nomenclatural changes.
Article
Full-text available
A complete taxonomic catalogue of the Stick and Leaf-insects (Phasmatodea) recorded or described from the mainland China (excluding Taiwan) is presented. 241 valid species are listed, which are currently attributed to 50 genera, 5 families and 7 subfamilies. Genera and species are listed alphabetically. All available type-data is provided based mainly on literary sources for species described by Chinese workers from 1986 to 2006, including documented depository of type-specimens. The catalogue therefore also provides complete lists of the type-material of Phasmatodea housed in the following Chinese institutions: Administration of Baishuijiang Natural Reserve (ABNR), Beijing Forestry University, Beijing (BFU), China Agricultural University, Beijing (CAU), Geological Museum of China, Beijing (GMC), Inca Science Ltd., Chongqing (INCA), Institute of Zoology, Chinese Academy of Sciences, Beijing (IZCAS), Department of Biology, Nankai University, Tianjin (NKU), Northwest Sci-Tech University of Agriculture and Forestry, Shaanxi (NWSUAF), Institute of Zoology, Shaanxi Normal University, Xi’an (SNU), Institute of Entomology, Sun Yat-sen University (SYSU), Shanghai Institute of Entomology, Academia Sinica, Shanghai (SIES), Tianjin Natural History Museum, Tianjin (TJNHM), Zhejiang Museum of Natural History, Hangzhou (ZJMNH). The known distribution of each species, in means of provinces is provided as well. 14 species are shown to have been recorded from China in error, several of these based on misidentifications. The “Phasmatodea-like” fossil taxa described from the the Late Jurassic Yixian Formation of North Hebei and West Liaoning are listed in a separate section. Two new generic synonyms are recognized: Arthminotus Bi, 1995 synonymised with Lopaphus Westwood, 1859 (n. syn.) and Dianphasma Chen & He, 1997 synonymised with Parasosibia Redtenbacher, 1908 (n. syn.). The genus Linocerus Gray, 1835 (Type-species: Linocerus gracilis Gray, 1835) was erroneously synonymised with the mediterranean Bacillus St. Fargeau & Audinet-Serville, 1825 and is here re-established in Phasmatidae: Pachymorphinae: Gratidiini (rev. stat.). Relationship to Clonaria Stål, 1875 (= Gratidia Stål, 1875, = Paraclonaria Brunner v. Wattenwyl, 1893), Sceptrophasma Brock & Seow-Choen, 2000 and Macellina Uvarov, 1940 is obvious. 13 species are transferred to other genera (new combinations): Asceles dilatatus Chen & He, 2004 and Asceles quadriguttatus Chen & He, 1996 to Pachyscia Redtenbacher, 1908, Arthminotus sinensis Bi, 1995 to Lopaphus Westwood, 1859, Baculum dolichocercatum Bi & Wang, 1998a and Baculum politum Chen & He, 1997 to Medauroidea Zompro, 1999, Dixippus bilippus Chen & He, 1999, Dixippus hainanensis Chen & He, 2002, Dixippus nigroantennatus Chen & He, 2002, Dixippus parvus Chen & He, 2002 and Entoria bobaiensis Chen, 1986 to Lonchodes Gray, 1835, Sipyloidea obvius Chen & He, 1995 to Sinophasma Günther, 1940, and Gratidia bituberculata Redtenbacher, 1889 and Leptynia xinganensis Chen & He, 1993 to Sceptrophasma Brock & Seow-Choen, 2002. Acrophylla sichuanensis Chen & He, 2001 remains of unknown generic assignment, but is shown to be not a member of the Australian genus Acrophylla Gray, 1835. Furthermore, as Baculum Saussure, 1861 is a neotropical genus and most Old World species previously attributed this genus are now listed in Ramulus Saussure, 1861, all Chinese species described in this genus are consequently transferred to Ramulus Saussure. Other changes of specific placements are based on published literature and concern to the following three synonymies not recognized by Chinese workers: Abrosoma Redtenbacher, 1906 (= Prosceles Uvarov, 1940), Necroscia Audinet-Serville, 1838 (= Aruanoidea Redtenbacher, 1908), Lopaphus Westwood, 1859 (= Paramyronides Redtenbacher, 1908). Megalophasma Bi, 1995 is transferred from Necrosciinae to Lonchodinae. Four lectotypes are designated and three new specific synonyms revealed. A lectotype is designated for Rhamphophasma modestus Brunner v. Wattenwyl, 1893, the type-species of Rhamphophasma Brunner v. Wattenwyl, 1893, in order to fix this genus and species. The male paralectotype is shown to be a male of Parapachymorpha nigra Brunner v. Wattenwyl, 1893, the type-species of Parapachymorpha Brunner v. Wattenwyl, 1893. Clitumnus porrectus Brunner v. Wattenwyl, 1907 is synonymised with Bacillus ? artemis Westwood, 1859 with a lectotype designated for the former (n. syn.). A lectotype is designated for Oxyartes lamellatus Kirby, 1904. Paracentema stephanus Redtenbacher, 1908 is shown to have been erroneously synonymised with Neohirasea japonica (de Haan, 1842) and here synonymised with Neohirasea maerens (Brunner v. Wattenwyl, 1907) (n. syn.). In order to fix the new synonymy a lectotype is designated for Paracentema stephanus Redtenbacher, 1908. Finally, a biogeographic analysis of the Chinese phasmid fauna is presented. This includes brief background information on the topography and biogeography of China along with maps showing the seven zoogeographical subregions currently recognized as well as the 4 municipalities, 23 provinces, 5 autonomous regions and 2 special administrative regions of China. A summary of the taxonomic compilation of the fauna is provided and its relationships with neighbouring regions, of both the Palearctic and Oriental realms, are discussed. A study is presented on the distribution of the taxa and species densities of each province / autonomous region.
