ArticlePDF Available

A safe method for Handling large snakes in the field



Using a sock placed over the snake head and securing it with a stretch of electrical tape behind the cuadrate bone the snake is rendered harmless and much calmer which makes it easy to process and collect data
Understanding of snake ecology has increased over the past two decades, but is still limited for many species. This is particularly true for the recently described Beni anaconda (Eunectes beniensis). We present the results of a radio-telemetry study of nine (3M:6F) adult E. beniensis, including home range, and habitat use. We located the snakes 242 times in wet season, and 255 in dry season. Mean wet season home range (MCP) was 25.81 ha (6.7 to 39.4 ha); while mean dry season home range was 0.29 ha (0.13 to 0.42 ha). We found no relationship between home range size and either snout-vent length, weight, or sex. Beni anacondas seem to prefer swamps, and patujusal, while avoiding forest, and rice fields. However, habitat use by individual snakes seems to vary based on the habitats available within their respective home range. Notably, rice fields were avoided by most snakes, which suggests that this type of habitat is unsuitable for anaconda management.
Thesis (Ph. D.)--University of Tennessee, Knoxville, 2000. Vita. Includes bibliographical references (leaves 267-284).
Full-text available
Reptiles can harbor pathogenic microorganisms asymptomatically and serve as potential reservoirs of infection for humans, domestic animals, and other reptiles. Infectious diseases are also problematic for free-ranging reptile populations and are an important consideration in reptile reintroduction and translocation projects. There have been limited serologic studies of free-ranging reptiles for evidence of exposure to potential pathogens. In the present study, serum or plasma samples from five male and five female free-ranging Venezuelan anacondas (Eunectes murinus) were screened for antibodies to eastern, western, and Venezuelan equine encephalitis viruses, vesicular stomatitis virus, ophidian paramyxovirus, 19 Leptospira interrogans serovars, and Cryptosporidium serpentes. Antibodies to these agents were not detected, or antibody titers were low and possibly nonspecific. These results for the limited number of anacondas surveyed suggest that they do not serve as significant reservoirs for these infectious agents at this location.
ResearchGate has not been able to resolve any references for this publication.