ArticlePDF Available

Abstract and Figures

The Internet of Things (IoT) has become an important research topic in the last decade, where things refer to interconnected machines and objects with embedded computing capabilities employed to extend the Internet to many application domains. While research and development continue for general IoT devices, there are many application domains where very tiny, concealable, and non-intrusive Things are needed. The properties of recently studied nanomaterials, such as graphene, have inspired the concept of Internet of NanoThings (IoNT), based on the interconnection of nanoscale devices. Despite being an enabler for many applications, the artificial nature of IoNT devices can be detrimental where the deployment of NanoThings could result in unwanted effects on health or pollution. The novel paradigm of the Internet of Bio-Nano Things (IoBNT) is introduced in this paper by stemming from synthetic biology and nanotechnology tools that allow the engineering of biological embedded computing devices. Based on biological cells, and their functionalities in the biochemical domain, Bio-NanoThings promise to enable applications such as intra-body sensing and actuation networks, and environmental control of toxic agents and pollution. The IoBNT stands as a paradigm-shifting concept for communication and network engineering, where novel challenges are faced to develop efficient and safe techniques for the exchange of information, interaction, and networking within the biochemical domain, while enabling an interface to the electrical domain of the Internet.
Content may be subject to copyright.
A preview of the PDF is not available
... Molecular Communication (MC) is a bio-inspired communication paradigm employing molecules for information exchange. MC enables synthetic communication at the nanoscale, which paves the way for transformative applications in nanomedicine and health monitoring [2,9]. For the design and optimization of MC systems it is crucial to develop models for its components, i.e., the Transmitter (Tx), the channel, and the Receiver (Rx). ...
... In this paper, we propose a novel Tx model basing on the properties of functionalized Nanoparticles (NPs), which are promising candidates to be used as nodes in nanonetworks for sensing and localized treatment [2,9]. The envisioned Tx provides a controlled molecule release mechanism based on switching the NP membrane between the open and closed states by an external trigger, e.g., a pH change of the surrounding environment. ...
Preprint
Full-text available
In this paper, we propose novel Transmitter (Tx) models for Molecular Communication (MC) systems based on functionalized Nanoparticles (NPs). Current Tx models often rely on simplifying assumptions for the molecule release and replenishment mechanisms. In contrast, we propose a Tx model where the signaling molecule release is controlled by a switchable membrane driven by an external trigger. Moreover, we propose a reloading mechanism, where signaling molecules are harvested based on an enzymatic reaction. Hence, no repeated injection of signaling molecules is required. For the proposed Tx model, we develop a general mathematical description in terms of a discrete-time transfer function model. Furthermore, we investigate two realizations of the proposed Tx model, i.e., an idealized Tx relying on simplifying assumptions, and a realistic Tx employing practical components for the reloading and release mechanisms. Finally, we numerically evaluate the proposed model and compare our results to stochastic Particle Based Simulations (PBSs).
... At the intersection of IoNT and molecular communications a bold and futuristic vision is drawn in [62] by Akyildiz, Pierobon, Balasubramaniam and Koucheryavy-the Internet of Bio-Nano-Things (IoBNT). The concept is introduced focusing specifically on in-body communications. ...
Article
Full-text available
Two promising technologies cosidered for the Beyond 5G networks are the terahertz and nano-technologies. Besides other possible application areas they hold the commitment to numerous new nano-scale solutions in the biomedical field. Nano-technology, as the name implies, examines the construction and design of nano-sized materials. These two interconnected emerging technologies have the potential to find application in quite many areas, one of the most importan being healthcare. This overview paper discusses the specifics of these technologies, their most important characteristics and introduces some of the trends for their application in the healthcare sector. In the first section terahertz frequency radio waves and their specific properties depending on the surrounding environment are discussed, followed by an introduction to nano-scale communications. Terahertz waves mandate the use of nano-scale antennas, which in turn brings us to the concept of nano-scale nodes. Nano-scale nodes are units that can perform the most basic functions of nano-machines and inter-nano-machine communications, which allow distributed nano-machines to perform more complex functions. Beyond 5G the development of these nano-communications is expected to lead to the emergence of new complex network systems. In the second part of this paper the paradigms of the Internet of Nano Things, molecular commnications and the Internet of Bio-Nano Things are discussed followed by details on their integration in healthcare related applications. The main goal of the article is to provide an introduction to these intriguing issues discussing advanced nano-technology enablers for Beyond 5G networks such as terahertz and molecular communications, nano-communications between nano-machines and the Internet of Bio-Nano-Things in light of health related applications.
