ArticlePDF Available

Using Remote Sensing to Identify Changes in Land Use and Sources of Fecal Bacteria to Support a Watershed Transport Model

MDPI
Water
Authors:

Abstract and Figures

The contamination of shellfish harvesting areas by fecal bacteria in the Annapolis Basin of Nova Scotia, Canada, is a recurring problem which has consequences for industry, government, and local communities. This study contributes to the development of an integrated water quality forecasting system to improve the efficiency and effectiveness of industry management. The proposed integrated forecasting framework is composed of a database containing contamination sources, hydrodynamics of the Annapolis Basin, Escherichia coli (E. coli) loadings and watershed hydrology scenarios, coupled with environmental conditions of the region (e.g., temperature, precipitation, evaporation, and ultraviolet light). For integration into this framework, this study presents a viable methodology for assessing the contribution of fecal bacteria originating from a watershed. The proposed methodology investigated the application of high resolution remote sensing, coupled with the commercially available product, MIKE 11, to monitor watershed land use and its impact on water quality. Remote sensing proved to be an extremely useful tool in the identification of sources of fecal bacteria contamination, as well as the detection of land use change over time. Validation of the MIKE 11 model produced very good agreement (R² = 0.88, E = 0.85) between predicted and observed river flows, while model calibration of E. coli concentrations showed fair agreement (R² = 0.51 and E = 0.38) between predicted and observed values. A proper evaluation of the MIKE 11 model was constrained due to limited water sampling. However, the model was very effective in predicting times of high contamination for use in the integrated forecasting framework, especially during substantial precipitation events.
Content may be subject to copyright.
Water 2014, 6, 1925-1944; doi:10.3390/w6071925
water
ISSN 2073-4441
www.mdpi.com/journal/water
Article
Using Remote Sensing to Identify Changes in Land Use
and Sources of Fecal Bacteria to Support a Watershed
Transport Model
Sean Butler 1,*, Tim Webster 1, Anna Redden 2, Jennie Rand 3, Nathan Crowell 1
and William Livingstone 1
1 Applied Geomatics Research Group, Centre of Geographic Sciences (COGS), Nova Scotia
Community College, 50 Elliot Road RR#1 Lawrencetown, Nova Scotia, NS B0S 1M0, Canada;
E-Mails: timothy.webster@nscc.ca (T.W.); nathan.crowell@nscc.ca (N.C.);
william.livingstone@nscc.ca (W.L.)
2 Acadia Centre for Estuarine Research, Acadia University, 23 Westwood Avenue, Wolfville,
Nova Scotia, NS B4P 2R6, Canada; E-Mail: anna.redden@acadiau.ca
3 Ivan Curry School of Engineering, Acadia University, Wolfville, Nova Scotia, NS B4P 2R6,
Canada; E-Mail: jennie.rand@acadiau.ca
* Author to whom correspondence should be addressed; E-Mail: sean.m.m.butler@gmail.com;
Tel.: +1-778-686-5818.
Received: 3 March 2014; in revised form: 2 June 2014 / Accepted: 20 June 2014 /
Published: 4 July 2014
Abstract: The contamination of shellfish harvesting areas by fecal bacteria in the
Annapolis Basin of Nova Scotia, Canada, is a recurring problem which has consequences
for industry, government, and local communities. This study contributes to the
development of an integrated water quality forecasting system to improve the efficiency
and effectiveness of industry management. The proposed integrated forecasting framework
is composed of a database containing contamination sources, hydrodynamics of the
Annapolis Basin, Escherichia coli (E. coli) loadings and watershed hydrology scenarios,
coupled with environmental conditions of the region (e.g., temperature, precipitation,
evaporation, and ultraviolet light). For integration into this framework, this study presents
a viable methodology for assessing the contribution of fecal bacteria originating from
a watershed. The proposed methodology investigated the application of high resolution
remote sensing, coupled with the commercially available product, MIKE 11, to monitor
watershed land use and its impact on water quality. Remote sensing proved to be an extremely
OPEN ACCESS
Water 2014, 6 1926
useful tool in the identification of sources of fecal bacteria contamination, as well as the
detection of land use change over time. Validation of the MIKE 11 model produced very
good agreement (R
2
= 0.88, E = 0.85) between predicted and observed river flows, while
model calibration of E. coli concentrations showed fair agreement (R
2
= 0.51 and E = 0.38)
between predicted and observed values. A proper evaluation of the MIKE 11 model was
constrained due to limited water sampling. However, the model was very effective in
predicting times of high contamination for use in the integrated forecasting framework,
especially during substantial precipitation events.
