Conference PaperPDF Available

Rapid Urban Impact Appraisal

Authors:

Abstract and Figures

Bridging the global‐regional divide inclimate impact research for urban areas means to establish a comprehensive picture which covers all urban agglomeration of the world. This is different from the case of, e.g., hydrological impact modeling where coarse‐scaled (spatial and functional) global models and detailed regional studies have to be brought together. Therefore we suggest a structured approach towards a full spatial and functional coverage of urban impact analyses: (1) Filtering ‐ all urban agglomerations are identified where a specific Climate Change impact path is probably relevant or even the dominant one and (2) a targeted, fast quantitative impact assessment of the respective impact path is performed for these urban areas. Step (1) starts with the existing knowledge on potential urban impact paths and extracts through different natural, social and economic filtering steps the urban agglomerations where these impact paths have to be studied quantitatively. In step (2) this is done by applying a set of tools which are mainly based on urban remote sensing to overcome the data scarcity bottleneck. It occurs that single filtering steps and tools can be reused for different impact paths. To illustrate the approach we presenta filtering example, resulting in a global map which shows the urban agglomerations where the following impact path is relevant: pluvial flooding of slum settlements under increasing frequency of heavy rain events To exemplify step (2) we present a remote sensing based toolset for quantitative assessment.
Content may be subject to copyright.
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
1
RapidUrbanImpactAppraisal
MatthiasK.B.Lüdeke&OleksandrKit
Abstract
Bridgingtheglobalregionaldivideinclimateimpactresearchforurbanareasmeansto
establishacomprehensivepicturewhichcoversallurbanagglomerationoftheworld.This
isdifferentfromthecaseof,e.g.,hydrologicalimpactmodelingwherecoarsescaled
(spatialandfunctional)globalmodelsanddetailedregionalstudieshavetobebrought
together.Thereforewesuggestastructuredapproachtowardsafullspatialand
functionalcoverageofurbanimpactanalyses:(1)Filtering‐allurbanagglomerationsare
identifiedwhereaspecificClimateChangeimpactpathisprobablyrelevantoreventhe
dominantoneand(2)atargeted,fastquantitativeimpactassessmentoftherespective
impactpathisperformedfortheseurbanareas.Step(1)startswiththeexisting
knowledgeonpotentialurbanimpactpathsandextractsthroughdifferentnatural,social
andeconomicfilteringstepstheurbanagglomerationswheretheseimpactpathshaveto
bestudiedquantitatively.Instep(2)thisisdonebyapplyingasetoftoolswhichare
mainlybasedonurbanremotesensingtoovercomethedatascarcitybottleneck.Itoccurs
thatsinglefilteringstepsandtoolscanbereusedfordifferentimpactpaths.To illustrate
theapproachwepresentafilteringexample,resultinginaglobalmapwhichshowsthe
urbanagglomerationswherethefollowingimpactpathisrelevant:pluvialfloodingof
slumsettlementsunderincreasingfrequencyofheavyraineventsToexemplifystep(2)
wepresentaremotesensingbasedtoolsetforquantitativeassessment.
IndexTerms—climateimpactassessment,urbanagglomerations,remotesensing,data
scarcity
————————————————————
1 Introduction
Severalsinglestudiesonclimatechangeimpactsonurbanagglomerationsareavailablewhilea
globalimpactmodelfortheurbanagglomerationsoftheworlddoesnotexist.Soinurbanimpact
researchthemethodologicalchallengeofbridgingtheglobalregionaldivideisdifferentfromthe
caseof,e.g.,hydrologicalimpactmodelingwherecoarsescaled(spatialandfunctional)globalmod
elsanddetailedregionalstudieshavetobebroughttogether.However,globalcoverageofurbanim
pactassessmentsisnecessarybecause(1)eachurbanareashouldhaveatleastaroughestimateof
climatechangeimpactstheywillencounterasafirstorientationforlocaladaptationdecisions,(2)
thesumofalllocalurbanadaptationcosts/effortshastobeincludedintotheglobalbalancebe
tweenadaptationandmitigationand(3)international(EU,UN)policiesthatneedtostrikeabalance
betweenthecostsandbenefitsforindividualmemberstatesneednationalquantitativeestimateds
ofimpactsonurbanareas.
