Trans-Pacific RAD-Seq Population Genomics Confirms Introgressive Hybridization in Eastern Pacific Pocillopora Corals.

ArticleinMolecular Phylogenetics and Evolution 3 · April 2015with 530 Reads

Do you want to read the rest of this article?

Request full-text
Request Full-text Paper PDF
  • ... There is also a preference for each RRL approach that depends on the " scientific community " concerned. For instance, RAD-seq is widely used for evolutionary history and conservation studies on wild organisms (Hohenlohe et al., 2013; Pujolar et al., 2014; Combosch and Vollmer, 2015), whereas GBS is used by researchers working on crops and domesticated animals. The TASSEL pipeline was thus primarily developed to handle low coverage sequencing for homozygote samples (Glaubitz et al., 2014) and to be used in genome wide association studies (Moumouni et al., 2015; Sonah et al., 2015; Upadhyaya et al., 2015). ...
    ... Transcriptomes enable access to longer sequences around SNPs, a very interesting feature for further SNP validation and access to an annotation of the genomic region. Thus, using a transcriptome reference to map reads from RRL approaches (Russell et al., 2013; Combosch and Vollmer, 2015) could be an interesting alternative for SNP discovery. However, it is not easy to assess the bias arising from using the SNP calling pipeline, especially for population genetic studies (Hohenlohe et al., 2010; Nielsen et al., 2012; Arnold et al., 2013; Davey et al., 2013; Gautier et al., 2013; Han et al., 2014; Ilut et al., 2014; Harvey et al., 2015; Rodríguez-Ezpeleta et al., 2016). ...
    ... We therefore first used the UNEAK approach implemented in TASSEL and proposed and tested an alternative strategy in which NGS genomic reads were directly mapped on the pearl millet transcriptome. This strategy was guided by the observation that species transcriptomes are becoming progressively more accessible thanks to transcriptional studies and that it would be advantageous to use it (Russell et al., 2013; Combosch and Vollmer, 2015). It makes it possible to avoid using the de novo DNA assembly and has the advantage of using a reference genome, for example to access a longer sequence around SNPs sites, and has a greater probability of finding selection targets (Hancock et al., 2011). ...
    Article
    Full-text available
    Next generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping GBS reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques.
  • ... Subsequently, multivariate morphometrics were used to statisti- cally compare populations and species, allowing for species recog- nition and for morphologic overlap at species margins ( Budd et al., 2012a). However, environment-induced phenotypic plasticity, evolutionary convergence of skeletal characters, intraspecific vari- ation caused by different genotypes, and genetic mixing via intro- gression cause intraspecific and interspecific variability to overlap (Todd, 2008;Richards and Hobbs, 2015;Combosch and Vollmer, 2015). Therefore, we need a new approach to overcome the limita- tions of morphology. ...
    ... This is especially encouraging in the light of recent development of next generation sequencing techniques, such as RNA-seq or RAD-tag seq (Toonen et al., 2013). The application of reduced genome approaches has already improved the species boundaries definition in the scleractinian coral genus Pocillopora ( Combosch and Vollmer, 2015) and the octocoral genus Chrysogorgia (Pante et al., ) and might help to elucidate the relationships within the E. aspera complex as well as between O. lacera and E. echinata. ...
  • ... Therefore, in this paper we aim to (i) compare the population genetics of P. nodosus in Singapore waters with those in the Indonesian region of the Coral Triangle to determine if genetic diversity has been impacted in populations of the former and (ii) investigate the fine-scale genetic structure of Singapore's P. nodosus populations using thousands of genome-wide single nucleotide polymorphism (SNP) markers, which are capable of detecting low levels of genetic structure not reflected by the traditional cytochrome oxidase I (COI) genetic marker used in previous studies of Coral Triangle populations (e.g. [19][20][21][22]). ...
    ... Crandall et al. [10] previously also demonstrated fine-scale structure across a much shorter 13 km stretch of coastal ocean despite using only mitochondrial sequences instead of SNP data which provides better resolution (e.g. [19][20][21][22]), which could be due in part to the positive geotactic behaviour approximately 2 days after attaining motility in larvae of the knobbly sea stars [17] that reduces the window of opportunity for long-distance dispersal by the currents. Other factors that could have contributed to the fine-scale genetic structure in this species in Singapore include anthropogenic impacts such as (i) the high shipping traffic [62] across more than 30 km of coastal waters, (ii) coastal pollution from runoff and effluent from a highly urbanized terrestrial environment, which has been suggested to be an effective barrier to larval dispersal [82], and/or (iii) the lack of many suitable habitats [18] for larval settlement and growth into reproductive adults. ...
    Article
    Full-text available
    The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against ant
  • ... Gaskin et al. (2009) , for example, found extensive hybridization among three congeneric tree species that have recently been introduced to Florida, even though the three are genetically distinct in their native Australia. Genetic evidence from one of the ETP's two major reef building genera, Pocillopora, suggest introgression among species (Combosch & Vollmer, 2015), although coalescent analyses that can reveal past exchanges and date divergences between populations (Pinho & Hey, 2010) have yet to be applied. Corals of the genus Porites are one of the principal reef builders in the ETP (Glynn & Wellington, 1983). ...
    ... For example, the three species of Montastraea (Orbicella) are more morphologically distinct and genetically isolated in Panama than in the more marginal Bahamas (Fukami et al., 2004 ). In the eastern Paci- fic, Combosch et al. (2008) inferred hybridization between Pocillopora damicornis and a couple of close relatives using ITS sequences, a pattern consistent with later surveys of pooled RAD-Seq data (Combosch & Vollmer, 2015). Pinz on et al. (2013), using ITS, microsatellites and a mitochondrial marker on a broader sampling of Pocillopora, saw more sharply defined species but still reported the greatest degree of introgression to be in the eastern Pacific (they saw a hint of mixing in Hawaii as well). ...
    Article
    To infer species identity, population isolation, and geographical variation in inter-specific hybridization among corals of the genus Porites from the central and eastern tropical Pacific, with a focus on the timing of separation between populations of P. evermanni and P. lobata divided by the Eastern Pacific Barrier. Hawaii, American Samoa, Panama and the Galapagos Islands of Ecuador. Maximum likelihood gene trees were obtained for mitochondrial DNA (COI), the internal transcribed spacer (ITS), and 5 single-copy nuclear (scn) gene regions. Allelic networks were used to group multi-locus scn data into species clusters despite some allele sharing. Coalescent analyses (IMa2) of the 5 scn markers were used to estimate the time of population divergence and test for introgression between P. evermanni and P. lobata. Allelic networks based on scn gene sequences agreed with mtCOI and ITS designations. Divergence times between Hawaiian and eastern Pacific populations are consistent with an early Pleistocene recolonization of the eastern Pacific by P. evermanni followed by a more recent arrival of P. lobata. The two species were fully isolated in Hawaii/American Samoa populations, but introgression from P. evermanni into P. lobata was evident in the eastern Pacific. These results are consistent with a scenario where a bout of introgression with P. evermanni, an early-arriving colonizer of the eastern Pacific suited to marginal environmental conditions, facilitated the later colonization of the more sensitive P. lobata.
  • ... Traditional morphology-based systematics does not reflect all the evolutionary relationships of Scleractinia, which therefore forms a problematic group for taxonomy. Environment- induced phenotypic variation, morphological plasticity, evolutionary convergence of skeletal characters, intraspecific variation caused by different genotypes, and genetic mixing via introgression cause intraspecific and interspecific variability to overlap (Todd 2008;Combosch and Vollmer 2015;Richards and Hobbs 2015). Molecular data have therefore become increasingly important in recent years to overcome the limitations of morphological analyses among scleractinians (e.g. ...
    Article
    Full-text available
    Lack of mitochondrial genome data of Scleractinia is hampering progress across genetic, systematic, phylogenetic, and evolutionary studies concerning this taxon. Therefore, in this study, the complete mitogenome sequence of the stony coral Echinophylliaaspera (Ellis & Solander, 1786), has been decoded for the first time by next generation sequencing and genome assembly. The assembled mitogenome is 17,697 bp in length, containing 13 protein coding genes (PCGs), two transfer RNAs and two ribosomal RNAs. It has the same gene content and gene arrangement as in other Scleractinia. All genes are encoded on the same strand. Most of the PCGs use ATG as the start codon except for ND2, which uses ATT as the start codon. The A+T content of the mitochondrial genome is 65.92% (25.35% A, 40.57% T, 20.65% G, and 13.43% for C). Bayesian and maximum likelihood phylogenetic analysis have been performed using PCGs, and the result shows that E.aspera clustered closely with Sclerophylliamaxima (Sheppard & Salm, 1988), both of which belong to Lobophylliidae, when compared with species belonging to Merulinidae and other scleractinian taxa used as outgroups. The complete mitogenome of E.aspera provides essential and important DNA molecular data for further phylogenetic and evolutionary analyses of corals.
  • ... Such methods have been increasingly used to produce tremendous amounts of short-reads data to ultimately genotype a high number of SNPs randomly located in the genome of fairly large numbers of individuals. Note that the number of individuals can be increased by multiplexing (at the detriment of individual coverage or the number of sites targeted) or via sequencing pools of individuals ( Combosch & Vollmer 2015). Similar to RADseq, shortreads sequencing of RNA, RNAseq is also increasingly used to screen polymorphism in DNA coding regions ( Piskol et al. 2013). ...
    Article
    Full-text available
    Genome scans represent powerful approaches to investigate the action of natural selection on the genetic variation of natural populations and to better understand local adaptation. This is very useful for example in the field of conservation biology and evolutionary biology. Thanks to Next Generation Sequencing, genomic resources are growing exponentially, improving genome scan analyses in non-model species. Thousands of SNPs called using Reduced Representation Sequencing are increasingly used in genome scans. Besides, genomes are also becoming more available, allowing better processing of short-read data, offering physical localisation of variants, and improving haplotype reconstruction and data imputation. Ultimately, genomes are also becoming the raw material for selection inferences. Here, we discuss how the increasing availability of such genomic resources, notably genomes, influences the detection of signals of selection. Mainly, increasing data density and having the information of physical linkage data expand genome scans by i) improving the overall quality of the data; ii) helping the reconstruction of demographic history for the population studied to decrease false positive rates; iii) improving the statistical power of methods to detect the signal of selection. Of particular importance, the availability of a high quality reference genome can improve the detection of the signal of selection by i) allowing matching the potential candidate loci to linked coding regions under selection, ii) rapidly moving the investigation to the gene and function, and iii) ensuring that the highly variable regions in coding regions of the genomes are also investigated. For all those reasons, using reference genomes in analyses of genome scans is highly recommended. This article is protected by copyright. All rights reserved.