Keywords: remote sensing; MIKE 11; Escherichia coli; shellfish; water quality
1. Introduction
The contamination of shellfish harvesting areas by fecal bacteria in the Annapolis Basin, Nova
Scotia, NS, Canada (Figure 1), is a recurring problem which has consequences for industry,
government, and local communities. The proposed management system is the development of
an integrated forecasting system to predict locations of Escherichia coli (E. coli) contamination.
By knowing the spatial extent of poor water quality, regulation of bed closures will become more
efficient and effective. The proposed integrated forecasting framework is composed of dynamic
environmental conditions (e.g., temperature, precipitation, evapotranspiration, ultraviolet light),
coupled with a database containing site-specific sources of contamination, watershed hydrology,
estuarine hydrodynamics (MIKE 21), E. coli loadings scenarios and decay factors.
Figure 1. Annapolis Basin study area with Moose River catchment. Gauging station is
located above tidal influence.
Water 2014, 6 1927
For use in the integrated forecasting framework, the focus of this paper is to present a viable
methodology for assessing the contribution of fecal bacteria contamination originating from a watershed.
At present, industry regulators perform widespread closures of harvesting areas following heavy
rainfall events. While wastewater treatment plants are considered the primary source of fecal
contamination within the basin, the identification of other point and non-point sources from land use
within the surrounding watersheds has been limited [1]. Regulators perform a survey of potential sources
directly adjacent to the coast and do not examine potential sources higher in the watershed. As an alternate
approach to industry regulation, this study investigates the use of high resolution remote sensing
coupled with watershed modelling to monitor land use change and its impact on water quality.
In order for industry regulators to have a proper understanding of these sources of contamination
and their effect on water quality, changes in land use need to be updated and assessed on a regular
basis. Water quality monitoring is currently limited to the Annapolis Basin, therefore preventing the
identification of unknown contaminant sources within the watersheds. The use of high resolution
remote sensing presents a potential solution to this issue through its ability to efficiently locate and
monitor changes in land use, enabling regulators to perform strategic water quality monitoring.
This approach may offer improvements to targeted sampling protocols for many regulators facing
budgetary constraints on field staff and water sampling.
Once sources of contamination are identified and evaluated, a modelling approach can be adopted
to predict periods of high contamination. In this study we used a commercially available product,
MIKE 11, to test the viability of this approach.
There is a substantial amount of past research into the modelling of water quality. However, the use
of MIKE 11 to model fecal bacteria transport has been limited. Past applications of a river model such
as MIKE 11 have been heavily focused on the design and operation of hydraulic structures, or for the
purpose of flood prediction and analysis [2]. While little research has made use of MIKE 11 for the
sole purpose of fecal bacteria modelling, other techniques and modelling methods have been used to
estimate fecal bacteria loadings from watersheds, including time step limited models [3–5].
Valiela et al. [6] evaluated fecal coliform stock size and developed estimates of fecal bacteria
loadings in Buttermilk Bay, Massachusetts. Sources of bacteria were identified and characterized, and
the size of stocks was evaluated in sediment, the water column and sea wrack. Findings in this study
suggested the re-suspension of fecal bacteria from sediment is a major contributor to high coliform
levels in the water column. This introduces an important consideration to the modelling of fecal
bacteria but was beyond the scope of our analysis and was not simulated in the study.