... In vivo communication control, Bio Nano Things can prevent communication failure between internal organs. IoBNT can also be used to control and clean the environment [20]. Table 2 summarizes IoMT applications. ...
Article
Full-text available
The growth of the world's population, especially that of the elderly, along with the outbreak of infectious diseases such as COVID‐19 have caused hospitals and healthcare centres to become full, and even economical treatments cost a lot. On that account, the conjunction of wireless body area networks (WBAN) and Internet of Things (IoT) for healthcare and medical diagnosis has become really important, and is accordingly one of the most popular and attractive areas of the Internet of Things (IoT). In such an IoT, a wireless body area network (WBAN) consists of a miniature sample of the Internet of Medical Things (IoMT) that can be either implanted in the human body or wearable. Nowadays, IoT has made healthcare evaluation possible. Instead of the patient being constantly hospitalized for treatment, the condition of the person is sent to the health centre by the IoMT over the Internet. IoT enables wireless communication between smart devices on one side and almost anything on the other. Since this network deals with medical and critical conditions, data must be sent to a physician or practitioner in the prescribed period; this indicates that routing is one of the most critical issues. Thus, routing is considered a very important challenge in WBANs. The present study describes thermal (temperature)‐aware routing protocols in WBANs. Routing protocols in WBANs are divided into thermal (temperature)‐aware, QoS‐aware, security‐aware, cluster‐based, cross‐layered, postured‐based, cost‐effect, link‐aware, and opportunistic ones. In a WBAN, temperature rise in implant nodes can damage body tissues, which is dangerous for the patient. Accordingly, here, those algorithms were considered which are presented in thermal (temperature)‐aware protocols. This paper first introduces IoT‐based WBANs, their routing mechanism and challenges, after which it provides a detailed description of thermal (temperature)‐aware algorithms. Finally, the advantages and disadvantages of these algorithms are presented.
... One of the most important uses of these objects is to monitor the activity of cells, including viruses or cancer cells. Articles [174][175][176][177][178][179][180][181][182][183][184][185] have focused specifically on this type of bio-nanoobjects. The task of future generations of communications will be to provide a wireless interface for transmitting the information collected by these objects to surveillance systems. ...
Technical Report
Full-text available
This paper tries to review a comprehensive article about the next generation of wireless telecommunications and present imaginable future applications for these generations. In the next few years, 5th generation wireless telecommunications will not be able to meet the growing needs of wireless services. It poses new challenges as the increasing number of wireless devices requires low latency with higher bandwidth extensive interconnection. To overcome these challenges, the 6th generation seeks to achieve the following goals: (i) a network operating at the THz band with much wider spectrum resources, (ii) intelligent communication environments that enable a wireless propagation environment with active signal transmission and reception, (iii) pervasive artificial intelligence, (iv) large-scale network automation, (v) an all-spectrum reconfigurable front-end for dynamic spectrum access, (vi) ambient backscatter communications for energy savings, (vii) the Internet of Space Things enabled by CubeSats and UAVs, and (viii) cell-free massive MIMO communication networks. The base paper will introduce all of them and review the newest articles in each area. At the end of paper, it will introduce new field of study for future upcoming generations beyond 6G, such as the Internet of NanoThings, the Internet of BioNanoThings, and quantum communications.
... We consider a TDD scenario based on a molecular communication system with an embedded relay bionanomachine labeled with fluorescent molecules to deliver therapy drugs to the targeted tissues (cells). On the other hand, the deployment of the Internet of bio-nano things (IoBNT) paradigm as a remote control over the dissemination and exchange of information molecules via an embedded bionanomachines network is feasible for achieving important medical goals such as targeted drug delivery (TDD) systems and health care monitoring (HCM) applications [3,[7][8][9][10][11][12]. In addition, the molecular communication system is regarded as a promising tool for interconnecting embedded bionanomachines in the intra-body network (BAN). ...
Article
Full-text available
We propose an embedded synthetic relay transport protein (RTP) approach for communication between the external environment (blood vessels) and internal targeted nanonet-works (cells/tissues) within the intra-body network. In fact, we designed a bioengineered relay protein-based facilitated diffusing to be an alternative protein in the case of biological transport proteins (such as protein channels, e.g. Pores) failing. The proposed approach is inspired by the traditional wireless communication system-based relay concept, in which embedded nanodevices known as donor, relay, and acceptor bionanomachine construct a molecular communication system. Fluorescence resonance energy transfer nanocommu-nications are used to connect the embedded bionanomachines, and the therapeutic drug is transferred in the form of exciton. The performance analysis of the proposed approach is evaluated in terms of channel capacity of RTP as function of intrinsic environmental parameters and the location of the relay between the donor, and acceptor bionanomachines. The numerical results show that the proposed approach improves channel capacity by 16.7% over previous work.