  • ... Restriction-site associated DNA sequencing (RAD-seq) is a technique that combines the next generation sequencing platform with thousands of restriction sites that are digested by restriction enzymes and distributed randomly throughout the genome to generate millions of DNA loci easily, rapidly, and cost-effectively ( Baird et al., 2008;Davey & Blaxter, 2010). In recent years, RAD-seq has been used to investigate interspecific hybrid events at genome-wide level in fishes (Hohenlohe et al., 2011;Jones et al., 2013), mammals (Rutledge et al., 2015), molluscs ( Razkin et al., 2016), and corals (Combosch & Vollmer, 2015). Natural hybridization and introgression in flowering plants have also been inferred using RAD-seq data (Eaton & Ree, 2013;Penjor et al., 2016;Yang et al., 2016;Vargas et al., 2017). ...
    Article
    Full-text available
    Reticulate evolution is an important driving force of angiosperm evolution. It has been proposed as an important evolutionary process in Vitis subgenusVitis. Events of natural hybridization and introgression of several taxa native to North America have been hypothesized and discussed. However, there is no convincing evidence of reticulate evolution reported for closely related Vitis taxa from East Asia. We aim to explore natural hybridization and introgression among four closely related Vitis taxa from East Asia (V. amurensis, V. romanetii, V. shenxiensis, and V. piasezkii) with the restriction‐site associated DNA sequencing (RAD‐seq) technique. A total of 46 accessions, covering the potential morphological and geographic variation of each species, are sequenced. Our results show a complex evolutionary pattern of the four Vitis species. The phylogenetic inference suggests that V. amurensis is monophyletic, however, V. romanetii, V. shenxiensis, and V. piasezkii each do not appear to be monophyletic. Significant signals of introgression in some accessions have been detected by population structure analyses. D‐statistics analysis and population structure analyses support the presence of introgression between V. shenxiensis/V. piasezkii and V. romanetii in sympatric populations, but strong signal of admixture has not been recognized between distantly located populations. Our results provide strong evidence of reticulate evolution among V. romanetii, V. shenxiensis, and V. piasezkii.
  • ... This species complex displays in addition high phenotypic plasticity and cryptic lineages [32]. Nevertheless, as we used a single mitochondrial marker for Pocillopora clade identification, we cannot completely rule out the possibility of mitochondrial introgression or hybridization that seem to be common within this genus [55,56]. Finally, although it was proposed that Symbiodinium assemblages may be useful for integrative taxonomy of Pocillopora species [57], we found in this study that Symbiodinium communities did not discriminate Pocillopora haplotypes. ...
    Article
    Full-text available
    Background Although the term holobiont has been popularized in corals with the advent of the hologenome theory of evolution, the underlying concepts are still a matter of debate. Indeed, the relative contribution of host and environment and especially thermal regime in shaping the microbial communities should be examined carefully to evaluate the potential role of symbionts for holobiont adaptation in the context of global changes. We used the sessile, long-lived, symbiotic and environmentally sensitive reef-building coral Pocillopora damicornis to address these issues. ResultsWe sampled Pocillopora damicornis colonies corresponding to two different mitochondrial lineages in different geographic areas displaying different thermal regimes: Djibouti, French Polynesia, New Caledonia, and Taiwan. The community composition of bacteria and the algal endosymbiont Symbiodinium were characterized using high-throughput sequencing of 16S rRNA gene and internal transcribed spacer, ITS2, respectively. Bacterial microbiota was very diverse with high prevalence of Endozoicomonas, Arcobacter, and Acinetobacter in all samples. While Symbiodinium sub-clade C1 was dominant in Taiwan and New Caledonia, D1 was dominant in Djibouti and French Polynesia. Moreover, we also identified a high background diversity (i.e., with proportions < 1%) of A1, C3, C15, and G Symbiodinum sub-clades. Using redundancy analyses, we found that the effect of geography was very low for both communities and that host genotypes and temperatures differently influenced Symbiodinium and bacterial microbiota. Indeed, while the constraint of host haplotype was higher than temperatures on bacterial composition, we showed for the first time a strong relationship between the composition of Symbiodinium communities and minimal sea surface temperatures. Conclusion Because Symbiodinium assemblages are more constrained by the thermal regime than bacterial communities, we propose that their contribution to adaptive capacities of the holobiont to temperature changes might be higher than the influence of bacterial microbiota. Moreover, the link between Symbiodinium community composition and minimal temperatures suggests low relative fitness of clade D at lower temperatures. This observation is particularly relevant in the context of climate change, since corals will face increasing temperatures as well as much frequent abnormal cold episodes in some areas of the world.
  • ... Due to the symbiont natural rates of increase, corals steadily release Symbiodinium cells into the surrounding environment ( Yamashita et al., 2011), suggesting that close to reefs, seawater should contain detectable quantities of DNA from both corals and Symbiodinium. Recently, whole genome sequences of an Acropora coral ( Shinzato et al., 2011) and Symbiodinium ( Shoguchi et al., 2013;Lin et al., 2015;Aranda et al., 2016) have been published, and nextgeneration sequencing (NGS) technologies have been used to investigate coral reef biodiversity ( Shinzato et al., 2014bShinzato et al., , 2015Combosch and Vollmer, 2015;Bongaerts et al., 2017). In the genus Symbiodinium, each clade contains multiple genetic types, and identification has been performed using ribosomal, mitochondrial, plastid, and nuclear DNA markers ( Rowan and Powers, 1991;Wilcox, 1998;Lajeunesse, 2001;Santos et al., 2002;Takabayashi et al., 2004). ...
    Article
    Full-text available
    Frequent, high-density coral monitoring is essential to understand coral reef ecosystems. For this purpose, we developed a novel method for simultaneous monitoring of Acropora corals and their symbiont, Symbiodinium, from environmental DNA (eDNA) in seawater using next generation sequencing technology (NGS). We performed a tank experiment with running seawater using 19 Acropora species. Complete mitochondrial genomes of all the Acropora species were assembled to create a database and major types of their Symbiodinium symbionts were identified. Then eDNA was isolated by filtering inlet and outlet seawater from the tanks. Acropora and Symbiodinium DNA were amplified by PCR and sequenced. We detected all of the tested Acropora types from eDNA samples. Proportions and numbers of DNA sequences were both positively correlated with masses of corals in the tanks. In this trial, we detected DNA sequences from as little as 0.04 kg of Acropora colony, suggesting that existence of at least one adult Acropora colony (~30 cm diameter = 1 kg) per m2 at depths < 10 m could be detected using eDNA in the field. In addition, we detected major types of Symbiodinium within host corals from seawater, suggesting that it should be possible to detect major coral symbiont types if Acropora corals exist nearby, and possible free-living state Symbiodinium cells from eDNA in seawater. eDNA abundance of Symbiodinium types did not correlate well with frequencies of major Symbiodinium types in the corals, suggesting that quantification of Symbiodinium is difficult at this stage. Although this is the initial attempt to detect coral and Symbiodinium simultaneously from eDNA in seawater, this method may allow us to perform high-frequency, high-density coral reef monitoring of both corals and their symbionts in the near future.
  • ... The resulting alignments were trimmed internally using GBlocks ( Castresana, 2000;Talavera & Castresana, 2007 ( Aberer, Kobert, & Stamatakis, 2014). An extended majority rule consensus tree was produced. ...
    Article
    Full-text available
    Anthozoans (e.g., corals, anemones) are an ecologically important and diverse group of marine metazoans that occur from shallow to deep waters worldwide. However, our understanding of the evolutionary relationships among the ~7500 species within this class is hindered by the lack of phylogenetically informative markers that can be reliably sequenced across a diversity of taxa. We designed and tested 16,306 RNA baits to capture 720 Ultraconserved Element loci and 1,071 exon loci. Library preparation and target enrichment was performed on 33 taxa from all orders within the class Anthozoa. Following Illumina sequencing and Trinity assembly, we recovered 1,774 of 1,791 targeted loci. The mean number of loci recovered from each species was 638 ± 222, with more loci recovered from octocorals (783 ± 138 loci) than hexacorals (475 ±187 loci). Parsimony informative sites ranged from 26-49% for alignments at differing hierarchical taxonomic levels (e.g., Anthozoa, Octocorallia, Hexacorallia). The percent of variable sites within each of three genera (Acropora, Alcyonium, and Sinularia) for which multiple species were sequenced ranged from 4.7-30%. Maximum likelihood analyses recovered highly resolved trees with topologies matching those supported by other studies, including the monophyly of the order Scleractinia. Our results demonstrate the utility of this target-enrichment approach to resolve phylogenetic relationships from relatively old to recent divergences. Re-designing the baits with improved affinities to capture loci within each sub-class will provide a valuable toolset to address systematic questions, further our understanding of the timing of diversifications, and help resolve long-standing controversial relationships in the class Anthozoa.
  • ... If population sample sizes are large (so heterozygotes should have been found), and fixed differences are rare, it may make sense to set n to a value less than M ( Barnard-Kubow, Debban & Galloway 2015;Saenz-Agudelo et al. 2015). Alternatively, if the samples originate from highly divergent individuals (Ravinet et al. 2016;Rougemont et al. 2016), or phylogenetic rela- tionships are being explored between species (Combosch & Vollmer 2015;Tariel, Longo & Bernardi 2016), then a higher value of n may be required to detect these fixed polymor- phisms. This being said, it may be difficult to derive a biological judgement of the known amount of differentiation between individuals -for example, if cryptic population structure exists. ...