Riou et al. [7] investigated the contributions of fecal bacteria from small tributaries of a coastal area
and their impact on shellfish quality. Their findings stressed the importance of the relationship between
fecal pollution and high rainfall events. Following rainfall events and subsequent high flow conditions,
fluxes in E. coli were 50 times higher than under normal weather conditions [7]. Kelsey et al. [8]
developed a predictive model of bacterial contamination of shellfish using remote sensing precipitation
data along with additional environmental and climatic data. The study findings indicated a substantial
influence of temperature and salinity on bacteria concentrations. While these conditions were
not investigated in this study, they will be further studied as part of the integrated water quality
forecasting system.
Water 2014, 6 1928
The Soil and Water Assessment Tool (SWAT) microbial sub-model has been successfully applied
to simulate the fate and transport of fecal bacteria on a daily time step [4,5,9]. Bougeard et al. [9] used
the SWAT microbial sub-model to estimate E. coli fluxes in a catchment and its impact on the shellfish
industry in Daoulas, France. This study stressed the importance of a continuous model to properly
simulate constant fluxes of fecal bacteria from various sources. The advantage of continuous
modelling in catchments and estuaries is the ability to assess response time and time of water quality
recovery in realistic conditions [9].
Manache et al. [10] applied the continuous water quality model, DUFLOW, to simulate fecal
bacteria concentrations in surface water. This study highlighted the importance of sufficient sampling
for calibration and validation of models, which proved to be a limitation of this study. Liu et al. [11]
modeled fecal coliform loadings in St. Louis Bay, Missouri using the Environmental Fluid Dynamic
Code (EFDC) and Hydrological Simulation Program Fortran (HSPF). The EFDC was used to model
the bay and major tributaries, while the HSPF was used to model the watersheds. Similar to Riou et al. [7],
the study highlighted the influence of high flow conditions on fecal bacteria contamination. Two flow
conditions—a dry weather and wet weather scenario—were modelled, with the latter exerting a greater
stress on fecal coliform levels. Kelsey et al. [12] used Geographic Information Systems (GIS) and
regression analysis to analyze relationships between land use and fecal coliform pollution in a South
Carolina estuary. Fecal loadings from pets in urban areas were considered the primary source of
pollution. More relevant to this study, the authors highlighted the importance of antecedent conditions
on bacteria loadings, as they found a 48-hour rainfall total was more relevant to bacteria densities than
a 24-hour total.
While the continuous simulations generated by the MIKE 11 model keep track of antecedent
conditions, many other models explored were event-based models which do not have this capability.
The ability of the MIKE 11 model to generate continuous simulations on an unlimited time step presented
an advantage over time step limited models. For example, the SWAT model operates on a daily time
step, and results in previous studies have drawn the conclusion that results are more favorable on
a monthly temporal scale than a daily time frame [13]. The goal of the integrated forecasting system is
to generate water quality forecasts, ideally within a 72-hour timeframe, so the ability of the model to
run on an unlimited time step, along with its compatibility with the 2-dimensional estuarine model,
MIKE 21, made it a practical model selection.
2. Materials and Methods
2.1. Study Area
The Annapolis Basin watersheds encompass an area with a wide variety of soil types, topography,
and land cover. Six major rivers contributing to the Basin were gauged in late October of 2009.
After monitoring these different rivers for water stage, flow, and fecal bacteria concentrations for
approximately one year, the Moose River catchment was deemed the most appropriate study site to
begin applying the MIKE 11 model.