... More also, research effort is going on to achieve the capability to query and alter the states of the living and nonliving systems at the nanoscale level. In this case, the futuristic concept of the internet of bio-nano things (IoBNT) [60], [157], an offshoot of the Internet of Things (IoT), which is still far from a practical realization, can be employed. Additionally, remote diagnosis/sensing, robot-assisted surgery, and remote additive manufacturing are other PM use cases of the IoE for which the sensor network and tactile internet are integral parts. ...
Article
Full-text available
Precision medicine (PM) is an innovative medical approach that considers differences in the individuals’ omics, medical histories, lifestyles, and environmental information in treating diseases. To fully achieve the envisaged gains of PM, various contemporary and future technologies have to be employed, among which are nanotechnology, sensor network, big data, and artificial intelligence. These technologies and other applications require a communication network that will enable them to work in tandem for the benefit of PM. Hence, communication technology serves as the nervous system of PM, without which the entire system collapses. Therefore, it is essential to explore and determine the candidate communication technology requirements that can guarantee the envisioned gains of PM. To the best of our knowledge, no work exploring how communication technology directly impacts the development and deployment of PM solutions exists. This survey paper is designed to stimulate discussions on PM from the communication engineering perspective. We introduce the fundamentals of PM and the demands in terms of quality of service that each of the enabling technologies of PM places on the communication network. We explore the information in the literature to suggest the ideal metric values of the key performance indicators for the implementation of the different components of PM. The comparative analysis of the suitability of the contemporary and future communication technologies for PM implementation is discussed. Finally, some open research challenges for the candidate communication technologies that will enable the full implementation of PM solutions are highlighted.
Thesis
Full-text available
In dieser Dissertation, basierend auf dem Molecular Communication (MC)-System, wird ein wasserbasiertes Testbed im Makromaßstab verwendet, um die Ausbreitung von biokompatiblen, wirkstoffbeladenen superparamagnetischen Eisenoxid-Nanopartikeln (SPIONs) durch ein menschliches Gefäß für Anwendungen zur Arzneimittelabgabe zu imitieren. Im Testbed wird Partikelsuspension mit unterschiedlichen Fließgeschwindigkeiten in einen mit Wasser gefüllten Kanal gepumpt und von einem Suszeptometer detektiert. Alle Grundlagen, die zum Verständnis der Physik des Testbeds erforderlich sind, werden besprochen. In einer Vorstudie wird das Testbed zu einem mathematisch beschriebenen 2D-rotationssymmetrischen Modell vereinfacht und sein Strömungsregime analytisch hergeleitet. Eine vollständige numerische Untersuchung des vereinfachten Modells wird durchgeführt. Um die Rechenkomplexität der 3D-Multiphysik-Simulationen zu vermeiden, werden die magnetischen und fluidischen Simulationen entkoppelt und separat simuliert, woraus die Systemantwort effizient geschätzt wird. Andere Detektoren, einschließlich Helmholtz-, Maxwell- und Planarspulen, werden ebenfalls in Betracht gezogen. Es zeigt sich, dass das detektierte Signal der Spulen direkt proportional zur Volumensuszeptibilität und damit zur Dichte der Partikel in ihren Detektionsbereichen ist. Eine Änderung der Partikelverteilung im Sender vor der Injektion in den Kanal führt zu verschiedenen Verteilungen im Detektor, was die Systemreaktion erheblich beeinflusst.
Preprint
Molecular Communications (MC) is a bio-inspired communication technique that uses molecules to encode and transfer information. Many efforts have been focused on developing new modulation techniques for MC by exploiting distinguishable properties of molecules. In this paper, we investigate a particular modulation scheme where the information is encoded into the concentration ratio of two different types of molecules. To evaluate the performance of this so-called Ratio Shift Keying (RSK) modulation, we carry out an information theoretical analysis and derive the capacity of the end-to-end MC channel where the receiver performs ratio estimation based on ligand-receptor binding statistics in an optimal or suboptimal manner. The numerical results, obtained for varying similarity between the ligand types employed for ratio-encoding, and number of receptors, indicate that the RSK can outperform the concentration shift keying (CSK) modulation, the most common technique considered in literature, when the transmitter is power-limited. The results also indicate the potential advantages of RSK over other modulation methods under time-varying channel conditions, when the effects of the dynamic conditions are invariant to the type of the molecules.
