Conference PaperPDF Available

Face Image Processing for diagnosis and treatment plan in orthodontic patients

Authors:

Figures

No caption available
… 
Content may be subject to copyright.
 
 -                   
-

 SVMMLP



    


        


[1]

        


      

  


[1-3]

 
[3]
    

 







    
  

4-6
  
        
 

 
 
Zhao7 
Eigenface  Turk & Pentland
 





karimi.m@srbiau.ac.ir
gholamifatemehbme@gmail.com
shabnam_ghahari@yahoo.com
 dariush1344gholami@yahoo.com
 
8 Fisher face   
 910 
 Support Vector Machin-SVM11
12  



        

[13]

   
          
    
         





 
   
          
         
    



 
  

         
    



  [14] 


           


           
       

       

       
[1,15]

       

    

[1,15,16]


       
      
      
 
[1,17]






 

         
       


          

[1,17,18]


         
           

MATLAB      
        
RGB



128
128
16
081.0419.05.0
5.0331.0169.0
114.0587.0299.0
B
G
R
Cr
Cb
Y


[19-21]


)1(*)1( 2ICrEyeMap
 


2
))1((*)(
gr g
gr r
LipMap
   
r

g
   
BGR R
r



     Sensitivity
SpecificityAccuracy





SEN
Sensitivity
SPE
Specificity
ACC
Accuracy

 
MLPSVM
Multi Layer
Perceptron-MLP 
  
 


logsigtansig
 
MLP


tansig 
MSE




    
        





 


        

          
Support Vector Machine (SVM)
Multi Layer Perceptron (MLP)
         
SVM  MLP      
 
   
  








SVM



MLP

         


        
            



          


[1,22,23]
           





       
          




 [1,24,25]




[1] Graber, Vanarsadll, Vig: Orthedentics- Current Princples &
Theqniques, Book, Fourth Edition,
[2] Ackerman JL et al : A morphometric analysis of the posed smile ,
Clin orthod Res 1:2 , 1998.
[3] Madison, Wis, American Academy of Cosmetic Dentistry:
Diagnosis and treatment planning in Cosmetic Dentistry:
Diagnosis and treatment planning in cosmetic dentistry: a guide to
accreditation criteria, 2004.
[4] [4] Haddadnia, J. and Amintoosi, M., ''Featured Selection in A
Fuzzy Student Sectioning Algorithm", Lecture Note Ocn
Computer Science, Accepted for publication, (2005).
[5] [5] Haddadnia, J. and Ahmadi, M., "N-Featured Neural Network
Human Face Recognition", Image Vision Computing, (2004).

  
 
[7] W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld, “Face
Recognition: A Literature Survey,” ACM Computing Surveys, pp.
399-458, 2003.
 