The Moose River catchment is one of the largest contributors to the Annapolis Basin, encompassing
an area of approximately 68 km2 (Figure 1). Of the six rivers monitored, the Moose River catchment
Water 2014, 6 1929
consistently produced high levels of E. coli during high runoff events. This fact, along with the diverse
soil types, topography and land cover, made Moose River a practical selection to evaluate the
effectiveness of remote sensing and the MIKE 11 model in this study. The majority of the catchment is
forested, accounting for approximately 66% of the land cover, followed by exposed soil (14%),
agriculture (13%), wetlands and water bodies (6%), and developed areas (1%). Agricultural land cover
in the area is dominated by hay fields, along with two mink farms that would later be considered
a potential major contributor of fecal pollution. Soil types within the catchment have varying drainage
characteristics, ranging from high clay content soils with poor drainage (low infiltration) to soils with
excellent drainage (high infiltration). The topography of the region is varied, with average slopes of the
river sub-catchments ranging from 3.2° to 11.8°. The average slope of the entire catchment is 6.5°.
2.2. MIKE 11 Model Description
The MIKE 11 model framework applied in this study is comprised of three major components:
(1) the Rainfall Runoff (NAM) module; (2) the Hydrodynamic (HD) module; and (3) the Load
Calculator and Advection Dispersion (AD) module. The NAM module simulates the volume of runoff
produced for a given river catchment, which can then be routed along the river network using the
hydrodynamic capabilities of the HD module. The GIS-based Load Calculator is then used to
incorporate bacteria loadings to be transported through the river via the AD module. The MIKE 11
model has been successfully applied in several studies [2,14–16] for a variety of purposes, ranging
from water resources planning, flood forecasting to water quality.
The NAM model was first developed at the Technical University of Denmark in the Institute
of Hydrodynamics and Hydraulic Engineering [17]. NAM is the abbreviation of the Danish
“Nedbør-Afstrømnings-Model”, meaning precipitation-runoff-model, also named RDII in English
standing for Rainfall Dependent Inflow and Infiltration model. The NAM model is a lumped,
conceptual model, which simulates rainfall runoff processes by continuously accounting for the water
content in four storages: (1) snow storage; (2) surface storage; (3) lower (root zone) storage; and (4)
groundwater storage [18]. Based on meteorological inputs of precipitation, potential evapotranspiration,
and air temperature, the model generates catchment runoff split into overland flow, interflow and
baseflow components.
The HD module is an implicit finite difference model for one-dimensional unsteady flow
computation. Using the predicted runoff volumes from the NAM module, the HD module routes the
water along the river network. Based on given boundary conditions, equations of conservation of
continuity and momentum (Saint Venant equations) are solved numerically between the grid points for
a given time interval [19].
The Load Calculator is used to determine the pollution loads of river catchments. Because the Load
Calculator is incorporated into the ArcGIS interface, it has geographic capabilities of addressing the source
location and subsequent transport of pollutants through river catchments. Incorporated as either point or
non-point sources, pollutant loads are initially calculated as constant mass fluxes for each sub-catchment
based on loading application rates and catchment runoff calculated in the NAM module [20].
Based on the resulting load calculation, the advection (i.e., transport) and dispersion of pollutants
within waterways is simulated using the AD module, coupled with the hydrodynamics of the HD
Water 2014, 6 1930
module. The AD module is based on the one-dimensional equation of conservation of mass of a dissolved
or suspended material [21]. Once the hydrodynamics are modeled for a given river system, the HD
module outputs of discharge, water level, cross sectional area and hydraulic radius is used in the
advection dispersion equation. Like the HD module, this advection dispersion equation is solved using
an implicit finite difference scheme.
In order to develop a simulation within the MIKE 11 model, several inputs and procedures are
required to properly represent a natural system. In-field data collection, as well as post-processing of
data, calibration and validation of simulations was involved in the modelling process.
2.3. Data Collection
2.3.1. River Stage and Discharge
A gauging station was established above tidal influence near the Moose River outlet in October 2009.
An installed water level logger recorded water level readings at 15 minute intervals. Field visits to the
site included water sampling and flow measurements, which involved the use of an electromagnetic
velocity meter which measured the rate of flow. The geometry of the river bed (i.e., depth) and flow rates
at the site of a cross section was measured at specific width intervals. From these measurements, the
discharge of water (m3/s) could be calculated. As more flow measurements were collected, river discharge
could be related to corresponding river stage readings through the development of a rating curve. The
resulting time series of river discharge was then used for calibration and validation of the model.