Article
A list and key to the species of Sinophasma Gunther, 1940 and Pachyscia Redtenbacher, 1908 are provided. Four new species, Sinophasma bii sp. nov., S. daoyingi sp. nov., S. guangdongensis sp. nov. and Pachyscia heishidingensis sp. nov., from China are described and illustrated. One new synonym and one new combination are established: Sinophasma rosarum Chen & He, 2008 is shown to represent the female of S. jinxiuense Chen & He, 2008 (syn. nov.); and Pachyscia longicauda (Bi, 1990) (comb. nov.) is transferred from Sinophasma. The male of Pachyscia dilatata (Chen & He, 2004) is described for the first time.
Article
Three genera and six species of the tribe Neohiraseini Hennemann & Conle from continental China are recognized and discussed. Key to the genera and species of the tribe is provided. A new genus and species, Cheniphasma serrifemoralis gen. n., sp. n., from Guangdong are described. The female of Neohirasea guangdongensis Chen & He is described for the first time.
Article
Within the order Phasmatodea there is a basic egg capsule morphology which defines the order. This shows extensive variation in detailed form. Some of this is aberration, which can be recognised and excluded from taxonomic considerations. Much is adaptation to egg‐laying techniques and egg survival. Nevertheless the range of egg capsule form both externally and internally is a valuable aid to the classification at sub‐ordinal level and below of this group of insects. In particular this confirms the Timematodea as members of the order, confirms the distinct status of Phylliidae and shows some so far undivided groups such as Necrosciidae to be taxonomically very diverse. A new tribe Extatosomatini is proposed for Extatosoma Gray on the basis of both egg and adult morphology. A survey of internal micropylar plate types within the order is given.
Article
The terms used in the descriptive morphology of phasmid eggs are compared and standardized, and a check list of all known figures of phasmid eggs is presented. The eggs of eleven species commonly reared in Britain are described. About 5 % of phasmid species are known from the egg stage.
Article
The term capitulum is defined and a survey of the known eggs of the Phasmida is made to show the occurrence of this structure. Its value as a taxonomic criterion is considered.
Article
The relationship between egg shape and presence or absence of a capitulum is considered. The distribution of capitula of different types within the order Phasmida is reviewed. These tend to confirm tribal and subfamily groupings but suggest that the suborder Anareolatae is polyphyletic and some suggestions are made for its regrouping. The species of Phasmida which have been recently studied from an ootaxonomic viewpoint are surveyed.
Article
Eggs of Phasmida are characterized by the presence of a micropylar plate system. The nature of this plate is discussed and the relevance of differences in plate structure to the taxonomy of the order is considered. A survey is made of the range of plate structure throughout the order, covering the external plate structure of 384 species and the internal plate structure of 179 species in forty of the forty-four subgroups of the order.
Article
An illustrated key is provided for the identification of the eggs of fifty-eight genera of Phasmida.
Article
Phasmids are remarkable mimics of twigs, sticks, and leaves. This extreme adaptation for crypsis can easily lead to the convergent evolution of morphology, making it difficult to establish a taxonomic system of phasmids. Accordingly, there are multiple phylogenetic hypotheses that conflict with each other. Phylogenetic arrangements suggested by molecular data disagree with the morphology-based taxonomy in some instances. We collected 13 phasmatodean species, sequenced their mitochondrial genomes, and recovered their molecular phylogeny. Our analyses did not support the monophyly of Areolatae or Anareolatae, two major infraorders of Phasmatodea. The position of Neohirasea was also quite different from the conventional taxonomic systems, thus challenging the previously assumed monophyly of the subfamily Lonchodinae. The enigmatic taxon, Timema, was shown to be distantly related to other phasmatodeans.