[8] [4] M. Turk and A. Pentland, “Eigenfaces for recognition,”
Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 7186, Mar.
1991.
[9] [5] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces
vs.Fisherfaces: Recognition Using Class Specific Linear
Projection,”IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, pp. 711-720, 1997.
[10] [6] B. Moghaddam and A. Pentland, “Probabilistic Visual
Learning for Object Representation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, pp. 696-710,
1997.
[11] P.J. Phillips, “Support Vector Machines Applied to Face
Recognition,” Proc. 1998 Conf. Advances in Neural Information
Processing Systems, vol. 11, pp. 803-809, 1998.
[12] C. Liu and H. Wechsler, “Evolutionary Pursuit and Its Application
to Face Recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, pp. 570-582, 2000.
[13] BeGole EA et al: Analysis of change in arch from with premolar
expansion, Am J Orthod Dentofacial Orthop 113:307, 1998.
[14] Brunelle JA et al: Prevalence and distribution of selected occlusal
characteristics in The US population, J Dent Res 75:706, 1995.
[15] Dajani HS et al, Prevention of bacterial endocarditis:
recommendations by the American Heart Association , JAMA
277:2749, 1997.
[16] Dickens ST et al: Change in frontal soft tissue dimensions of the
lower face by age and gender, World J Orthod 3:313, 2002.
[17] Gurel G, The science and art of porcelain laminate veneers,
Berlin, 2003.
[18] Landstorm A et al: Natural head position and natural head
orientation: basic considerations in cephalometric analysis, Eur J
Orthod 17:111, 1995.
[19] M. J. Jones, and J. M. Rehg, "Statistical color models with
application to skin detection," Proc. IEEE Conf. Computer Vision
and Pattern Recognition ,Fort Collins, pp. 274-280, 1999.
[20] M. Yang, and N. Ahuja, "Gaussian mixture model for human skin
color and its application in images and video databases," In Proc.
of the SPIE99, pp. 458-466, 1999.
[21] S. L. Phung, A. Bouzerdoum, and D. Chai, "A novel skin color
model in YCbCr color space and its application to human face
detection," " In IEEE International Image Processing, no. 1, pp.
289-292, 2002.
[22] Morley j, Eubank J: Macroethetic elements of smile design, J Am
Dent Assoc 132:39, 2001.
[23] O’Brien KD et al: Effectiveness of early orthodontic treatment
with the twin-block appliance: a multi-center, randomized
controlld trial. 2. Psychosocial effects, AM J Orthod Dentofacial
Orthop 124:488, 2003.
[24] Proffit WR: contemporary orthodontics, St Louis, Mosby, 2001.
[25] Proffit WR, White RP Jr, Sarver DM: Contemporary treatment of
dentofacial deformity, St Louis, Mosby,2003.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The role of the BDJ is to inform its readers of ideas, opinions, developments and key issues in dentistry - clinical, practical and scientific - stimulating interest, debate and discussion amongst dentists of all disciplines.
Chapter
Full-text available
We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face under varying illumination direction lie in a 3-D linear subspace of the high dimensional feature space — if the face is a Lambertian surface without self-shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes in a low-dimensional subspace even under severe variation in lighting and facial expressions. The Eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed Fisherface method has error rates that are significantly lower than those of the Eigenface technique when tested on the same database.
Article
We have developed a near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals. The computational approach taken in this system is motivated by both physiology and information theory, as well as by the practical requirements of near-real-time performance and accuracy. Our approach treats the face recognition problem as an intrinsically two-dimensional (2-D) recognition problem rather than requiring recovery of three-dimensional geometry, taking advantage of the fact that faces are normally upright and thus may be described by a small set of 2-D characteristic views. The system functions by projecting face images onto a feature space that spans the significant variations among known face images. The significant features are known as "eigenfaces," because they are the eigenvectors (principal components) of the set of faces; they do not necessarily correspond to features such as eyes, ears, and noses. The projection operation characterizes an individual face by a weighted sum of the eigenface features, and so to recognize a particular face it is necessary only to compare these weights to those of known individuals. Some particular advantages of our approach are that it provides for the ability to learn and later recognize new faces in an unsupervised manner, and that it is easy to implement using a neural network architecture.
Article
This paper introduces an efficient method for human face recognition system, which is called the hybrid N-feature neural network (HNFNN) human face recognition system. The HNFNN employs a set of different kind of features from face images with radial basis function (RBF) neural networks, which are fused together through the majority rule. The proposed method improves the performance of the system by combining RBF neural networks, training with different learning algorithms, in committees. This article also evaluates how the performance can be improved by disregarding irrelevant data from the face images by defining the efficient parameters. Experimental results on the ORL and Yale face databases confirm that the proposed method lends itself to higher classification accuracy relative to existing techniques.
Conference Paper
In this paper a new student sectioning algorithm is proposed. In this method a fuzzy clustering, a fuzzy evaluator and a novel feature selection method is used. Each student has a feature vector, contains his taken courses as its feature elements. The best features are selected for sectioning based on removing those courses that the most or the fewest numbers of students have taken. The Fuzzy c-Means classifier classifies students. After that, a fuzzy function evaluates the produced clusters based on two criteria: balancing sections and students’ schedules similarity within each section. These are used as linguistic variables in a fuzzy inference engine. The selected features determine the best students’ sections. Simulation results show that improvement in sectioning performance is about 18% in comparison with considering all of the features, which not only reduces the feature vector elements but also increases the computing performance.