2.3.2. Weather
Weather stations operated by the Applied Geomatics Research Group (AGRG) are located at three
sites surrounding the Basin. Time series of rainfall were required for use in the NAM module to
simulate the hydrology of the catchments, while a time series of air temperature was used for the
calculation of potential evapotranspiration. Potential evapotranspiration accounts for all evaporation
and plant transpiration within the watershed. Daily evapotranspiration values were calculated using the
Penman-Monteith method [22]. This calculation requires daily mean air temperatures, wind speed,
relative humidity, and solar radiation.
The Thiessen polygon method [23] was employed to determine the distribution of precipitation and
temperature around the basin. The effect of altitude on temperature was assumed to be negligible, as
most of the Moose River watershed is below 200 metres in elevation, with a maximum elevation of
220 m. Polygons were created by measuring the distance to the halfway point between two locations
(i.e., weather stations), where a perpendicular bi-sector is created. Perpendicular lines were connected,
forming a series of polygons with weather stations positioned in the centre of the polygons. If the
catchment fell within a polygon, it was considered closer to that particular station than other stations.
Referring to Figure 2, most of the Moose River catchment falls within the Bear River weather station
Thiessen polygon, so meteorological data from this station was used as input into the MIKE 11 model.
Water 2014, 6 1931
Figure 2. Moose River catchment with Thiessen polygons. Bear River weather station
meteorological data was used for input into the MIKE 11 model.
2.3.3. Water Sampling and Lab Analyses
A total of 10 water samples were collected at the gauging station location in sterile bottles during
the harvesting season for shellfish (April–November). These samples were used for the calibration of
the model. Further samples were collected at targeted locations that were suspected sources of
contamination. However, these samples did not contribute to the calibration of the model. The samples
were 100 mL in volume, allowing for the determination of E. coli concentrations (Most Probable
Number (MPN) 100 mL
1
) through lab analyses. Duplicate samples were collected to ensure validity
of results. The IDEXX [24] Colilert Quanti-tray
®
system was used to enumerate bacteria in a collected
water sample. A Colilert
®
reagent packet was added to each sample and shaken until dissolved.
Samples were then transferred to IDEXX Quanti-trays
®
and sealed using a Quanti-tray
®
sealer.
The trays were incubated at 37 °C for 22–24 h then counted using the MPN table provided by IDEXX.
For a given 100 mL sample, a maximum number of bacteria could be enumerated (2420 MPN 100 mL
1
).
For some sampling events, dilutions of samples were performed to address this limitation. This was
accomplished through a procedure of adding an autoclaved volume of Milli-Q water to the water
sample (e.g., 50 mL water sample +50 mL Milli-Q). Based on the number of times the sample was
diluted, the number of fecal bacteria from the original sample could be calculated.
Water 2014, 6 1932
2.4. Model Requirements
2.4.1. Rainfall Runoff (NAM) Module
Development of the NAM module includes watershed delineation and calibration of the internal
parameters. Watershed delineation was completed using RiverTools software with the use of a hybrid
digital elevation model (DEM) of lidar (Light Detection and Ranging; collected and processed by
AGRG) and a five-meter contour-derived DEM. For calibration of the internal parameters, the lumped
catchment areas contributing to a gauging station were calculated for input into the NAM module.
With the use of the created time series of rainfall and potential evapotranspiration, the NAM module
was calibrated against observed values of discharge from 1 August to 31 December 2010.
The parameters of these models cannot, in general, be obtained directly from a measureable quantity
of catchment characteristics [18]. However, in order to properly model the hydrodynamics of the river
system, the entire watershed can be calibrated further at a more complex level (i.e., sub-catchments) by
accounting for varied soil types, land cover and topography. To understand the distribution of hydrology
efficiently, the use of the Soil Conservation Service (SCS) curve number (CN) method [25] and a
gradient (slope) raster were implemented to develop a hydrologic measure of soil-land cover
combinations and slope. It is important to note that there is no direct method of translating the calculated
curve numbers and slopes into NAM parameters. Regardless, these calculations make it easier to
understand the distribution of hydrology, and to reflect this distribution in the appropriate NAM
parameters of the sub-catchments. Following this process, NAM parameters were adjusted accordingly
using a trial and error process of calibration against observed values of discharge.
