Content uploaded by Alexei Verkhratsky
Author content
All content in this area was uploaded by Alexei Verkhratsky on Apr 12, 2015
Content may be subject to copyright.
Physiology of Astroglia
Channels, Receptors, Transporters,
Ion Signaling and Gliotransmission
Alexei Verkhratsky
Vladimir Parpura
Series Editor: Michael Dean, Ph.D.
VERKHRATSKY • PARPURA PH YSIOLOGY OF ASTROGLIA
MORGAN&CLAYPOOL
Physiology of Astroglia
Alexei Verkhratsky, M.D., Ph.D., D.Sc., M.A.E., M.L., M.R.A.N.F.,
e University of Manchester, Manchester, U.K.; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
Vladimir Parpura, M.D., Ph.D., M.A.E., Department of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center,
Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, U.S.A.;
Department of Biotechnology, University of Rijeka, Croatia
Astrocytes can be dened as the glia inhabiting the nervous system with the main function in the maintenance
of nervous tissue homeostasis. Classied into several types according to their morphological appearance, many
of astrocytes form a reticular structure known as astroglial syncytium, owing to their coupling via intercellular
channels organized into gap junctions. Not only do astrocytes establish such homocellular contacts, but they
also engage in intimate heterocellular interactions with neurons, most notably at synaptic sites. As synaptic
structures house the very core of information transfer and processing in the nervous system, astroglial perisyn-
aptic positioning assures that these glial cells can nourish neurons and establish bidirectional communication
with them, functions outlined in the concepts of the astrocytic cradle and multi-partite synapse, respectively.
Astrocytes possess a rich assortment of ligand receptors, ion and water channels, and ion and ligand transport-
ers, which collectively contribute to astrocytic control of homeostasis and excitability. Astroglia control glu-
tamate and adenosine homeostasis to exert modulatory actions aecting the real-time operation of synapses.
Fluctuations of intracellular calcium can lead to the release of various chemical transmitters from astrocytes
through a process termed gliotransmission. Sodium uctuations are closely associated to those of calcium with
both dynamic events interfacing signaling and metabolism. Astrocytes appear fully integrated into the brain
cellular circuitry, being an indispensable part of neural networks.
is volume is a printed version of a work that appears in the Colloquium
Digital Library of Life
Sciences. Colloquium titles cover all of cell and molecular biology and biomedicine, includ-
ing the neurosciences, from the advancedundergraduate and graduate level up to the post-
graduate and practicing researcher level. ey oer concise, original presentations of important
research and development topics, published quickly, in digital
and print formats. For more
information, visit www.morganclaypool.com
Series Editors: Alexei Verkhratsky & Vladimir Parpura Series Editors: Alexei Verkhratsky & Vladimir Parpura
ISSN 2375-9933
Colloquium series on
neuroglia in Biology and mediCine
from physiology to disease
MORGAN & CLAYPOOL LIFE SCIENCES
www.morganclaypool.com
ISBN: 978-1-61504-672-0
9 781615 046720
90000
life sciences
MORGAN & CLAYPOOL LIFE SCIENCES
life sciences
Colloquium series on
neuroglia in Biology and mediCine
from physiology to disease
Physiology of Astroglia
Channels, Receptors, Transporters,
Ion Signaling and Gliotransmission
Alexei Verkhratsky
Vladimir Parpura
Series Editor: Michael Dean, Ph.D.
VERKHRATSKY • PARPURA PH YSIOLOGY OF ASTROGLIA
MORGAN&CLAYPOOL
Physiology of Astroglia
Alexei Verkhratsky, M.D., Ph.D., D.Sc., M.A.E., M.L., M.R.A.N.F.,
e University of Manchester, Manchester, U.K.; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
Vladimir Parpura, M.D., Ph.D., M.A.E., Department of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center,
Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, U.S.A.;
Department of Biotechnology, University of Rijeka, Croatia
Astrocytes can be dened as the glia inhabiting the nervous system with the main function in the maintenance
of nervous tissue homeostasis. Classied into several types according to their morphological appearance, many
of astrocytes form a reticular structure known as astroglial syncytium, owing to their coupling via intercellular
channels organized into gap junctions. Not only do astrocytes establish such homocellular contacts, but they
also engage in intimate heterocellular interactions with neurons, most notably at synaptic sites. As synaptic
structures house the very core of information transfer and processing in the nervous system, astroglial perisyn-
aptic positioning assures that these glial cells can nourish neurons and establish bidirectional communication
with them, functions outlined in the concepts of the astrocytic cradle and multi-partite synapse, respectively.