    Article
    Full-text available
    Restriction site Associated DNA sequencing (RAD-seq) has become a widely adopted method for genotyping populations of model and non-model organisms. Generating a reliable set of loci for downstream analysis requires appropriate use of bioinformatics software, such as the program Stacks. 2.Using three empirical RAD-seq datasets, we demonstrate a method for optimising a de novo assembly of loci using Stacks. By iterating values of the program's main parameters and plotting resultant core metrics for visualisation, researchers can gain a much better understanding of their dataset and select an optimal set of parameters; we present the 80% rule as a generally effective method to select the core parameters for Stacks. We also demonstrate that building loci de novo and then integrating alignment positions is more effective than aligning raw reads directly to a reference genome. 3.Visualisation of the metrics plotted for the three RAD-seq datasets show that they differ in the optimal parameters that should be used to maximise the amount of available biological information. We also demonstrate that building loci de novo and then integrating alignment positions is more effective than aligning raw reads directly to a reference genome. 4.Our methods will help the community in honing the analytical skills necessary to accurately assemble a RAD-seq dataset. This article is protected by copyright. All rights reserved.
  • ... NGS has also been used to isolate and characterize new microsatellite markers in deep-sea animals where gaining the required high volume and quality of DNA necessary for some NGS approaches, such as RAD-seq, is inherently difficult due to animal size or poor specimen quality (Ritchie, Jamieson, & Piertney, 2016a). Despite the promise of these technologies, only six marine benthic species have so far had their population connectivity assessed using RAD-seq: the anemone, Nematostella vectensis (Reitzel et al., 2013), the American lobster, Homarus americanus (Benestan et al., 2015), three species of the coral Pocillopora (Combosch & Vollmer, 2015) and the only deep-sea benthic NGS population genomics study, on the octocoral Swiftia simplex (Everett et al., 2016). RNA-seq has also rarely been employed in non-model organisms, for example, some pelagic marine fish (reviewed in Hemmer-Hansen,Therkildsen, & Pujolar, 2014); the red abalone bivalve, Haliotis rufescens (De Wit & Palumbi, 2013); the green abalone, Haliotis fulgens (Gruenthal et al., 2014); and a Nerita gastropod (Amin, Prentis, Gilding, & Pavasovic, 2014). ...
    Article
    Full-text available
    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow water species. Generally, populations at similar depths were well connected over 100s–1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s–1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectiv-ity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, " ecosystem engineers " and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically unin-formative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made.
  • ... cluster (Figure 3). Such discrepancies between morphology-based and molecular taxonomies can be due to a variety of processes including phenotypic plasticity, introgressive hybridization, or incomplete lineage sorting (i.e., when independent loci have different genealogies by chance) (Arnold, 1997;Combosch & Vollmer, 2015;Fontaine et al., 2015;Weng et al., 2016). At k = 2 and k = 3, some populations also exhibit half ancestry from each morphological species suggestive of gene flow. ...
    Article
    Full-text available
    Ongoing speciation in most African malaria vectors gives rise to cryptic populations, which differ remarkably in their behaviour, ecology and capacity to vector malaria parasites. Understanding the population structure and the drivers of genetic differentiation among mosquitoes is crucial for effective disease control because heterogeneity within species contribute to variability in malaria cases and allow fractions of vector populations to escape control efforts. To examine the population structure and the potential impacts of recent large-scale control interventions, we have investigated the genomic patterns of differentiation in mosquitoes belonging to the Anopheles nili group — a large taxonomic group that diverged ~3Myr ago. Using 4343 single nucleotide polymorphisms (SNPs), we detected strong population structure characterized by high FST values between multiple divergent populations adapted to different habitats within the Central African rainforest. Delineating the cryptic species within the Anopheles nili group is challenging due to incongruence between morphology, ribosomal DNA and SNP markers consistent with incomplete lineage sorting and/or interspecific gene flow. A very high proportion of loci are fixed (FST = 1) within the genome of putative species, which suggests that ecological and/or reproductive barriers are maintained by strong selection on a substantial number of genes. This article is protected by copyright. All rights reserved.
  • Article
    Full-text available
    Hybridisation may lead to introgression of genes among species. Introgression may be bidirectional or unidirectional, depending on factors such as the demography of the hybridising species, or the nature of reproductive barriers between them. Previous microsatellite studies suggested bidirectional introgression between diploid Betula nana (dwarf birch) and tetraploid B. pubescens (downy birch) and also between B. pubescens and diploid B. pendula (silver birch) in Britain. Here we analyse introgression among these species using 51,237 variants in restriction-site associated (RAD) markers in 194 individuals, called with allele dosages in the tetraploids. In contrast to the microsatellite study, we found unidirectional introgression into B. pubescens from both of the diploid species. This pattern fits better with the expected nature of the reproductive barrier between diploids and tetraploids. As in the microsatellite study, introgression into B. pubescens showed clear clines with increasing introgression from B. nana in the north and from B. pendula in the south. Unlike B. pendula alleles, introgression of B. nana alleles was found far from the current area of sympatry or allopatry between B. nana and B. pubescens. This pattern fits a shifting zone of hybridisation due to Holocene reduction in the range of B. nana, and expansion in the range of B. pubescens. This article is protected by copyright. All rights reserved.
  • Article
    Understanding how and why populations evolve is of fundamental importance to molecular ecology. RADseq (Restriction site-Associated DNA sequencing), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography, and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes, and extents of linkage disequilibrium (length of haplotype blocks). We then surveyed recent studies that have used RADseq for genome scans and found that that the median density of RADseq markers across these studies was one marker per 3.96 megabases. Given that the length of linkage disequilibrium is often orders of magnitude less than a megabase, we conclude that genome scans based on RADseq data alone are unlikely to advance our understanding of molecular ecology or evolutionary genetics for most systems. This article is protected by copyright. All rights reserved.
  • Article
    Full-text available
    High-throughput techniques based on restriction site-associated DNA sequencing (RADseq) are enabling the low-cost discovery and genotyping of thousands of genetic markers for any species, including non-model organisms, which is revolutionizing ecological, evolutionary and conservation genetics. Technical differences among these methods lead to important considerations for all steps of genomics studies, from the specific scientific questions that can be addressed, and the costs of library preparation and sequencing, to the types of bias and error inherent in the resulting data. In this Review, we provide a comprehensive discussion of RADseq methods to aid researchers in choosing among the many different approaches and avoiding erroneous scientific conclusions from RADseq data, a problem that has plagued other genetic marker types in the past.
  • Article
    Full-text available
    Following a global coral bleaching event in 1998, Acropora corals surrounding most of Okinawa island (OI) were devastated, although they are now gradually recovering. In contrast, the Kerama Islands (KIs) only 30 km west of OI, have continuously hosted a great variety of healthy corals. Taking advantage of the decoded Acropora digitifera genome and using genome-wide SNP analyses, we clarified Acropora population structure in the southern Ryukyu Archipelago (sRA). Despite small genetic distances, we identified distinct clusters corresponding to specific island groups, suggesting infrequent long-distance dispersal within the sRA. Although the KIs were believed to supply coral larvae to OI, admixture analyses showed that such dispersal is much more limited than previously realized, indicating independent recovery of OI coral populations and the necessity of local conservation efforts for each region. We detected strong historical migration from the Yaeyama Islands (YIs) to OI, and suggest that the YIs are the original source of OI corals. In addition, migration edges to the KIs suggest that they are a historical sink population in the sRA, resulting in high diversity. This population genomics study provides the highest resolution data to date regarding coral population structure and history.
  • Article
    Estimating the frequency of hybridization is important to understand its evolutionary consequences and its effects on conservation efforts. In this study, we examined the extent of hybridization in two sister species of ducks that hybridize. We used mitochondrial control region sequences and 3589 double-digest restriction-associated DNA sequences (ddRADseq) to identify admixture between wild lesser scaup (Aythya affinis) and greater scaup (A. marila). Among 111 individuals, we found one introgressed mitochondrial DNA haplotype in lesser scaup and four in greater scaup. Likewise, based on the site-frequency spectrum from autosomal DNA, gene flow was asymmetrical, with higher rates from lesser into greater scaup. However, using ddRADseq nuclear DNA, all individuals were assigned to their respective species with >0.95 posterior assignment probability. To examine the power for detecting admixture, we simulated a breeding experiment in which empirical data were used to create F1 hybrids and nine generations (F2-F10) of backcrossing. F1 hybrids and F2, F3 and most F4 backcrosses were clearly distinguishable from pure individuals, but evidence of admixed histories was effectively lost after the fourth generation. Thus, we conclude that low interspecific assignment probabilities (0.011-0.043) for two lesser and nineteen greater scaup were consistent with admixed histories beyond the F3 generation. These results indicate that the propensity of these species to hybridize in the wild is low and largely asymmetric. When applied to species-specific cases, our approach offers powerful utility for examining concerns of hybridization in conservation efforts, especially for determining the generational time until admixed histories are effectively lost through backcrossing.
  • Chapter
    The success of the coral reef ecosystem is due in large part to endosymbioses between cnidarians such as scleractinian corals, octocorals and anemones and single-celled dinoflagellates in the genus Symbiodinium. While the rise of molecular genetic analyses have offered valuable insight into Symbiodinium biodiversity, host and geographic distributions and evolutionary relationships, less well-studied are patterns and processes at the population level. Since populations represent the fundamental unit by which evolution occurs, furthering understanding in this area is paramount towards addressing questions ranging from the basic biology of Symbiodinium and their hosts to how anthropogenic-driven global climate change may impact these symbioses in the future. Here, a synopsis of population-level characteristics for Symbiodinium and various cnidarian host species are distilled from the current literature. Mutational patterns in the most commonly utilized genetic markers for population-level studies of Symbiodinium, nuclear microsatellite loci, are also explored. Substitutions, nucleotide insertions and deletions (indels), alterations to the repeat array structure and non-stepwise changes in repeat number are drivers of both allelic variation and size homoplasy, with the latter of concern due to the potential to bias estimates of genetic structure. Such mutations, however, are also a rich source of information that complement and extend the population-level data inherent to microsatellites and provide additional insight into various facets of these symbioses. Lastly, advents in DNA sequencing technology and genomics are discussed since they offer exciting opportunities to rapidly explore pertinent questions in cnidarian hosts and their Symbiodinium populations in a rapidly changing world.