2.4.2. Hydrodynamic Module
The hydrodynamics of the river system require several data inputs, including the river network,
cross sections, boundary conditions, channel roughness coefficients, and total runoff generated by the
NAM module. The river network was created within RiverTools and edited within MIKE 11 GIS.
Cross sections were created both digitally with the use of the DEM, and manually with collected
survey data at various upstream and downstream locations of the river.
Boundary conditions are required by the model at upstream and downstream boundaries. For the
upstream boundaries, the boundary applied can be assumed to equal a constant of zero (no discharge).
This is because the NAM module is contributing water (overland flow, interflow and baseflow) to the
river system via lateral inflow. Because the downstream boundary is located at the confluence of the
river with the estuary, the boundary applied is a time series file of tidal water levels. These tidal water
levels were extracted from MIKE 21 hydrodynamic simulations, previously generated for contribution
to the integrated forecasting system. The channel roughness coefficient used in this study was the
Manning (n) coefficient. The roughness coefficient is necessary to account for any flow resistance
created by the river channel. This was calibrated against observed values of discharge for the period of
1 August to 31 December 2010.
The generated total runoff of the NAM module is divided into overland flow, interflow and
baseflow components. Resulting time series of discharge can then be routed along the river network
Water 2014, 6 1933
through a hydrodynamic simulation. Calibration of both the Manning coefficient and sub-catchment
NAM parameters was then completed through a trial and error process.
2.4.3. Load Calculator and Advection Dispersion (AD) Module
Before using the Load Calculator and Advection Dispersion module, sources of fecal bacteria had
to be identified and quantified in terms of potential loadings. The identification of bacteria sources
were completed with the use of high resolution remote sensing, field and aerial surveys, available
geographic data, and the review of appropriate literature. The major sources identified included
agriculture, malfunctioning septic systems, waterfowl and other wildlife. Within the Load Calculator,
pollutant loadings (i.e., concentrations) are calculated in the runoff of catchments by accounting for
loading rates and runoff volume estimates from the NAM module. One challenge of the study was
obtaining sufficient data concerning agriculture, as information regarding farming practices is considered
confidential by agriculture regulators. In order to address this limitation, satellite imagery and aerial
photography was used to identify the location of farm sites, and also proved to be effective in providing
a better understanding of land use change over time. Unlike traditional Landsat satellite 30-metre pixel
imagery, higher resolution imagery can provide details on land use and barn types in agricultural areas.
For example, a large scale mink farm was identified within the Moose River catchment using 2010
Digital Globe World View 2 satellite imagery. However, the operation did not exist in 2005 according
to an aerial photograph of the same location (Figure 3). This presented an efficient methodology in
monitoring changes in land use and land cover over time. Once farm locations were identified, further
information (e.g., livestock numbers) was gathered through correspondence with local farmers, while
water sampling in adjacent waterways enabled the assessment of contamination risk.
Figure 3. Aerial photograph (2005) (a) and Digital Globe World View 2 satellite imagery
(2010); (b) of mink farm site within Moose River watershed.
(a) (b)
A total of two large scale mink farm operations existed within the Moose River watershed.
Unfortunately, no loading rates or bacteria concentration information could be found for mink
species. Because this information was available for raccoon, it was assumed the diet and physiology
Water 2014, 6 1934
of the two species was similar enough to apply the same loading rate. The loading rate applied was
3.71 × 109 MPN·day1 per individual [26].