Astrocytes possess a rich assortment of ligand receptors, ion and water channels, and ion and ligand transport-
ers, which collectively contribute to astrocytic control of homeostasis and excitability. Astroglia control glu-
tamate and adenosine homeostasis to exert modulatory actions aecting the real-time operation of synapses.
Fluctuations of intracellular calcium can lead to the release of various chemical transmitters from astrocytes
through a process termed gliotransmission. Sodium uctuations are closely associated to those of calcium with
both dynamic events interfacing signaling and metabolism. Astrocytes appear fully integrated into the brain
cellular circuitry, being an indispensable part of neural networks.
is volume is a printed version of a work that appears in the Colloquium
Digital Library of Life
Sciences. Colloquium titles cover all of cell and molecular biology and biomedicine, includ-
ing the neurosciences, from the advancedundergraduate and graduate level up to the post-
graduate and practicing researcher level. ey oer concise, original presentations of important
research and development topics, published quickly, in digital
and print formats. For more
information, visit www.morganclaypool.com
Series Editors: Alexei Verkhratsky & Vladimir Parpura Series Editors: Alexei Verkhratsky & Vladimir Parpura
ISSN 2375-9933
Colloquium series on
neuroglia in Biology and mediCine
from physiology to disease
MORGAN & CLAYPOOL LIFE SCIENCES
www.morganclaypool.com
ISBN: 978-1-61504-672-0
9 781615 046720
90000
life sciences
MORGAN & CLAYPOOL LIFE SCIENCES
life sciences
Colloquium series on
neuroglia in Biology and mediCine
from physiology to disease
Physiology of Astroglia
Channels, Receptors, Transporters,
Ion Signaling and Gliotransmission
Alexei Verkhratsky
Vladimir Parpura
Series Editor: Michael Dean, Ph.D.
VERKHRATSKY • PARPURA PH YSIOLOGY OF ASTROGLIA
MORGAN&CLAYPOOL
Physiology of Astroglia
Alexei Verkhratsky, M.D., Ph.D., D.Sc., M.A.E., M.L., M.R.A.N.F.,
e University of Manchester, Manchester, U.K.; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
Vladimir Parpura, M.D., Ph.D., M.A.E., Department of Neurobiology, Center for Glial Biology in Medicine,
Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center,
Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, U.S.A.;
Department of Biotechnology, University of Rijeka, Croatia
Astrocytes can be dened as the glia inhabiting the nervous system with the main function in the maintenance
of nervous tissue homeostasis. Classied into several types according to their morphological appearance, many
of astrocytes form a reticular structure known as astroglial syncytium, owing to their coupling via intercellular
channels organized into gap junctions. Not only do astrocytes establish such homocellular contacts, but they
also engage in intimate heterocellular interactions with neurons, most notably at synaptic sites. As synaptic
structures house the very core of information transfer and processing in the nervous system, astroglial perisyn-
aptic positioning assures that these glial cells can nourish neurons and establish bidirectional communication
with them, functions outlined in the concepts of the astrocytic cradle and multi-partite synapse, respectively.
Astrocytes possess a rich assortment of ligand receptors, ion and water channels, and ion and ligand transport-
ers, which collectively contribute to astrocytic control of homeostasis and excitability. Astroglia control glu-
tamate and adenosine homeostasis to exert modulatory actions aecting the real-time operation of synapses.