Inthispaperwesuggestanapproachtowardsamorecomprehensiveandsystematicglobalurban
impactassessmentwhichidentifiessubsetsofcitiesbeingsensitivitetospecificclimatechangeim
pactsandprovidestoolsforquantitativeimpactassessmentalongthesespecifities.Inparticular
thesequantitativeassessmentsareratherdifficultinlargeurbanagglomerationsindevelopingand
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
2
newlyindustrializedcountries.Mostoffutureurbanizationwillhappenherebutduetoinformality
andrapidnessofdevelopmentthedatabasisisforquantitativeimpactassessmentisoftenunsuffi
cient.Theassessmenttoolshavetoreflecttheseconditionsby,e.g.,usingurbanremotesensing
techniquesfordataacquisitiontoovercomethedatabottleneck.Startingfromexperiencesgainedin
acomprehensiveimpactassessmentforHyderabd/Indiaweproposeasystematicandfeasiblewayto
obtainaglobalandquantitativeoverviewonclimatechangeimpactsoncities.Wefurthermoreshow
aspecificexamplewherewealreadyappliedthisapproach.Inthefollowingsectionwesketchthe
basicstructureoftheapproach,insection3wegiveanexamplefortheidentificationofcitysubsets
withsimilarimpactsensitivitiesandinsection4anexampleforaquantitativeimpactassessment
tool.
2 BasicIdea:atwostepprocedure
Wesuggestastructuredapproachtowardsafullspatialandfunctionalcoverageofurbanimpact
analyses:
(1)Filtering‐allurbanagglomerationsareidentifiedwhereaspecificClimateChangeimpactpathis
probablyrelevantoreventhedominantoneand
(2)Atargeted,fastquantitativeimpactassessmentoftherespectiveimpactpathisperformedfor
theseurbanareas.
Figure1:Subsetofurbanclimateimpactpaths.Theredpathwillbeexemplarilyanalyszedusingthe
suggestedrapidurbanimpactappraisalapproach(hereimpactpathsweretakenfromReckienetal.
2011)
Step(1)startswiththeexistingknowledgeonpotentialurbanimpactpathsandextractsthroughdif
ferentnatural,socialandeconomicfilteringstepstheurbanagglomerationswheretheseimpact
pathshavetobestudiedquantitatively.Theimpactpathsarecharacterizedbyaspecificclimatic
stimulus(e.g.aflood,heatwaveorstormevent),anexposureunit(e.g.thetrafficsystem,settle
ments,thewatersupplysystem)andthetypeofimpact(e.g.structuraldamage,operationaldeterio
rationorhealthimpacts)seeFig.1.Sourcesfortheseimpactpathsarethenumerousdetailedcase
studiesforsinglecities(forourexampleweusedtheHyderabadcaseasastartingpoint).Oncean
impactpathischosen,filterscanbeconstructedwhichexcludeurbanareaswheretherespective
climaticstimulusortheexposureunitareirrelevant.Thesefiltersarebasedonglobaldatasetschar
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
3
acterizingclimatological,physicalandsocioeconomicpropertiesoftheurbanareasfromdifferent
sources.Theclimaticstimulus“Pluvialflooding”forinstancewillbeonlyrelevantforcitiesinclimatic
zoneswithstrongrainevntsandahillyurbanorography.Ontheotherhand,“fluvialflooding”re
quiresacitywithalargeupstreambasin.Thisstimulusisnottobeexpectedforlocationsnearwater
sheds.Thebenefitofthisfilteringstepforaspecificcasestudyisthepriorisationoftheimpactpaths
tobestudied.Regardingtheglobaloverviewalreadythisfirststepresultsinaninterestingmapof
urbanagglomerationsbeingsensitivetowardsthesamespecificimpactpath.Forstep(2)anurban
remotesensingorientedtoolboxwasdevelopedtoquantifyimpactsalongthechosenrelevantim
pactpath.InFigure1differenturbanimpactpathsaredisplayedexemplarily(see,e.g.,Reckienetal.,
2011).Theredimpactpathasksforthenumberofslumdwellersseverelyaffectedbypluvialflooding
andhowthiswouldchangeunderclimatechange.
3 Anexampleforthefilteringstep
InthefollowingwewilldemonstratethefilteringstepsfortheredimpactpathinFig.1,dealingwith
theclimaticstimulusofpluvialflooding.
Figure2illustratesthefilteringstepsnecessarytoidentifyurbanareaswhicharesusceptibletothe
choosenimpactpath.Thefirstfilteringstepexcludescitiesinclimaticzoneswhichtypicallydonot
experiencehighintensityrainfalleventsasgivenbytheKoeppenGeigerclimaticzones.Thesecond
stepidentifiesurbanagglomerationswhicharenotsensitivetofluvialfloodingbecausetheyare
closetoawatershed(i.e.veryupstreamintheriverbasin,withinabufferzonearoundthewatershed
of100km)andfarfromcoasts(noestuary,atleast50kmdistancefromcoast).Step3excludescities
whichdonotshowahillyurbanlandscape(smallmeanabsolutcurvature)andatleasturbanareas
withalowprobabliltyofslumoccurrence(lessthen3%urbanslumpopulationaccordingtoUNsta
tistics)arefilteredout.ThereddotsinFig.2ddenotetheremainingurbanareaswhicharesuscepti
bletowardsthechosenimpactpath.Fig.3zoomsintotheglobalresultandshowsthecitieswhere
theslumpopulationispotentiallyendangeredbypluvialflooding.Insection4wewillshowforone
ofthesecitieshowtodoafastquantitativeimpactassessmentalongthisimpactpath.