  • Article
    Full-text available
    Species delimitation methods based on genetic information, notably using single locus data, have been proposed as means of increasing the rate of biodiversity description, but can also be used to clarify complex taxonomies. In this study, we explore the species diversity within the cnidarian genus Pocillopora, widely distributed in the tropical belt of the Indo-Pacific Ocean. From 943 Pocillopora colonies sampled in the Western Indian Ocean, the Tropical Southwestern Pacific and Southeast Polynesia, representing a huge variety of morphotypes, we delineated Primary Species Hypotheses (PSH) applying the Automatic Barcode Gap Discovery method, the Poisson tree processes algorithm and the Generalized mixed Yule-coalescent model on two mitochondrial markers (Open Reading Frame and Dloop) and reconstructing a haploweb using one nuclear marker (Internal Transcribed Spacer 2). Then, we confronted identified PSHs to the results of clustering analyses using 13 microsatellites to determine Secondary Species Hypotheses (SSH). Based on the congruence of all methods used and adding sequences from the literature, we defined at least 18 Secondary Species Hypotheses among 14 morphotypes, confirming the high phenotypic plasticity in Pocillopora species and the presence of cryptic lineages. We also identified three new genetic lineages never found to date, which could represent three new putative species. Moreover, the biogeographical ranges of several SSHs were re-assessed in the light of genetic data, which may have direct implications in conservation policies. Indeed, the cryptic diversity within this genus should be taken into account seriously, as neglecting its importance is source of confusion in our understanding of ecosystem functioning. Next generation sequencing, combined with other parameters (i.e. microstructure, zooxanthellae identification, ecology even at a micro-scale, resistance and resilience ability to bleaching) will be the next step towards an integrative framework of Pocillopora taxonomy, which will have profound implications for ecological studies, such as studying biodiversity, response to global warming and symbiosis.
  • Article
    Full-text available
    Understanding patterns of dispersal and connectivity among marine populations can directly inform fisheries conservation and management. Advances in high-throughput sequencing offer new opportunities for estimating marine connectivity. We used Restriction-site Associated DNA sequencing to examine dispersal and realized connectivity in the sea scallop Placopecten magellanicus, an economically important marine bivalve. Based on 245 individuals sampled range-wide at 12 locations from Newfoundland to the Mid-Atlantic Bight we identified and genotyped 7163 Single Nucleotide Polymorphisms; 112 (1.6%) were identified as outliers potentially under directional selection. Bayesian clustering revealed a discontinuity between northern and southern samples and latitudinal clines in allele frequencies were observed in 42.9% of the outlier loci and in 24.6% of neutral loci. Dispersal estimates derived using these clines and estimates of linkage disequilibrium imply limited dispersal; 373.1 ± 407.0 km (mean ± SD) for outlier loci and 641.0 ± 544.6 km (mean ± SD) for neutral loci. Our analysis suggests restricted dispersal compared to the species range (>2000 km) and that dispersal and effective connectivity differ. These observations support the hypothesis that limited effective dispersal structures scallop populations along eastern North America. These findings can help refine the appropriate scale of management and conservation in this commercially valuable species. This article is protected by copyright. All rights reserved.
  • Article
    Full-text available
    Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.
  • Article
    Full-text available
    Understanding how and why populations evolve is of fundamental importance to molecular ecology. RADseq (Restriction site-Associated DNA sequencing), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography, and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes, and extents of linkage disequilibrium (length of haplotype blocks). Under the best case modelling scenario, we found that RADseq using six- or eight- base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that that the median density of markers across these studies was 4.08 RAD-tag markers per megabase (1 marker per 245 kilobases). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation. This article is protected by copyright. All rights reserved.
  • Article
    Full-text available
    Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this “reseeding” hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the “deep reef refuge hypothesis” holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon.
  • Article
    Full-text available
    Until recently, most phylogenetic and population genetics studies of nonhuman primates have relied on mitochondrial DNA and/or a small number of nuclear DNA markers, which can limit our understanding of primate evolutionary and population history. Here, we describe a cost-effective reduced representation method (ddRAD-seq) for identifying and genotyping large numbers of SNP loci for taxa from across the New World monkeys, a diverse radiation of primates that shared a common ancestor ~20–26 mya. We also estimate, for the first time, the phylogenetic relationships among 15 of the 22 currently-recognized genera of New World monkeys using ddRAD-seq SNP data using both maximum likelihood and quartet-based coalescent methods. Our phylogenetic analyses robustly reconstructed three monophyletic clades corresponding to the three families of extant platyrrhines (Atelidae, Pitheciidae and Cebidae), with Pitheciidae as basal within the radiation. At the genus level, our results conformed well with previous phylogenetic studies and provide additional information relevant to the problematic position of the owl monkey (Aotus) within the family Cebidae, suggesting a need for further exploration of incomplete lineage sorting and other explanations for phylogenetic discordance, including introgression. Our study additionally provides one of the first applications of next-generation sequencing methods to the inference of phylogenetic history across an old, diverse radiation of mammals and highlights the broad promise and utility of ddRAD-seq data for molecular primatology.
  • Thesis
    Full-text available
    Conservation biology is a scientific discipline that draws on methods from diverse fields to address specific conservation concerns and inform conservation actions. This field is overwhelmingly focused on charismatic animals and vascular plants, often ignoring other diverse and ecologically important groups. This trend is slowly changing in some ways; for example, increasing number of fungal species are being added to the IUCN Red-List. However, a strong taxonomic bias still exists. Here I contribute four research chapters to further the conservation of lichens, one group of frequently overlooked organisms. I address specific conservation concerns in eastern North America using modern methods. The results of these studies provide insight into lichen conservation in each situation, implications for the broader ecosystems within the study regions, and advancement of methods for the study of lichen conservation and biology. The first research chapter (Chapter 2) is a population genomics study based on whole genome shotgun sequencing of Cetradonia linearis, an endangered, lichenized fungus. These data were used to 1) assemble and annotate a reference genome, 2) characterize the mating system, 3) test for isolation by distance (IBD) and isolation by environment (IBE), and 4) investigate the biogeographic history of the species. Approximately 70% of the genome (19.5 Mb) was assembled. Using this assembly, only a single mating type was located, suggesting the species could be unisexual. There was strong evidence for both low rates of recombination and for Isolation by Distance, but no evidence for Isolation by Environment. The hypothesis that C. linearis had a larger range during the last glacial maximum, especially in the southern portion of its current extent, was supported by Hindcast species distribution models and the spatial distribution of genetic diversity. Given the findings here, it is recommended that C. linearis remain protected by the U.S. Endangered Species Act and listed as Vulnerable on the International Union for the Conservation of Nature Red-List. The third chapter is an estimation of the impacts of climate change on high-elevation, endemic lichens in the southern Appalachians, a global diversity hotspot for many groups, including lichens. Extensive field surveys in the high elevations of the region were carried out to accurately document the current distributions of eight narrowly endemic species. These data were compared with herbarium records, and species distribution modeling was used to predict how much climatically suitable area will remain within, and north of, the current range of the target species at multiple time points and climate change scenarios. Fieldwork showed that target species ranged from extremely rare to locally abundant and models predicted average losses of suitable area within the current distribution of species ranging from 93.8 to 99.7%. The results indicate that climate change poses a significant threat to high-elevation lichens, and illustrates the application of current modeling techniques for rare, montane species. In the fourth chapter, a dataset of >13,000 occurrence records for lichens in the Mid-Atlantic Coastal Plain (MACP) of eastern North America was used to model distributions of 193 species. The resulting models were used to quantify the amount of each species’ distribution that is occupied by unsuitable land use types, along with the potential area that will be lost to sea-level rise (SLR). These analyses showed that species have likely already lost an average of 32% of their distributional area to development and agriculture, and are predicted to lose an average of 12.4 and 33.7% of their distributional area with one foot (~0.3 m) and six feet (~1.8 m) of SLR, respectively. Functional and taxonomic groups were compared to identify specific effects of SLR. Species reproducing with symbiotic propagules were found to have significantly larger distributions than species that reproduce sexually with fungal spores alone, and the sexually reproducing species were predicted to lose greater distributional area to SLR. Cladonia species occupy significantly less area in the MACP than Parmotrema species and were predicted to lose more of their distributions to SLR. Patterns of total species diversity showed that the area with the highest diversity is the Dare Peninsula in North Carolina, which was also predicted to lose the most land area to SLR. The workflow established here is flexible and applicable to estimating SLR impacts worldwide and can provide essential insights for local conservation planning. The fifth chapter describes the results of three experiments conducted to test new and established methods for lichen transplantation. First, small fragments of Graphis sterlingiana, Hypotrachyna virginica, and Lepraria lanata were placed on medical gauze attached to each of the species’ most common substrate to test the feasibility of transplanting narrowly endemic species. Second, burlap, cheesecloth, medical gauze, and a plastic air filter were directly compared for their use as artificial transplant substrates with Lepraria finkii as the test lichen. Third, transplants of Usnea angulata were established to test its amenability to transplantation via hanging fragments on monofilament. The first two experiments were established on Roan Mountain, North Carolina and the third experiment at Highlands Biological Station, North Carolina. In the first two experiments medical gauze did not withstand local weather conditions and nearly all pieces fell from the trees within 6 months. The plastic air filter and burlap performed best as artificial substrates for transplants, with a 100% and 80% success rate, respectively. Cheesecloth remained attached to the trees, but only 20% of lichen fragments remained attached to the substrate after one year. In the third experiment U. angulata grew 3.5 ± 1.4 cm in 5 months, exceeding previously reported growth rates for this species. These results advance methods for conservation-focused lichen transplants, and expand established methods to a new region and new species.
  • Article
    Full-text available
    Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic markers, which have been widely used notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies, but phylogenies for closely related species have been resolved at a much higher detail in the last couple of years with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation. Here we examine the potential and limitations of one of such techniques — Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). This genus encompasses seven described species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need to be revised. However, relying on a single, non-recombining molecule and ignoring potential incongruences between mitochondrial and nuclear loci may provide incomplete account of a lineage history. In this study, we apply both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species’ monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence.
  • Article
    Full-text available
    Scleractinian corals of the genus Pocillopora (Lamarck, 1816) are notoriously difficult to identify morphologically with considerable debate on the degree to which phenotypic plasticity, introgressive hybridization and incomplete lineage sorting obscure well-defined taxonomic lineages. Here, we used RAD-seq to resolve the phylogenetic relationships among seven species of Pocillopora represented by 15 coral holobiont metagenomic libraries. We found strong concordance between the coral holobiont datasets, reads that mapped to the Pocillopora damicornis (Linnaeus, 1758) transcriptome, nearly complete mitochondrial genomes, 430 unlinked high-quality SNPs shared across all Pocillopora taxa, and a conspecificity matrix of the holobiont dataset. These datasets also show strong concordance with previously published clustering of the mitochondrial clades based on the mtDNA open reading frame (ORF). We resolve seven clear monophyletic groups, with no evidence for introgressive hybridization among any but the most recently derived sister species. In contrast, ribosomal and histone datasets, which are most commonly used in coral phylogenies to date, were less informative and contradictory to these other datasets. These data indicate that extant Pocillopora species diversified from a common ancestral lineage within the last ~3 million years. Key to this evolutionary success story may be the high phenotypic plasticity exhibited by Pocillopora species.