Fluctuations of intracellular calcium can lead to the release of various chemical transmitters from astrocytes
through a process termed gliotransmission. Sodium uctuations are closely associated to those of calcium with
both dynamic events interfacing signaling and metabolism. Astrocytes appear fully integrated into the brain
cellular circuitry, being an indispensable part of neural networks.
is volume is a printed version of a work that appears in the Colloquium
Digital Library of Life
Sciences. Colloquium titles cover all of cell and molecular biology and biomedicine, includ-
ing the neurosciences, from the advancedundergraduate and graduate level up to the post-
graduate and practicing researcher level. ey oer concise, original presentations of important
research and development topics, published quickly, in digital
and print formats. For more
information, visit www.morganclaypool.com
Series Editors: Alexei Verkhratsky & Vladimir Parpura
Series Editors: Alexei Verkhratsky & Vladimir Parpura
ISSN 2375-9933
Colloquium series on
neuroglia in Biology and mediCine
from physiology to disease
MORGAN & CLAYPOOL LIFE SCIENCES
www.morganclaypool.com
ISBN: 978-1-61504-672-0
9 781615 046720
90000
life sciences
MORGAN & CLAYPOOL LIFE SCIENCES
life sciences
Colloquium series on
neuroglia in Biology and mediCine
from physiology to disease
Physiology of Astroglia:
Channels, Receptors,Transporters,
Ion Signaling, and Gliotransmission
ii
Colloquium
Digital Library of Life Sciences
is e-book is an original work commissioned for the Colloquium Digital Library of Life Sciences, a
curated collection of time-saving pedagogical resources for researchers and students who want to
quickly get up to speed in a new area of life science/biomedical research. Each e-book available in
Colloquium is an in-depth overview of a fast-moving or fundamental area of research, authored by
a prominent contributor to the eld. We call these resources ‘Lectures’ because authors are asked
to provide an authoritative, state-of-the-art overview of their area of expertise, in a manner that
is accessible to a broad, diverse audience of scientists (similar to a plenary or keynote lecture at a
symposium/meeting/colloquium). Readers are invited to keep current with advances in various
disciplines, gain insight into elds other than their own, and refresh their understanding of core
concepts in cell & molecular biology.
For the full list of available Lectures, please visit:
www.morganclaypool.com/page/lifesci
All lectures available as PDF. Access is free for readers at institutions that license Colloquium.
Please e-mail info@morganclaypool.com for more information.
iii
Colloquium Series on
Neuroglia in Biology and Medicine:
From Physiology to Disease
Editors
Alexei Verkhratsky, M.D., Ph.D., D.Sc., M.A.E., M.L., M.R.A.N.F.
e University of Manchester, Manchester, U.K.; IKERBASQUE, Basque Foundation for Science, Bilbao,
Spain; Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain; Uni-
versity of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
Vladimir Parpura, M.D., Ph.D., M.A.E.
Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nan-
otechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute,
University of Alabama at Birmingham, Birmingham, AL, U.S.A.; Department of Biotechnology, Uni-
versity of Rijeka, Croatia
is series of e-books is dedicated to physiology and pathophysiology of neuroglia. It will be
valuable for the researchers and workers in the eld of neurobiology and medicine in general.
Illustrations provided will be suitable for professional presentations and instructional materials
by researchers, physicians, teachers and members of the pharmaceutical industry. As the topic of
neuroglia is generally overlooked in the majority of neuroscience curricula, this series could ll a
need for materials to be used in courses and/or seminars aimed at exploring the role of glia in the
brain in health and disease.
For published titles please see the website, www.morganclaypool.com/toc/ngl/1/1.
iv
Copyright © 2015 by Morgan & Claypool
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.
Physiology of Astroglia: Channels, Receptors, Transporters, Ion Signaling and Gliotransmission
Alexei Verkhratsky and Vladimir Parpura
www.morganclaypool.com
ISBN: 9781615046720 paper
ISBN: 9781615046737 ebook
DOI: 10.4199/C00123ED1V01Y201501NGL004
A Publication in the
COLLOQUIUM SERIES ON NEUROGLIA IN BIOLOGY AND MEDICINE: FROM PHYSIOLOGY
TO DISEASE
Series Editors: Alexei Verkhratsky, e University of Manchester, U.K.; IKERBASQUE, Basque Foundation
for Science, Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa,
Spain and Vladimir Parpura, Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force
Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain
Institute, University of Alabama at Birmingham, Birmingham, U.S.A.; Department of Biotechnology, University
of Rijeka, Croatia
Series ISSN
ISSN 2375-9933 print
ISSN 2375-9917 electronic
Physiology of Astroglia:
Channels, Receptors,Transporters,
Ion Signaling , and Gliotransmission
Alexei Verkhratsky1, 2, 3 and Vladimir Parpura4, 5
1 Faculty of Life Sciences, e University of Manchester, Manchester, U.K.
2 Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain;
and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
3 University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
4 Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy &
Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain
Institute, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
5 Department of Biotechnology, University of Rijeka, Rijeka, Croatia
COLLOQUIUM SERIES ON NEUROGLIA IN BIOLOGY AND MEDICINE:
FROM PHYSIOLOGY TO DISEASE
M
&CMORGAN & CLAYPOOL LIFE SCIENCES
vi
ABSTRACT
Astrocytes can be dened as the glia inhabiting the nervous system with the main function in
the maintenance of nervous tissue homeostasis. Classied into several types according to their
morphological appearance, many of astrocytes form a reticular structure known as astroglial syn-
cytium, owing to their coupling via intercellular channels organized into gap junctions. Not only
do astrocytes establish such homocellular contacts, but they also engage in intimate heterocellular
interactions with neurons, most notably at synaptic sites. As synaptic structures house the very
core of information transfer and processing in the nervous system, astroglial perisynaptic position-
ing assures that these glial cells can nourish neurons and establish bidirectional communication
with them, functions outlined in the concepts of the astrocytic cradle and multi-partite synapse,
respectively. Astrocytes possess a rich assortment of ligand receptors, ion and water channels, and
ion and ligand transporters, which collectively contribute to astrocytic control of homeostasis and
excitability. Astroglia control glutamate and adenosine homeostasis to exert modulatory actions
aecting the real-time operation of synapses. Fluctuations of intracellular calcium can lead to the
release of various chemical transmitters from astrocytes through a process termed gliotransmission.
Sodium uctuations are closely associated to those of calcium with both dynamic events interfacing
signaling and metabolism. Astrocytes appear fully integrated into the brain cellular circuitry, being
an indispensable part of neural networks.
KEY WORDS
astroglia, calcium signaling, homeostasis, ion channels, neurotransmitters, receptors, sodium
signaling, synaptic transmission, transporters
vii
Contents
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
1 Astrocytes: General Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Astroglia: Denition and Identication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Astroglial Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Astroglial Syncytia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Astroglia and Synapse: e Concept of Multi-Partite Synapse and
Astroglial Cradle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Multi-Partite Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Astroglial Synaptic Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Astrocytes Cradle: Fostering and Maintaining Synaptic
Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Ion Distribution and Membrane Potential . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Ion Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Membrane Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Astrocytes Are Electrically Non-Excitable Cells . . . . . . . . . . . . . . . . . . . . . . 25
3 Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Ion Channels: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Potassium Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Inward Rectier Potassium Channels, Kir . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Voltage-Independent K+ Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Voltage-Gated K+ Channels, Kv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Ca2+-Dependent K+ Channels, KCa . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 A Note on Astroglia as Central Element of Extracellular
Potassium Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Sodium Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Voltage-Gated Sodium Channels, Nav . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 [Na+]o-Regulated Na+ Channels, Nax . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Calcium Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
viii
3.4.1 Voltage-Gated Ca2+ Channels . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Store-Operated Ca2+ Channels of Orai Family . . . . . . . . . . . 37
3.5 Intracellular Ca2+ Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Transient Receptor Potential (TRP Channels) . . . . . . . . . . . . . . . . . . 39
3.6.1 TRPC Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 TRPA1 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3 TRPV Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN)
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Anion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Aquaporins or Water Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9.1 A Note on Water Homeostasis, Extracellular space, and
Glymphatic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.10 Connexons and Connexins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11 Pannexons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Neurotransmitter Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Receptors for Neurotransmitters and Neurohormones:
An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Astroglia Express Multiple Receptors . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Glutamate Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Ionotropic Glutamate Receptors . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Metabotropic Glutamate Receptors . . . . . . . . . . . . . . . . . . . . 58
4.4 Purinoceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Adenosine (P1) Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 P2Y Metabotropic Purinoceptors . . . . . . . . . . . . . . . . . . . . . 60