Chapter
Robotics has gained significant attentions in recent years, thanks to dramatic developments in the field, and the impact that it can deliver on the supply of materials and services. In this chapter, an overview of robotic technologies is presented and discussed. Then, a diverse range of applications including the medical industry, space exploration, military, education, agriculture, oil and gas industry, textile, railcar industry, maintenance and repair, construction industry, environmental issues, security service, social assistance, travel industry, and human‐interactive applications are reviewed. The feature of interest is the impact that robotic technology can deliver as one of the major drivers of the Industry 4.0 revolution.
Chapter
The focus of this chapter is on the key information and communication technologies (ICTs) that afford the existence of CPSs. Instead of describing in detail the devices, protocols, algorithms, and standards, which would be hardly possible, our choice is to critically review three prominent ICT domains, namely data networks (and the Internet), advanced statistical methods for data processing, and new data storage paradigms. Specifically, we will provide an overview of the key features of the fifth generation of mobile networks (5G) and machine‐type wireless communications, the strengths and limitations of machine learning and artificial intelligence, and the advantages and drawbacks of distributed ledgers like blockchains and distributed computing like federated learning. Besides those trends, a speculation of the future of ICT will be presented considering the implications of quantum computing and the Internet of Bio‐Nano Things.
Article
Full-text available
Particulate Drug Delivery Systems (PDDS) are therapeutic methods that use nanoparticles to achieve their healing effects at the exact time, concentration level of drug nanoparticles, and location in the body, while minimizing the effects on other healthy locations. The Molecular Communication (MC) paradigm, where the transmitted message is the drug injection process, the channel is the cardiovascular system, and the received message is the drug reception process, has been investigated as a tool to study nanoscale biological and medical systems in recent years. In this paper, the various noise effects that cause uncertainty in the cardiovascular system are analyzed, modeled, and evaluated from the information theory perspective. Analytical MC noises are presented to include all end-to-end noise effects, from the drug injection, to the absorption of drug nanoparticles by the diseased cells, in the presence of a time-varying and turbulent blood flow. The PDDS capacity is derived analytically including all these noise effects and the constraints on the drug injection. The proposed MC noise is validated by using the kinetic Monte-Carlo simulation technique. Analytical expressions of the noise and the capacity are derived, and MC is presented as a framework for the optimization of particulate drug delivery systems (PDDS).
Article
Full-text available
Molecular communications is a new paradigm that enables nanomachines to communicate within a biological environment. One form of molecular communications is calcium (Ca$^{2+}$) signaling, which occurs naturally in living biological cells. Ca$^{2+}$ signaling enables cells in a tightly packed tissue structure to communicate at short ranges with neighboring cells. The achievable mutual information of Ca$^{2+}$ signaling between tissue embedded nanomachines is investigated in this paper, focusing in particular on the impact that the deformation of the tissue structure has on the communication channel. Based on this analysis, a number of transmission protocols are proposed; nanomachines can utilize these to communicate using Ca $^{2+}$ signaling. These protocols are static time-slot configuration, dynamic time-slot configuration, dynamic time-slot configuration with silent communication, and improved dynamic time-slot configuration with silent communication (IDTC-SC). The results of a simulation study show that IDTC-SC provides the maximum data rate when tissues experience frequent deformation.
Article
Full-text available
The goal of a Drug Delivery System (DDS) is to convey a drug where the medication is needed, while, at the same time, preventing the drug from affecting other healthy parts of the body. Drugs composed of micro or nano-sized particles (particulate DDS) that are able to cross barriers which prevent large particles from escaping the bloodstream are used in the most advanced solutions.Molecular Communication (MC) is used as an abstraction of the propagation of drug particles in the body. MC is a new paradigm in communication research where the exchange of information is achieved through the propagation of molecules. Here, the transmitter is the drug injection, the receiver is the drug delivery and the channel is realized by the transport of drug particles, thus enabling the analysis and design of a particulate DDS using communication tools. This is achieved by modeling the MC channel as two separate contributions, namely, the cardiovascular network model and the drug propagation network. The cardiovascular network model allows to analytically compute the blood velocity profile in every location of the cardiovascular system given the flow input by the heart. The drug propagation network model allows the analytical expression of the drug delivery rate at the targeted site given the drug injection rate. Numerical results are also presented to assess the flexibility and accuracy of the developed model. The study of novel optimization techniques for a more effective and less invasive drug delivery will be aided by this model, while paving the way for novel communication techniques for Intra-Body communication Networks (IBN).