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
4
A
B
C
D
Figure2:Largeurbanagglomerations(>1000km2)filteredforthefollowingcharacteristics:
a)experiencinghighintensityrainfall,b)additionallyclosetowatershedsanddistanttocoasts,c)
additionallyhillyurbanlandscaped)additionallyhighprobabilityofurbanslumsettlements.Red:
urbanagglomerationsremainingaftertherespectiveconsecutivefilteringsteps.Blackandgrey:ag
glomerationsexcluded.
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
5
Figure3:LargeurbanagglomerationsinIndiawhicharesusceptibleforpluvialfloodingofslumset
tlements(detailofFig.2d)
4 Fastquantitativeimpactassessment
Inthissectionwepresentanexampleforthesecondstep.Wechoosetheimpactpathofpluvial
floodingofslumsettlementsforwhichweintroducedtheglobalfilteringinsection3.Theidentified
urbanagglomerationsareaffectedbythisprocessbutthequantitativeimpacthasstilltobedeter
mined.InFigure4weshowallstepstobeperformedforobtainingthequantitativeimpactandits
uncertaintyfortheexampleofHyderabad/India.Fig.4ashowsurbanlocationswhichareseverely
floodedunderdifferentprojectionsofthe“onceintwoyearpercentile”ofexpecteddailyprecipation
dependingondifferentglobalemissionscenarios(B1,A2).ForthepresentHyderabadclimatethis
percentileamountsto80mm/dayandwaschosenduetohistoricalevidenceofsevere,citywideim
pacts.Ifpossible,forothercitiesaffectedbythisimpactpaththisthresholdhastobeempiricallyver
fified.Therangeoftheprojectionsoftheconsideredclimatevariableisdenotedbythehatchedrec
tanglesinFig.4a,top.Halfoftheconsideredglobalclimatemodels(AOGCMsfromtheIPCCAR4
modelensemble)projectvalueswithinthisrangeaftertheywerestatisticallydownscaledtotheHy
derabadregion(Lüdekeetal.,2012).Toidentifywhichadditionalareaswillbeaffectedbysevere
floodinginthefutureaflowaccumulationanalysiswasperformed(DEMtakenfromSRTMremote
sensing,seeKitetal.,2011).To identifytheexposureunit,aremotesensing(QuickBirdsatellite)
basedidentificationofslumareaswasdeveloped.Hereweusetherelationoftheurbantexture
(measuredbylacunarity)withtheprobabilityofslumoccurrencebecauseslumareasshowatypical
settlementstructure(Kitetal.,2012).AppliedtodifferentQuickBirdtimeslicesitallowstoidentify
spatiallyexplicittrendsinslumdevelopmentduring2003to2010(Kitetal.,2013)asshowninFig.
4b.Thiscurrenttrend(roughly:reducedslumpopulationinthecentralpartofthecity,mostlydueto
slumupgradeandnewlyoccurringslumareasatthefringeoftheinnercity)wasusedtogetherwith
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
6
projectionsofthetotalpopulationtoproduceplausiblescenariosoffutureslumdevelopmentupto
2050.InFig4ctheimpactonslumdwellersisquantified.Itshowsthewardwiseevaluationofaddi
tionalslumdwellersseverlyaffectedbyfuturepluvialfloodingin2050undertheA2scenario,the
extrapolatedcurrentslumdevelopmentandtheassumptionofexponentialpopulationgrowth
withinthecity.Clearspatialhotspotscanbeidentifiedwhichimplyprioritizationofe.g.stormdrain
ageimprovementactivities.Thetotalnumberamountstoabout78000dwellersadditionallyaf
fected,theuncertaintyrangeof[20000,193000]takesintoaccountthewholerangeofclimatepro
jectionsbytheensembleoftheAOGCMs,includingtheoutliers.Assumingtheaverageclimatepro
jectionandchangingbetweenexponentialandlinearpopulationgrowthgeneratesanuncertainty
rangeofthesameorderofmagnitude.
Fig.4:FastquantitativeclimatechangeimpactassementforHyderabad/Indiawithregardtotheex
pectednumberofslumdwellersseverelyaffectedbypluvialfloodingunderclimatechange.a)Drive
r:onceintwoyearpercentileofexpecteddailyprecipationunderdifferentglobalemissionscenarios
(B1,A2,fordetailsseetext).Flowaccumulationbasedidentificationofareasseverelyaffectedbythe
resultingpluvialflooding(Kitetal.,2011).b)Remotesensingbasedidentificationofslumareas(Kit
etal.,2012).c)Wardwiseevaluationofthenumberofslumdwellersadditionallyseverlyaffected
underfuturepluvialflooding(fordetailsseetext)undertheA2scenarioandtheassumptionofex
ponentialpopulationgrowthwithinthecity.