4.4.3 Ionotropic P2X Purinoceptors . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Receptors for Inhibitory Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1 GABA Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 Glycine Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Other Types of Receptors for Neurotransmitters and
Neuromodulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.1 Acetylcholine Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.2 Adrenergic Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.3 Serotonin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.4 Histamine Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.5 Bradykinin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ix
4.6.6 Cannabinoid Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.7 Neuropeptide Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.8 Leptin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.9 Cytokine and Chemokine Receptors . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.10 Complement Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.11 Platelet-Activating Factor Receptor . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.12 rombin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.13 Ephrin Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.14 Succinate Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.15 Toll-Like Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.16 PACAP Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.17 Astroglia and Glucose Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5 Membrane Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 An Overview of Membrane Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 ATP-Dependent Transporters in Astroglia . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1 Astroglial P-Type Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Astroglial F- and V-Type Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Astroglial ABC-Binding Cassette Transporters . . . . . . . . . . . . . . . . 73
5.3 Secondary Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Plasmalemmal Glutamate Transporters . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Sxc- Cystine/Glutamate Antiporter . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Glutamine Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.4 GABA Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.5 Glycine Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.6 Adenosine Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.7 Dopamine Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.8 D-serine Transporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.9 A Note on Astroglial Role in Regulation of Neurotransmitters
Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.10 Plasmalemmal Sodium-Calcium Exchanger (NCX) . . . . . . . . . . . . 86
5.3.11 Sodium-Proton Exchanger (NHE) . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.12 Sodium-Bicarbonate Co-Transporter (NBC) . . . . . . . . . . . . . . . . . 88
5.3.13 A Note on Astrocytes and Regulation of pH in the CNS . . . . . . . . 89
5.3.14 A Note on Astroglia and Central Chemoception of pH and CO2 . . 89
5.3.15 Sodium-Potassium-Chloride Co-Transporter (NKCC1) . . . . . . . . 91
5.3.16 Vesicular Neurotransmitter Transporters . . . . . . . . . . . . . . . . . . . . . 91
x
5.3.17 Monocarboxylate Transporters (MCTs) . . . . . . . . . . . . . . . . . . . . . 91
5.3.18 Ascorbic Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.19 A Note on the Astroglial Antioxidant System . . . . . . . . . . . . . . . . . 92
5.3.20 Zinc Transporter and Zinc Homeostasis . . . . . . . . . . . . . . . . . . . . . 94
6 Ionic Signaling in Astroglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1 Calcium Signaling: General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.1 Calcium Signaling: An Evolutionary Perspective . . . . . . . . . . . . . . . 95
6.1.2 Calcium Signaling: Molecular Mechanisms . . . . . . . . . . . . . . . . . . . 96
6.2 Calcium Signaling and Astroglial Excitability . . . . . . . . . . . . . . . . . . . . . . 101
6.2.1 Endoplasmic Reticulum Provides for Ca2+ Excitability of
Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2 Store-Operated Ca2+ Entry in Astrocytes . . . . . . . . . . . . . . . . . . . 103
6.2.3 Ionotropic Ca2+ Permeable Receptors in Astrocytes . . . . . . . . . . . . 103
6.2.4 Plasmalemmal Sodium/Calcium Exchanger in Astroglial Ca2+
Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.5 Mitochondria in Astroglial Ca2+ Signaling . . . . . . . . . . . . . . . . . . . 105
6.2.6 Calcium Waves in Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Sodium Signaling in Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7 Gliotransmission: Astrocytes as Secretory Cells of the Nervous System . . . . 113
7.1 e Fundamentals of Chemical Neurotransmission . . . . . . . . . . . . . . . . . . 113
7.2 e Concept of Astroglia as Secretory Cells in the CNS . . . . . . . . . . . . . . 114
7.3 Astrocytes Secrete Multiple Neuroactive Substances . . . . . . . . . . . . . . . . . . 117
7.4 Astroglial Secretion Proceeds by Multiple Molecular Pathways . . . . . . . . . 119
7.4.1 Exocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4.2 Diusional Release of Neurotransmitters from Astrocytes. . . . . . . 122
7.4.3 Transporter-Mediated Neurotransmitter Release from
Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Main Neurotransmitters and Neuromodulators Released from
Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5.1 Glutamate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5.2 ATP/Adenosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5.3 GABA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5.4 D-Serine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5.5 Kynurenic Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.5.6 Lactate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.7 Glutamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
xi
Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Author Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155