  • Article
    Full-text available
    Processes of cnidarian evolution, including hybridization and phenotypic plasticity, have complicated the clear diagnosis of species boundaries within the phylum. Pocillopora acuta, a species of scleractinian coral that was recently split from the widespread Pocillopora damicornis species complex, occurs in at least two distinct morphs on the Great Barrier Reef. Contrasting morphology combined with evidence of differential bleaching thresholds among sympatrically distributed colonies suggest that the taxonomy of this recently described species is not fully resolved and may represent its own species complex. To examine the basis of sympatric differentiation between the two morphs, we combined analyses of micro- and macro-skeletal morphology with genome wide sequencing of the coral host, as well as ITS2 genotyping of the associated Symbiodinium communities. We found consistent differences between morphs on both the macro- and micro-skeletal scale. In addition, we identified 18 candidate functional genes that relate to skeletal formation and morphology that may explain how the two morphs regulate growth to achieve their distinct growth forms. With inconclusive results in endosymbiotic algal community diversity between the two morphs, we propose that colony morphology may be linked to bleaching susceptibility. We conclude that cryptic speciation may be in the early stages within the species P. acuta.
  • Article
    Both natural and anthropogenic factors are changing coral-reef structure and function worldwide. Long-term monitoring has revealed declines in the local composition and species diversity of reefs. Here we report changes in coral-reef community structure over 12 yr (2000–2012) at 17 sites and three spatial scales (reef, gulf and country) in the Tropical Eastern Pacific (Panama). We found a significant 4% annual decline in species population sizes at the country and gulf scales, with significant declines ranging from 3 to 32% at all but one reef. No significant temporal change in expected richness was found at the country scale or in the Gulf of Chiriquí, but a 7% annual decline in expected species richness was found in the Gulf of Panama. There was a 2% increase in community evenness in the Gulf of Chiriquí, but no change in the Gulf of Panama. Significant temporal turnover was found at the country and gulf scales and at 29% of the reefs, a finding mostly explained by changes in species abundance, and losses and gains of rare species. Temporal trends in alpha and beta diversity metrics were explained by water temperature maxima, anomalies and variation that occurred even in the absence of a strong El Niño warming event.
  • Article
    Full-text available
    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.
  • Article
    Full-text available
    Here, we examined the genetic variability in the coral genus Pocillopora, in particular within the Primary Species Hypothesis PSH09, identified by Gélin, Postaire, Fauvelot and Magalon (2017) using species delimitation methods [also named Pocillopora eydouxi/meandrina complex sensu, Schmidt-Roach, Miller, Lundgren, & Andreakis (2014)] and which was found to split into three secondary species hypotheses (SSH09a, SSH09b, and SSH09c) according to assignment tests using multi-locus genotypes (13 microsatellites). From a large sampling (2,507 colonies) achieved in three marine provinces [Western Indian Ocean (WIO), Tropical Southwestern Pacific (TSP), and Southeast Polynesia (SEP)], genetic structuring analysis conducted with two clustering analyses (Structure and DAPC) using 13 microsatellites revealed that SSH09a was restricted to the WIO while SSH09b and SSH09c were almost exclusively in the TSP and SEP. More surprisingly, each SSH split into two to three genetically differentiated clusters, found in sympatry at the reef scale, leading to a pattern of nested hierarchical levels (PSH > SSH > cluster), each level hiding highly differentiated genetic groups. Thus, rather than structured populations within a single species, these three SSHs, and even the eight clusters, likely represent distinct genetic lineages engaged in a speciation process or real species. The issue is now to understand which hierarchical level (SSH, cluster, or even below) corresponds to the species one. Several hypotheses are discussed on the processes leading to this pattern of mixed clusters in sympatry, evoking formation of reproductive barriers, either by allopatric speciation or habitat selection.
  • Article
    Full-text available
    Extant biodiversity can easily be underestimated owing to the presence of cryptic taxa, even among commonly observed species. Scleractinian corals are challenging to identify because of their ecophenotypic variation and morphological plasticity. In addition, molecular analyses have revealed the occurrence of cryptic speciation. Here, we describe a new cryptic lobophylliid genus and species Paraechinophyllia variabilis gen. nov., sp. nov., which is morphologically similar to Echinophyllia aspera and E. orpheensis. The new taxon occurs in Mayotte Island, Madagascar, the Gulf of Aden and the Red Sea. Six molecular markers (COI, 12S, ATP6‐NAD4, NAD3‐NAD5, histone H3 and ITS) and 46 morphological characters at three different levels (macromorphology, micromorphology and microstructure) were examined. The resulting molecular phylogenetic reconstruction showed that Paraechinophyllia gen. nov. represents a distinct group within the Lobophylliidae that diverged from the lineage leading to Echinophyllia and Oxypora in the Early Miocene, approximately 21.5 Ma. The morphological phylogenetic reconstruction clustered Paraechinophyllia gen. nov., Echinophyllia and Oxypora together in a single clade. A sole morphological character, calice relief, discriminated Paraechinophyllia gen. nov. from the latter two genera, suggesting that limited morphological variation has occurred over a long period. These results highlight the importance of cryptic taxa in reef corals, with implications for population genetics, ecological studies and conservation.
  • Article
    Full-text available
    Massively parallel short-read sequencing technologies, coupled with powerful software platforms, are enabling investigators to analyse tens of thousands of genetic markers. This wealth of data is rapidly expanding and allowing biological questions to be addressed with unprecedented scope and precision. The sizes of the data sets are now posing significant data processing and analysis challenges. Here we describe an extension of the Stacks software package to efficiently use genotype-by-sequencing data for studies of populations of organisms. Stacks now produces core population genomic summary statistics and SNP-by-SNP statistical tests. These statistics can be analysed across a reference genome using a smoothed sliding window. Stacks also now provides several output formats for several commonly used downstream analysis packages. The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.
  • Chapter
    Phylogenetic PropositionsTopics CoveredTerms and ConceptsPhilosophy and SystematicsChapter Summary
  • Chapter
    The long-awaited revision of the industry standard on phylogenetics Since the publication of the first edition of this landmark volume more than twenty-five years ago, phylogenetic systematics has taken its place as the dominant paradigm of systematic biology. It has profoundly influenced the way scientists study evolution, and has seen many theoretical and technical advances as the field has continued to grow. It goes almost without saying that the next twenty-five years of phylogenetic research will prove as fascinating as the first, with many exciting developments yet to come. This new edition of Phylogenetics captures the very essence of this rapidly evolving discipline. Written for the practicing systematist and phylogeneticist, it addresses both the philosophical and technical issues of the field, as well as surveys general practices in taxonomy. Major sections of the book deal with the nature of species and higher taxa, homology and characters, trees and tree graphs, and biogeography-the purpose being to develop biologically relevant species, character, tree, and biogeographic concepts that can be applied fruitfully to phylogenetics. The book then turns its focus to phylogenetic trees, including an in-depth guide to tree-building algorithms. Additional coverage includes: Parsimony and parsimony analysis Parametric phylogenetics including maximum likelihood and Bayesian approaches Phylogenetic classification Critiques of evolutionary taxonomy, phenetics, and transformed cladistics Specimen selection, field collecting, and curating Systematic publication and the rules of nomenclature Providing a thorough synthesis of the field, this important update to Phylogenetics is essential for students and researchers in the areas of evolutionary biology, molecular evolution, genetics and evolutionary genetics, paleontology, physical anthropology, and zoology.
  • Article
    The homeodomain is a DNA binding motif that is usually conserved among diverse taxa. Rapidly evolving homeodomains are thus of interest because their divergence may be associated with speciation. The exact site of the Odysseus (Ods) locus of hybrid male sterility inDrosophila contains such a homeobox gene. In the past half million years, this homeodomain has experienced more amino acid substitutions than it did in the preceding 700 million years; during this period, it has also evolved faster than other parts of the protein or even the introns. Such rapid sequence divergence is driven by positive selection and may contribute to reproductive isolation.
  • Article
    Using high-resolution genetic markers on samples gathered from across their wide distributional range, we endeavoured to delimit species diversity in reef-building Pocillopora corals. They are common, ecologically important, and widespread throughout the Indo-Pacific, but their phenotypic plasticity in response to environmental conditions and their nearly featureless microskeletal structures confound taxonomic assignments and limit an understanding of their ecology and evolution. Indo-Pacific, Red Sea, Arabian/Persian Gulf. Sequence analysis of nuclear ribosomal (internal transcribed spacer 2, ITS2) and mitochondrial (open reading frame) loci were combined with population genetic data (seven microsatellite loci) for Pocillopora samples collected throughout the Indo-Pacific, Red Sea and Arabian Gulf, in order to assess the evolutionary divergence, reproductive isolation, frequency of hybridization and geographical distributions of the genus. Between five and eight genetically distinct lineages comparable to species were identified with minimal or no hybridization between them. Colony morphology was generally incongruent with genetics across the full range of sampling, and the total number of species is apparently consistent with lower estimates from competing morphologically based hypotheses (about seven or eight taxa). The most commonly occurring genetic lineages were widely distributed and exhibited high dispersal and gene flow, factors that have probably minimized allopatric speciation. Uniquely among scleractinian genera, this genus contains a monophyletic group of broadcast spawners that evolved recently from an ancestral brooder. The delineation of species diversity guided by genetics fundamentally advances our understanding of Pocillopora geographical distributions, ecology and evolution. Because traditional diagnostic features of colony and branch morphology are proving to be of limited utility, the identification of Pocillopora species for future ecological and experimental work should rely on genetic characters that will improve research and aid in conservation strategies for these and other reef-building corals, including the detection of real and mistaken endemic populations.
  • Article
    Full-text available
    Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. I present some of the most notable new features and extensions of RAxML, such as, a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX, and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date, 50 page user manual covering all new RAxML options is available. The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Alexandros.Stamatakis@h-its.org.