Article
Full-text available
Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non-exclusive licensing. Access to some patent protected technologies is less clear and use of these technologies may be subject to restrictions imposed by material transfer agreements or other contract terms. We expect the technologies considered enabling for synthetic biology to change as the field advances. By monitoring the enabling technologies of synthetic biology and addressing the policies and practices that impact their development and use, our hope is that the field will be better able to realize its full potential.
Book
Full-text available
Article
Molecular communication (MC) is a promising bio-inspired paradigm for the interconnection of autonomous nanotechnology-enabled devices, or nanomachines, into nanonetworks. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this article is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this article are to analyze an MC link from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a deterministic model is realized to study each component, as well as the overall diffusion-based- MC link, in terms of gain and delay. Second, the noise sources affecting a diffusion-based-MC link are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, an analysis of the interference produced by multiple diffusion-based MC links in a nanonetwork is provided. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
Article
Recent advances in synthetic biology, in particular towards the engineering of DNA-based circuits, are providing tools to program man-designed functions within biological cells, thus paving the way for the realization of biological nanoscale devices, known as nanomachines. By stemming from the way biological cells communicate in the nature, Molecular Communication (MC), i.e., the exchange of information through the emission, propagation, and reception of molecules, has been identified as the key paradigm to interconnect these biological nanomachines into nanoscale networks, or nanonetwork. The design of MC nanonetworks built upon biological circuits is particularly interesting since cells possess many of the elements required to realize this type of communication, thus enabling the design of cooperative functions in the biological environment. In this paper, a systems-theoretic modeling is realized by analyzing a minimal subset of biological circuit elements necessary to be included in an MC nanonetwork design where the message-bearing molecules are propagated via free diffusion between two cells. The obtained system-theoretic models stem from the biochemical processes underlying cell-to-cell MC, and are analytically characterized by their transfer functions, attenuation and delay experienced by an information signal exchanged by the communicating cells. Numerical results are presented to evaluate the obtained analytical expressions as functions of realistic biological parameters.
Article
Artificial cellular systems are minimal systems that mimic certain properties of natural cells, including signaling pathways, membranes, and metabolic pathways. These artificial cells (or protocells) can be constructed following a synthetic biology approach by assembling biomembranes, synthetic gene circuits, and cell-free expression systems. As artificial cells are built from bottom-up using minimal and a defined number of components, they are more amenable to predictive mathematical modeling and engineered controls when compared with natural cells. Indeed, artificial cells have been implemented as drug delivery machineries and in situ protein expression systems. Furthermore, artificial cells have been used as biomimetic systems to unveil new insights into functions of natural cells, which are otherwise difficult to investigate owing to their inherent complexity. It is our vision that the development of artificial cells would bring forth parallel advancements in synthetic biology, cell-free systems, and in vitro systems biology. For further resources related to this article, please visit the WIREs website. Conflict of interests: The authors declare that they have no competing financial interests.
Article
This article presents a branch of research where the use of molecules to encode and transmit information among nanoscale devices (nanomachines) is investigated as a bio-inspired viable solution to realize nano-communication networks. Unlike traditional technologies, molecular communication is a radically new paradigm, which demands novel solutions, including the identification of naturally existing molecular communication mechanisms, the establishment of the foundations of a molecular information theory, or the development of architectures and networking protocols for nanomachines. The tight connection of this cutting edge engineering research field with biology will ultimately enable both the bio-inspired study of molecular nanonetwork architectures and their realization with tools already available in nature. The testbed described in this article, which is based on a microfluidic device hosting intercommunicating populations of genetically engineered bacteria, is a clear example of this research direction.
Article
This paper reviews recent developments in the design and application of two types of optical nanosensor, those based on: (1) localized surface plasmon resonance (LSPR) spectroscopy and (2) surface-enhanced Raman scattering (SERS). The performance of these sensors is discussed in the context of biological and chemical sensing. The first section addresses the LSPR sensors. Arrays of nanotriangles were evaluated and characterized using realistic protein/ligand interactions. Isolated, single nanoparticles were used for chemosensing and performed comparably to the nanoparticle array sensors. In particular, we highlight the effect of nanoparticle morphology on sensing response. The second section details the use of SERS sensors using metal film over nanosphere (MFON) surfaces. The high SERS enhancements and long-term stability of MFONs were exploited in order to develop SERS-based sensors for two important target molecules: a Bacillus anthracis biomarker and glucose in a serum protein mixture.