ImpactsWorl d2013,InternationalConferenceonClimateChangeEffects,
Potsdam,May2730
7
5 Conclusions
Thepresentedexamplesforthefilteringofcitiesaffectedbyspecificimpactpathsshowedhowcom
parablesubsetsofcitiescanbeidentifiedandthen,inasecondstep,befurtherinvestigatedwith
similaranalysistoolstoobtainquantitativeimpacts.Theexamplefromsection4forsuchatoolset
mailydependsonremotelysensedandgloballyavailableinputdatasets,i.e.globaldataavailability
wouldallowtoapplyittoallfilteredcitiesresultinginaworldwidequantitativeevaluationofthe“se
verepluvialfloodingofslumdwellers”impactpath,relyingonaminimumofgroundbaseddata,in
cludingsomecalibrationdatafortheslumidentificationalgorithm,atleastexemplarilyforlarger
worldregionslikeIndia,SouithAmerica,Africa.
Slightmodificationsandrecombinationofthefilteringstepsinsection3yielddifferentbutalsovery
relevantpathssothatanincreasingcollectionofsuchpartialfilterswillcoveraverylargenumberof
relevantclimateimpactpaths.Thesefiltersrelyonaggregated,structuralindicatorsforurbanareas
whicharerelatedtothesensitivitytowardsclimatechange.Furtherresearchtodiscoversuchrela
tionsisaprerequisiteforachievingamorecomprehensiveoverviewonclimateimpactsoncities.
Theproposedapproachprovidesaframeworktointegratethiskindofpartialknowledgeinasys
tematicmanner‐possiblyleadingtoawellfoundedglobalpictureofurbanclimatechangeimpacts.
6 References

Kit,O.;Lüdeke,M.K.B.;Reckien,D.,2013.Definingthebull'seye:satelliteimageryassistedslum
populationassessmentinHyderabad/India.UrbanGeography,onlinefirst
Kit,O.;Lüdeke,M.K.B.;Reckien,D.,2012.Text u r e basedidentificationofurbanslumsinHydera
bad,Indiausingremotesensingdata.AppliedGeography32,660667p.
Kit,O.;Lüdeke,M.K.B.;Reckien,D.2011.Assessmentofclimatechangeinducedvulnerabilityto
floodsinHyderabad/Indiausingremotesensingdata.In:ResilientCities‐CitiesandAdaptationto
ClimateChangeEd.:OttoZimmermann,K.Dordrecht:Springer3544p.
Lüdeke,M.K.B.;Budde,M.;Kit,O.;Reckien,D.2012.ClimateChangeScenariosforHyderabad:in
tegratinguncertaintiesandconsolidation.EmergingmegacitiesV1/2010,ISSN21936927,pp337
ReckienD,LüdekeM,ReusswigF, KitO,MeyerOhlendorfL,BuddeM,2011.Hyderabad,India,in
frastructureadaptationplanning.InRosenzweigC,SoleckiWD,HammerSA,MehrotraS:Climate
ChangeandCitiesFirstAssessmentReportoftheUrbanClimateChangeResearchNetwork,Cam
bridgeUniversityPress,pp152154
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
This paper presents an approach to qualitative and spatial assessment of slum population numbers in Hyderabad, India using circle-based population data from the Census of India and results of the analysis of high resolution QuickBird satellite image data (2003) derived from automatic line detection and lacunarity algorithm. This approach provides plausible and spatially explicit aggregate statistics of slum population numbers within the city. This work suggests that both over- and underreporting of slum population numbers does occur in Hyderabad, and provides an improved view on the slum distribution patterns within this urban agglomeration.
Chapter
The frequency and intensity of extreme rainfall events over Hyderabad, India, are often the cause of devastating floods in its urban and peri-urban areas. This paper introduces a quantitative approach to assessing urban vulnerability to floods in Hyderabad, identifying informal settlements via high resolution satellite photography and through the development of a flood model for urban and peri-urban areas.
Hammer SA, Mehrotra S: Climate Change and Cities -First Assessment Report of the Urban Climate Change Research Network
  • D Reckien
  • M Lüdeke
  • F Reusswig
  • O Kit
  • L Meyer-Ohlendorf
  • M Budde
Reckien D, Lüdeke M, Reusswig F, Kit O, Meyer-Ohlendorf L, Budde M, 2011. Hyderabad, India, infrastructure adaptation planning. In Rosenzweig C, Solecki WD, Hammer SA, Mehrotra S: Climate Change and Cities -First Assessment Report of the Urban Climate Change Research Network, Cambridge University Press, pp 152-154