  • Article
    Full-text available
    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.
  • Article
    Hybrid zones act as genomic sieves. Although globally advantageous alleles will spread throughout the zone and neutral alleles can be freely exchanged between species, introgression will be restricted for genes that contribute to reproductive barriers or local adaptation. Seminal fluid proteins (SFPs) are known to contribute to reproductive barriers in insects and have been proposed as candidate barrier genes in the hybridizing field crickets Gryllus pennsylvanicus and Gryllus firmus. Here, we have used 125 single nucleotide polymorphisms to characterize patterns of differential introgression and to identify genes that may contribute to prezygotic barriers between these species. Using a transcriptome scan of the male cricket accessory gland (the site of SFP synthesis), we identified genes with major allele frequency differences between the species. We then compared patterns of introgression for genes encoding SFPs with patterns for genes expressed in the same tissue that do not encode SFPs. We find no evidence that SFPs have reduced gene exchange across the cricket hybrid zone. However, a number of genes exhibit dramatically reduced introgression, and many of these genes encode proteins with functional roles consistent with known barriers.
  • Article
    Full-text available
    Pocillopora damicornis is one of the best studied reef-building corals, yet it's somewhat unique reproductive strategy remains poorly understood. Genetic studies indicate that P. damicornis larvae are produced almost exclusively parthenogenetically, and yet population genetic surveys suggest frequent sexual reproduction. Using microsatellite data from over 580 larvae from 13 colonies, we demonstrate that P. damicornis displays a mixed reproductive strategy where sexual and asexual larvae are produced simultaneously within the same colony. The majority of larvae were parthenogenetic (94%), but most colonies (10 of the 13) produced a subset of their larvae sexually. Logistic regression indicates that the proportion of sexual larvae varied significantly with colony size, cycle day, and calendar day. In particular, the decrease in sexual larvae with colony size suggests that the mixed reproductive strategy changes across the life of the coral. This unique shift in reproductive strategy leads to increasingly asexual replications of successful genotypes, which (in contrast to exclusive parthenogens) have already contributed to the recombinant gene pool.
  • Article
    The distinction between model and nonmodel organisms is becoming increasingly blurred. High-throughput, second-generation sequencing approaches are being applied to organisms based on their interesting ecological, physiological, developmental, or evolutionary ...
  • Article
    Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence-based management strategies, including the design of marine protected areas. Here we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual-based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self-recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with Type α recruits exhibiting predominantly philopatric recruitment, while the majority of Type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of Type α and Type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self-recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds. This article is protected by copyright. All rights reserved.
  • Article
    Full-text available
    Corals in the genus Pocillopora are the primary framework builders of eastern tropical Pacific (ETP) reefs. These corals typically associate with algal symbionts (genus Symbiodinium) in clade C and/or D, with clade D associations having greater thermal tolerance and resistance to bleaching. Recently, cryptic "species" delineations within both Pocillopora and Symbiodinium have been suggested, with host–symbiont specificity used as a supporting taxonomic character in both genera. In particular, it has been suggested that three lineages of Pocillopora (types 1–3) exist in the ETP, of which type 1 is the exclusive host of heat-tolerant Symbiodinium D1. This host specificity has been used to support the species name "Symbiodinium glynni" for this symbiont. To validate these host–symbiont relationships and their taxonomic utility, we identified Pocillopora types and their associated Symbiodinium at three sites in the ETP. We found greater flexibility in host–symbiont combinations than previously reported, with both Pocillopora types 1 and 3 able to host and be dominated by Symbiodinium in clade C or D. The prevalence of certain combinations did vary among sites, showing that a gradient of specificity exists which may be mediated by evolutionary relationships and environmental disturbance history. However, these results limit the utility of apparent host–symbiont specificity (which may have been a result of undersampling) in defining species boundaries in either corals or Symbiodinium. They also suggest that a greater diversity of corals may benefit from the thermal tolerance of clade D symbionts, affirming the need to conserve Pocillopora across its entire geographic and environmental range.
  • Article
    Full-text available
    The incredible range of morphological plasticity present in scleractinian corals has confused the taxonomy of the group, prompting the introduction of “ecomorphs” to explain the observed correlation between local environmental conditions and phenotypic variation. Pocillopora damicornis (Linnaeus, 1758) represents one of the best known examples of eco-phenotypic variation in scleractinian corals with a variety of forms and reproductive strategies reported across its global distribution range. Here, we reconstruct genealogical relationships of P. damicornis colonies collected from thirteen locations along the East Australian coast to examine the relationship between genetic and phenotypic diversity in this species. Haplotype networks computed from two mitochondrial DNA regions (CR, ORF) indicate that the range of morphotypes observed within this taxon fall into at least five genetically distinct mitochondrial lineages. Nuclear (HSP70, ITS2) haplowebs on the other hand recover sharp genetic discontinuities among three of the morphological groups. We conclude that P. damicornis from Eastern Australia constitutes a cryptic species complex. The misinterpretation of taxonomical units within P. damicornis may well explain its perceived variation in the ecology, biology and life history across its range.
  • Article
    Full-text available
    Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100 kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.
  • Article
    Adaptive genetic variation has been thought to originate primarily from either new mutation or standing variation. Another potential source of adaptive variation is adaptive variants from other (donor) species that are introgressed into the (recipient) species, termed adaptive introgression. Here, the various attributes of these three potential sources of adaptive variation are compared. For example, the rate of adaptive change is generally thought to be faster from standing variation, slower from mutation and potentially intermediate from adaptive introgression. Additionally, the higher initial frequency of adaptive variation from standing variation and lower initial frequency from mutation might result in a higher probability of fixation of the adaptive variants for standing variation. Adaptive variation from introgression might have higher initial frequency than new adaptive mutations but lower than that from standing variation, again making the impact of adaptive introgression variation potentially intermediate. Adaptive introgressive variants might have multiple changes within a gene and affect multiple loci, an advantage also potentially found for adaptive standing variation but not for new adaptive mutants. The processes that might produce a common variant in two taxa, convergence, trans-species polymorphism from incomplete lineage sorting or from balancing selection and adaptive introgression, are also compared. Finally, potential examples of adaptive introgression in animals, including balancing selection for multiple alleles for major histocompatibility complex (MHC), S and csd genes, pesticide resistance in mice, black colour in wolves and white colour in coyotes, Neanderthal or Denisovan ancestry in humans, mimicry genes in Heliconius butterflies, beak traits in Darwin's finches, yellow skin in chickens and non-native ancestry in an endangered native salamander, are examined.
  • Article
    Full-text available
    The importance of hybridization in the evolution of plant species is widely accepted, but its contributions to animal species evolution remain less recognized. Here we review evidence that hybridization has contributed to the evolution of reef corals, a group underpinning the coral reef ecosystem. Increasingly threatened by human and climate-related impacts, there is need to understand the evolutionary processes that have given rise to their diversity and contribute to their resilience. Reticulate evolutionary pathways among the ecologically prominent, mass-spawning genus Acropora suggest that hybridization, although rare on ecological timescales, has been instrumental in their diversification on evolutionary timescales. Evidence that coral hybrids colonize marginal habitats distinct from those of parental species' and that hybridization may be more frequent at peripheral boundaries of species' ranges supports a role for hybridization in range expansion and adaptation to changing environments. We ...
  • Article
    Full-text available
    Inferring a realistic demographic model from genetic data is an important challenge to gain insights into the historical events during the speciation process and to detect molecular signatures of selection along genomes. Recent advances in divergence population genetics have reported that speciation in face of gene flow occurred more frequently than theoretically expected, but the approaches used did not account for genome wide heterogeneity (GWH) in introgression rates. Here we investigate the impact of GWH on the inference of divergence with gene flow between two cryptic species of the marine model Ciona intestinalis by analysing polymorphism and divergence patterns in 852 protein-coding sequence loci.These morphologically similar entities are highly diverged molecular-wise, but evidence of hybridisation has been reported in both laboratory and field studies. We compare various speciation models and test for GWH under the ABC framework. Our results demonstrate the presence of significant extents of gene flow resulting from a recent secondary contact after >3 My of divergence in isolation. The inferred rates of introgression are relatively low, highly variable across loci and mostly unidirectional, which is consistent with the idea that numerous genetic incompatibilities have accumulated over time throughout the genomes of these highly-diverged species. A genomic map of the level of gene flow identified two hotspots of introgression, i.e. large genome regions of unidirectional introgression. This study clarifies the history and degree of isolation of two cryptic and partially sympatric model species, and provides a methodological framework to investigate GWH at various stages of speciation process.
  • Article
    Full-text available
    Stylophora pistillata is a widely used coral "lab-rat" species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16-24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation.
  • Article
    Rapid and inexpensive methods for genomewide single nucleotide polymorphism (SNP) discovery and genotyping are urgently needed for population management and conservation. In hybridized populations, genomic techniques that can identify and genotype thousands of species-diagnostic markers would allow precise estimates of population- and individual-level admixture as well as identification of 'super invasive' alleles, which show elevated rates of introgression above the genomewide background (likely due to natural selection). Techniques like restriction-site-associated DNA (RAD) sequencing can discover and genotype large numbers of SNPs, but they have been limited by the length of continuous sequence data they produce with Illumina short-read sequencing. We present a novel approach, overlapping paired-end RAD sequencing, to generate RAD contigs of >300-400 bp. These contigs provide sufficient flanking sequence for design of high-throughput SNP genotyping arrays and strict filtering to identify duplicate paralogous loci. We applied this approach in five populations of native westslope cutthroat trout that previously showed varying (low) levels of admixture from introduced rainbow trout (RBT). We produced 77 141 RAD contigs and used these data to filter and genotype 3180 previously identified species-diagnostic SNP loci. Our population-level and individual-level estimates of admixture were generally consistent with previous microsatellite-based estimates from the same individuals. However, we observed slightly lower admixture estimates from genomewide markers, which might result from natural selection against certain genome regions, different genomic locations for microsatellites vs. RAD-derived SNPs and/or sampling error from the small number of microsatellite loci (n = 7). We also identified candidate adaptive super invasive alleles from RBT that had excessively high admixture proportions in hybridized cutthroat trout populations.
