The smart grid plays a vital role in decreasing electricity cost via Demand Side Management (DSM). Smart homes, being a part of the smart grid, contribute greatly for minimizing electricity consumption cost via scheduling home appliances. However, user waiting time increases due to the scheduling of home appliances. This scheduling problem is the motivation to find an optimal solution that could minimize the Peak to Average Ratio (PAR) and electricity cost with minimum user waiting time. There are many studies on Home Energy Management (HEM) for cost minimization and peak load reduction. However, none of the systems gave sufficient attention to tackle multiple parameters (i.e., electricity cost and peak load reduction) at the same time where user waiting time is considered to be minimum for residential consumers with multiple homes. Hence, in contribution 1, we propose an efficient HEM scheme using the well-known meta-heuristic Genetic Algorithm (GA), the recently developed Cuckoo Search Optimization Algorithm (CSOA) and the Crow Search Algorithm which can be used for electricity cost and peak load alleviation with minimum user waiting time. The integration of a smart electricity storage system is also taken into account for more efficient operation of the HEM System. Furthermore, we took the real-time electricity consumption pattern for every residence, i.e., every home has its own living pattern. The proposed scheme is instigated in a smart building which is comprised of thirty smart homes (apartments). Critical Peak Pricing (CPP) and Real-Time Pricing (RTP) signals are examined in terms of electricity cost assessment for both a single smart home and a smart building. In addition, feasible regions are presented for multiple and single smart homes, which show the relationship among the electricity cost, electricity consumption and user waiting time. Experimental results prove the effectiveness of our proposed scheme for multiple and single smart homes concerning electricity cost and PAR minimization. Moreover, there subsists a tradeoff between electricity cost and user waiting.
With the emergence of automated environments, energy demand by consumers is increasing rapidly. More than 80% of total electricity is being consumed in the residential sector. This brings a challenging task of maintaining the balance between demand and generation of electric power. In order to meet such challenges, a traditional grid is renovated by integrating two-way communication between the consumer and generation unit. To reduce electricity cost and peak load demand, DSM is modeled as an optimization problem and the solution is obtained by applying metaheuristic techniques with different pricing schemes. In contribution 2, an optimization technique, the Hybrid Gray Wolf Differential Evolution (HGWDE) is proposed by merging the Enhanced Differential Evolution (EDE) and Gray Wolf Optimization (GWO) schemes using the same RTP and CPP tariffs. Load shifting is performed from on-peak hours to off-peak hours depending on the electricity cost defined by the utility.
However, there is a trade-off between User Comfort (UC) and cost. To validate the performance of the proposed algorithm, simulations have been carried out in MATLAB. Results illustrate that using RTP, the PAR is reduced up to 53.02%, 29.02% and 26.55%, while the electricity bill is reduced up to 12.81%, 12.012% and 12.95%, respectively, for 15-min, 30-min and 60-min operational time intervals (OTI). On the other hand, the PAR and electricity bill are reduced up to 47.27%, 22.91%, 22% and 13.04%, 12%, 11.11% using the CPP tariff.
Microgrid is a community-based power generation and distribution system that interconnects smart homes with renewable energy sources. Microgrid generates power for electricity consumers and operates in both islanded and grid-connected modes more efficiently and economically. In contribution 3, we propose optimization schemes for reducing electricity cost and minimizing PAR with maximum UC in a smart home. We consider a grid-connected microgrid for electricity generation which consists of wind turbine and photovoltaic (PV) panel. First, the problem was mathematically formulated through Multiple Knapsack (MKP) then it is solved by existing heuristic techniques: GWO, binary particle swarm optimization (BPSO), GA and Wind Driven Optimization (WDO). Furthermore, we also propose three hybrid schemes for electricity cost and PAR reduction: (1) hybrid of GA and WDO named as WDGA; (2) hybrid of WDO and GWO named as WDGWO; and (3) WBPSO, which is the hybrid of BPSO and WDO. In addition, a battery bank system has also integrated to make our proposed schemes more cost-efficient and reliable to ensure stable grid operations. Finally, simulations have been performed to verify our proposed schemes. Results show that our proposed schemes efficiently minimize the electricity cost and PAR. Moreover, our proposed techniques: WDGA, WDGWO and WBPSO outperform the existing heuristic techniques.
The advancements in smart grid, both consumers and electricity providing companies can benefit from real-time interaction and pricing methods. In contribution 4, a smart power system is considered, where consumers share a common energy source. Each consumer is equipped with a Home Energy Management Controller (HEMC) as scheduler and a smart meter. The HEMC keeps updating the electricity proving utility with the load profile of the home. The smart meter is connected to power grid having an advanced metering infrastructure which is responsible for two way communication. Genetic teaching-learning based optimization, flower pollination teaching learning based optimization, flower pollination BAT and flower pollination genetic algorithm based energy consumption scheduling algorithms are proposed. These algorithms schedule the loads in order to shave the peak formation without compromising UC. The proposed algorithms achieve optimal energy consumption profile for the home appliances equipped with sensors to maximize the consumer benefits in a fair and efficient manner by exchanging control messages. Control messages contain energy consumption of consumer and RTP information. Simulation results show that proposed algorithms reduce the PAR by 34.56% and help the users to reduce their energy expenses by 42.41% without compromising the comfort. The daily discomfort is reduced by 28.18%.