  • Long-lived corals, the foundation of modern reefs, often follow ecological gradients, so that populations or sister species segregate by habitat. Adaptive divergence maintains sympatric congeners after secondary contact or may even generate species by natural selection in the face of gene flow. Such ecological divergence, initially between alternative phenotypes within populations, may be aided by immigrant inviability, especially when a long period separates larval dispersal and the onset of reproduction, during which selection can sort lineages to match different habitats. Here, we evaluate the strength of one ecological factor (depth) to isolate populations by comparing the genes and morphologies of pairs of depth-segregated populations of the candelabrum coral Eunicea flexuosa across the Caribbean. Eunicea is endemic to the Caribbean and all sister species co-occur. Eunicea flexuosa is widespread both geographically and across reef habitats. Our genetic analysis revealed two depth-segregated lineages. Field survivorship data, combined with estimates of selection coefficients based on transplant experiments, suggest that selection is strong enough to segregate these two lineages. Genetic exchange between the Shallow and Deep lineages occurred either immediately after divergence or the two have diverged with gene flow. Migration occurs asymmetrically from the Shallow to Deep lineage. Limited recruitment to reproductive age, even under weak annual selection advantage, is sufficient to generate habitat segregation because of the cumulative prolonged prereproductive selection. Ecological factors associated with depth can act as filters generating strong barriers to gene flow, altering morphologies, and contributing to the potential for speciation in the sea.
  • Article
    Full-text available
    Scleractinian corals have a continuous fossil record from the mid-Triassic, but taxonomic difficulties have impeded an understanding of their evolution. A molecular phylogenetic analysis of mitochondrial 16S ribosomal RNA showed departures from previous hypotheses of coral evolution. Families clustered into two major groups that do not correspond to morphologically based suborders. These clades differed in their 16S ribosomal DNA sequence by 29.4 percent, which suggests evolutionary divergence before the appearance of scleractinian skeletons 240 million years ago. Together, these fossil and molecular data suggest multiple origins of the scleractinian skeleton, and the great morphological diversity of present-day scleractinians may be a reflection of these multiple origins.
  • Article
    Full-text available
    Background The symbiosis between reef-building corals and photosynthetic dinoflagellates (Symbiodinium) is an integral part of the coral reef ecosystem, as corals are dependent on Symbiodinium for the majority of their energy needs. However, this partnership is increasingly at risk due to changing climatic conditions. It is thought that functional diversity within Symbiodinium may allow some corals to rapidly adapt to different environments by changing the type of Symbiodinium with which they partner; however, very little is known about the molecular basis of the functional differences among symbiont groups. One group of Symbiodinium that is hypothesized to be important for the future of reefs is clade D, which, in general, seems to provide the coral holobiont (i.e., coral host and associated symbiont community) with elevated thermal tolerance. Using high-throughput sequencing data from field-collected corals we assembled, de novo, draft transcriptomes for Symbiodinium clades C and D. We then explore the functional basis of thermal tolerance in clade D by comparing rates of coding sequence evolution among the four clades of Symbiodinium most commonly found in reef-building corals (A-D). Results We are able to highlight a number of genes and functional categories as candidates for involvement in the increased thermal tolerance of clade D. These include a fatty acid desaturase, molecular chaperones and proteins involved in photosynthesis and the thylakoid membrane. We also demonstrate that clades C and D co-occur within most of the sampled colonies of Acropora hyacinthus, suggesting widespread potential for this coral species to acclimatize to changing thermal conditions via ‘shuffling’ the proportions of these two clades from within their current symbiont communities. Conclusions Transcriptome-wide analysis confirms that the four main Symbiodinium clades found within corals exhibit extensive evolutionary divergence (18.5-27.3% avg. pairwise nucleotide difference). Despite these evolutionary distinctions, many corals appear to host multiple clades simultaneously, which may allow for rapid acclimatization to changing environmental conditions. This study provides a first step toward understanding the molecular basis of functional differences between Symbiodinium clades by highlighting a number of genes with signatures consistent with positive selection along the thermally tolerant clade D lineage.
  • Article
    The morphometric and molecular boundaries between twelve Psammocora (Cnidaria, Scleractinia) nominal species were addressed. The type specimens of Psammocora haimianaMilne Edwards & Haime, 1851, P. togianensisUmbgrove, 1940, P. foliumUmbgrove, 1939, P. digitataMilne Edwards & Haime, 1851, Maeandroseris australiaeRousseau, 1854, P. samoensisHoffmeister, 1925, P. superficialisGardiner, 1898, P. profundacellaGardiner, 1898, P. nierstrasziVan der Horst, 1921, P. verrilliVaughan, 1907, and P. albopictaBenzoni, 2006, were analysed together with specimens from museum collections, including those depicted in widely cited taxonomic descriptions, and material collected for this study in different parts of the Indo-Pacific. Morphometric analyses of the dimensions of skeletal structures allowed the identification of groups of specimens with similar morphologies. Congruency between these groups and current species whose synonymies and descriptions were found in recent taxonomic references was, hence, investigated and the species revised. Finally, the phylogenetic relationships of a representative subset of specimens were reconstructed based on rDNA and COI, thus allowing a direct link between morphologic and genetic information. Incongruence between type of morphology and literature descriptions was evidenced for some widely recognised species. Based on this integrated approach, five species were unambiguously identified. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160, 421–456.
  • Article
    Full-text available
    Summary: GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G′ST, G′′ST, Jost’s Dest and F′ST through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised.Availability and implementation: GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx.Contact: rod.peakall@anu.edu.au
  • Article
    — Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii X P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species’range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively “filter” gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.
  • Article
    The unit of adaptation is usually thought to be a gene or set of interacting genes, rather than the whole genome, and this may be true of species differentiation. Defining species on the basis of reproductive isolation (RI), on the other hand, is a concept best applied to the entire genome. The biological species concept (BSC; Mayr, 1963) stresses the isolation aspect of speciation on the basis of two fundamental genetic assumptions – the number of loci underlying species differentiation is large and the whole genome behaves as a cohesive, or coadapted genetic unit. Under these tenets, the exchange of any part of the genomes between diverging groups is thought to destroy their integrity. Hence, the maintenance of each species’ genome cohesiveness by isolating mechanisms has become the central concept of species. In contrast, the Darwinian view of speciation is about differential adaptation to different natural or sexual environments. RI is viewed as an important by product of differential adaptation and complete RI across the whole genome need not be considered as the most central criterion of speciation. The emphasis on natural and sexual selection thus makes the Darwinian view compatible with the modern genic concept of evolution. Genetic and molecular analyses of speciation in the last decade have yielded surprisingly strong support for the neo-Darwinian view of extensive genetic differentiation and epistasis during speciation. However, the extent falls short of what BSC requires in order to achieve whole-genome ‘cohesiveness’. Empirical observations suggest that the gene is the unit of species differentiation. Significantly, the genetic architecture underlying RI, the patterns of species hybridization and the molecular signature of speciation genes all appear to support the view that RI is one of the manifestations of differential adaptation, as Darwin (1859, Chap. 8) suggested. The nature of this adaptation may be as much the result of sexual selection as natural selection. In the light of studies since its early days, BSC may now need a major revision by shifting the emphasis from isolation at the level of whole genome to differential adaptation at the genic level. With this revision, BSC would in fact be close to Darwin’s original concept of speciation.
  • Article
    The authors investigated the response to experimentally elevated water temperature in genotypes of Pocillopora damicornis from three coral reefs in the upwelling Gulf of Panama and four coral reefs in the non-upwelling Gulf of Chiriqu, Panamanian Pacific. Sea-surface temperature in the Gulf of Panama declines below 20C during seasonal upwelling, while in the thermally stable Gulf of Chiriqu, the temperature ranges from 27 to 29C. Genotypes of P. damicornis from the seven locations were determined by allozyme electrophoresis. The most abundant genotype at each location was selected for a thermal tolerance experiment where corals were exposed to water temperature of 30C (1C above ambient) for 43days. Four site coral genotypes can be uniquely differentiated by the GPI locus, two by the LGG-2 locus, and two by a combination of the MDH-1, LGG-2, and LTY-3 loci. A visual assessment of the coral condition after exposure to an elevated temperature showed that corals from localities in the non-upwelling environment retained a normal to slightly pale appearance, while corals from the upwelling environment bleached and their polyps were mostly retracted. A two-way ANOVA confirmed that corals were significantly affected by water temperature and locality. The zooxanthellae were also significantly affected by the interaction of elevated temperature and locality of the corals. Mean zooxanthellae density decreased by 25 and 55%, respectively, in experimentally heated corals from the non-upwelling and upwelling environments. Low concentrations of photosynthetic pigments per live area of the corals were the norm in corals under elevated temperature. The mean concentration of chlorophyll a per live area of the corals was reduced by 17 and 49%, respectively, in heated corals from the non-upwelling and upwelling sites. Coral genotypes from the upwelling Gulf of Panama demonstrated higher vulnerability to thermal stress than coral genotypes from the non-upwelling Gulf of Chiriqu. However, the latter showed greater differences in their responses. Thus, even at small geographic scales, corals can display different levels of tolerance to thermal stress. The difference in thermal tolerance between corals from upwelling and non-upwelling environments is concomitant with greater genetic differences in experimental corals from the thermally stable Gulf of Chiriqu compared with corals from the upwelling Gulf of Panama.
  • Article
    Allozyme electrophoresis at five loci was used to clarify the species status of two morphs of the scleractinian coral Montipora digitata (Dana, 1846), using specimens collected from three locations off the Queensland coast between October 1991 and April 1993. The two morphs, occurring sympatrically, were distinguished by one fixed gene difference at Locus LT-2 and frequency differences at three other loci, indicating reproductive isolation between them. Populations of both morphs were generally in Hardy-Weinberg equilibrium, suggesting that sexual reproduction does occur. Despite sampling designed to reduce the chance of collecting clonemates, the genetic diversity ratio (G O:GE) indicated that asexual reproduction also occurs. This is in agreement with the known modes of reproduction for this species. There was significant genetic differentiation between populations of one of the morphs of M. digitata. This could have been influenced by greater degrees of asexual reproduction in this morph, selection within sites, or variation in larval survival and recruitment patterns. Relatively low F st (differentiation among populations) values found for a broadcast spawning species during this study are in accordance with the hypothesis that brooded planulae are adapted for rapid settlement, whereas planulae produced by broadcast spawners are adapted for widespread dispersal.
  • Article
    Full-text available
    A total of 43 colonies of the scleractinian coral Pocillopora damicornis from lagoonal and reef slope sites in the western Indian Ocean (WIO) region were genetically characterised at one nuclear and two mitochondrial sequence markers and six microsatellite loci. Both mitochondrial and microsatellite data support the existence of two reciprocally monophyletic clusters (F- and NF-types) and provide evidence of the existence of two cryptic species of P. damicornis on reefs in WIO region and put current morphological delineation and geographical boundaries of P. damicornis and Pocillopora molokensis into question. The results add to ongoing studies on the phylogeny and phylogeography within the genus Pocillopora, which all point towards a range of unresolved morphological and molecular species boundaries. Nuclear phylogenies derived from the present and previously published sequences show evidence for incomplete lineage sorting and/or introgressive hybridisation between Pocillopora morphospecies. However, the two WIO types largely remain in separate clusters, further supporting the theory that these represent two different species.
  • Article
    Full-text available
    A comparative morphological and molecular characterization of species boundaries between four species of the Scleractinian genus Psammocora, namely P. digitata, P. haimeana, P. profundacella and P. contigua was conducted. The definition of species boundaries in this genus has been the subject of few studies, in spite of the presence of ambiguous taxonomic distinction, and a revision of the genus has never been undertaken. The multivariate analyses of both descriptive and morphometric characters confirmed the distinction of P. digitata and P. contigua, conversely P. haimeana, P. profundacella and their intermediate morph differentiated on the basis of descriptive morphologic characters only. Morphometric characters alone allowed a less defined distinction between morphs, and morphological boundaries essentially intergraded in a gradient driven by enclosed corallite series characters. The phylogenetic analysis of a portion of the rDNA confirmed the morphological inferences, as P. digitata appears to be a distinct evolutionary lineage. Conversely, the other four morphs, P. contigua, P. haimeana, P. profundacella and their intermediate constitute a polytomic gene pool significantly distinct from P. digitata. Yet, P. contigua is significantly distinct from the other three morphs. Both morphological and molecular approaches suggested that P. haimeana, P. profundacella and their intermediate cannot be considered clearly distinct entities. Hybridization with other species of this genus not included in this study, or recent origin may have contributed to the polyphyly and lack of phylogenetic resolution of P. haimeana, P. profundacella and their intermediate morph. They appear to constitute a single gene pool showing morphological characters encompassing a gradient from the P. haimeana to the P. profundacella morphs. Such morphological variability possibly depends on environmental factors such as light conditions.
  • Article
    A combined morphological and genetic study of the coral genus Stylophora investigated species boundaries in the Gulf of Aden, Yemen. Two mitochondrial regions, including the hypervariable IGS9 spacer and the control region, and a fragment of rDNA were used for phylogenetic analysis. Results were compared by multivariate analysis on the basis of branch morphology and corallite morphometry. Two species were clearly discriminated by both approaches. The first species was characterised by small corallites and a low morphological variability and was ascribed to a new geographical record of Stylophora madagascarensis on the basis of its phylogenetic distinction and its morphological similarity to the type material. The second species was characterised by larger corallite size and greater morphological variability and was ascribed to Stylophora pistillata. The analysis was extended to the intrageneric level for other S. pistillata populations from the Red Sea and the Pacific Ocean. Strong internal divergence was evident in the genus Stylophora. S. pistillata populations were split into two highly divergent Red Sea/Gulf of Aden and western Pacific lineages with significant morphological overlap, which suggests they represent two distinct cryptic species. The combined use of morphological and molecular approaches, so far proved to be a powerful tool for the re-delineation of species boundaries in corals, provided novel evidence of cryptic divergence in this group of marine metazoans. KeywordsStylophora–Gulf of Aden–rDNA–Control region–IGS9 spacer–Western Pacific
  • Article
    The taxonomy of corals of the genus Seriatopora has not previously been studied using molecular sequence markers. As a first step toward a re-evaluation of species boundaries in this genus, mitochondrial sequence variability was analyzed in 51 samples collected from Okinawa, New Caledonia, and the Philippines. Four clusters of sequences were detected that showed little concordance with species currently recognized on a morphological basis. The most likely explanation is that the skeletal characters used for species identification are highly variable (polymorphic or phenotypically plastic); alternative explanations include introgression/hybridization, or deep coalescence and the retention of ancestral mitochondrial polymorphisms. In all individuals sequenced, two copies of trnW were found on either side of the atp8 gene near the putative D-loop, a novel mitochondrial gene arrangement that may have arisen from a duplication of the trnW-atp8 region followed by a deletion of one atp8.
  • Article
    The emerging field of speciation genomics is advancing our understanding of the evolution of reproductive isolation from the individual gene to a whole-genome perspective. In this new view it is important to understand the conditions under which 'divergence hitchhiking' associated with the physical linkage of gene regions, versus 'genome hitchhiking' associated with reductions in genome-wide rates of gene flow caused by selection, can enhance speciation-with-gene-flow. We describe here a theory predicting four phases of speciation, defined by changes in the relative effectiveness of divergence and genome hitchhiking, and review empirical data in light of the theory. We outline future directions, emphasizing the need to couple next-generation sequencing with selection, transplant, functional genomics, and mapping studies. This will permit a natural history of speciation genomics that will help to elucidate the factors responsible for population divergence and the roles that genome structure and different forms of hitchhiking play in facilitating the genesis of new biodiversity.
  • Conference Paper
    Full-text available
    Understanding the evolutionary history of living organisms is a central problem in biology. Until recently the ability to infer evolutionary relationships was limited by the amount of DNA sequence data available, but new DNA sequencing technologies have largely removed this limitation. As a result, DNA sequence data are readily available or obtainable for a wide spectrum of organisms, thus creating an unprecedented opportunity to explore evolutionary relationships broadly and deeply across the Tree of Life. Unfortunately, the algorithms used to infer evolutionary relationships are NP-hard, so the dramatic increase in available DNA sequence data has created a commensurate increase in the need for access to powerful computational resources. Local laptop or desktop machines are no longer viable for analysis of the larger data sets available today, and progress in the field relies upon access to large, scalable high-performance computing resources. This paper describes development of the CIPRES Science Gateway, a web portal designed to provide researchers with transparent access to the fastest available community codes for inference of phylogenetic relationships, and implementation of these codes on scalable computational resources. Meeting the needs of the community has included developing infrastructure to provide access, working with the community to improve existing community codes, developing infrastructure to insure the portal is scalable to the entire systematics community, and adopting strategies that make the project sustainable by the community. The CIPRES Science Gateway has allowed more than 1800 unique users to run jobs that required 2.5 million Service Units since its release in December 2009. (A Service Unit is a CPU-hour at unit priority).
  • Article
    GENALEX is a user-friendly cross-platform package that runs within Microsoft Excel, enabling population genetic analyses of codominant, haploid and binary data. Allele frequency-based analyses include heterozygosity, F statistics, Nei&apos;s genetic distance, population assignment, probabilities of identity and pairwise relatedness. Distance-based calculations include AMOVA, principal coordinates analysis (PCA), Mantel tests, multivariate and 2D spatial autocorrelation and TWOGENER. More than 20 different graphs summarize data and aid exploration. Sequence and genotype data can be imported from automated sequencers, and exported to other software. Initially designed as tool for teaching, GENALEX 6 now offers features for researchers as well. Documentation and the program are available at http://www.anu.edu.au/BoZo/GenAlEx/
  • Article
    Phenotypic plasticity is the ability of a single genotype to produce more than one alternative form of morphology, physiological state and/or behaviour in response to environmental conditions. The scope of plasticity is described and its relations to natural selection and to initiation and amplification of change are noted. Plasticity is also considered in relation to speciation and macro-evolution; phenotypic plasticity may influence rate and direction of evolution. -S.J.Yates
  • Article
    Full-text available
    Genome scans have become a common approach to identify genomic signatures of natural selection and reproductive isolation, as well as the genomic bases of ecologically relevant phenotypes, based on patterns of polymorphism and differentiation among populations or species. Here, we review the results of studies taking genome scan approaches in plants, consider the patterns of genomic differentiation documented and their possible causes, discuss the results in light of recent models of genomic differentiation during divergent adaptation and speciation, and consider assumptions and caveats in their interpretation. We find that genomic regions of high divergence generally appear quite small in comparisons of both closely and more distantly related populations, and for the most part, these differentiated regions are spread throughout the genome rather than strongly clustered. Thus, the genome scan approach appears well-suited for identifying genomic regions or even candidate genes that underlie adaptive divergence and/or reproductive barriers. We consider other methodologies that may be used in conjunction with genome scan approaches, and suggest further developments that would be valuable. These include broader use of sequence-based markers of known genomic location, greater attention to sampling strategies to make use of parallel environmental or phenotypic transitions, more integration with approaches such as quantitative trait loci mapping and measures of gene flow across the genome, and additional theoretical and simulation work on processes related to divergent adaptation and speciation.
  • Article
    Full-text available
    Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, Pocillopora damicornis, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, P. damicornis is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform. Both the raw reads (n=1, 116, 551) and the assembled contigs (n=70, 786; mean length=836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase http://www.PocilloporaBase.org. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae. P. damicornis now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase http://www.PocilloporaBase.org, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.
  • Article
    Full-text available
    Next-generation sequencing technologies are revolutionizing the field of evolutionary biology, opening the possibility for genetic analysis at scales not previously possible. Research in population genetics, quantitative trait mapping, comparative genomics, and phylogeography that was unthinkable even a few years ago is now possible. More importantly, these next-generation sequencing studies can be performed in organisms for which few genomic resources presently exist. To speed this revolution in evolutionary genetics, we have developed Restriction site Associated DNA (RAD) genotyping, a method that uses Illumina next-generation sequencing to simultaneously discover and score tens to hundreds of thousands of single-nucleotide polymorphism (SNP) markers in hundreds of individuals for minimal investment of resources. In this chapter, we describe the core RAD-seq protocol, which can be modified to suit a diversity of evolutionary genetic questions. In addition, we discuss bioinformatic considerations that arise from unique aspects of next-generation sequencing data as compared to traditional marker-based approaches, and we outline some general analytical approaches for RAD-seq and similar data. Despite considerable progress, the development of analytical tools remains in its infancy, and further work is needed to fully quantify sampling variance and biases in these data types.