A failure rate of 15% was applied to septic systems within the catchments, based on previous
estimates of 10%–15% [27]. Failure rates of septic systems are site specific, as it is dependent on
system type, soil type and maintenance frequency [28]. Septic loading rates were calculated according
to the following equation:
L = RF × Q × C (1)
L = Per capita loading rate (MPN person1·day1);
RF = Failure rate (%);
Q = Per capita wastewater discharge (dL day1);
C = Wastewater E. coli concentration (MPN·dL1).
The per capita wastewater discharge was assumed to be 70 US gallons (~265 L) per day [27].
The wastewater E. coli concentration was assumed to be 4.8 × 106 MPN·dL1 [28]. The resulting per
capita loading rate (L) was 1.91 × 109 MPN·person1·day1. Final household loading rates were
calculated with the assumption that each home contains three people.
Population numbers of waterfowl and wildlife were gathered from 2 major sources—the Canadian
Wildlife Service and the Department of Natural Resources, both of which conduct aerial and ground
surveys of different species. Constant population densities, fecal bacteria concentrations [29] and
loading rates (6.48 × 107 MPN·day1) [28] of waterfowl were applied to wetlands based on coverage
areas. Population densities and loading rates [26] for raccoon (3.71 × 109 MPN·day1), beaver, muskrat
and deer (1.6 × 109 MPN·day1) were applied to forested land based on coverage areas.
Runoff coefficients and decay rates are used within the Load Calculator to generate a more accurate
measure of the loading that is available for transport via the advection dispersion module. In order to
account for bacteria die-off from factors such as ultraviolet light and temperature, a distance decay rate
was applied within the Load Calculator. Distance decay is a raster-based method of applying a first
order decay rate of bacteria over a specified distance. As suggested by Walsh and Kunapo [30],
a decay rate of 97% per 47 m was applied to septic system and agricultural loadings.
The runoff coefficient is a value indicating the amount of loading that is available for transport.
Vinten et al. [31] suggested up to 14% of loadings applied by grazing sheep reached adjacent
waterways. Fenlon et al. [32] suggested that 7% of E. coli loadings applied to grazing land was
exported to field drain waterways during rainfall events. They also estimated that 2% of the exported
load traveled below this field drain layer. In this study, mink farmers claimed that waste was contained
and eventually removed from site. Upon further investigation, however, water samples taken both
upstream (124 MPN·mL1) and downstream (>2420 MPN·mL1) of a farm site during a high rainfall
event identified a potential source of E. coli contamination (Figure 4).
Further sampling during a separate rainfall event also yielded high counts downstream of the farm
site (4840 MPN·mL1). This created an obvious challenge in determining a practical runoff coefficient.
After running simulations using various documented runoff coefficient values, a value of 5% applied
to mink farm operations yielded the best agreement with observed counts of E. coli bacteria.
Water 2014, 6 1935
Figure 4. Water sample locations upstream and downstream of mink farm site (elevations
represented by color—higher elevation: red/yellow; lower elevation: green/blue) (a); with
corresponding total rainfall from Bear River weather station (b).
(a)
(b)
The advection dispersion parameters include a dispersion coefficient (D), a dispersion factor (a),
and the dispersion exponent (b). The dispersion coefficient is described as a function of the mean flow
velocity (V) [21]:
D = a × V
b
(2)
The ability to calibrate AD parameters was limited for this study. Typical values of a dispersion
coefficient range from 1–5 m
2
/s for small streams to 5–20 m
2
/s for rivers [21]. A dispersion factor of
20.0 and an exponent of 1.0 were selected for this study. It was assumed no substantial decay took
place within the river, so no decay rate was applied within the advection dispersion module. Research on
the decay of fecal bacteria is currently taking place for the purpose of this project, including the effect
Water 2014, 6 1936
of ultraviolet light and temperature on decay rates. The results of this work will be applied within the
model at a later date.
3. Results and Discussion
To properly evaluate the MIKE 11 model, two main statistical analysis methods were used: (1) the
coefficient of determination (R2), and (2) the Nash-Sutcliffe Efficiency Index (E) [33]. These methods
were applied to both the calibration (1 August–31 December 2010) and validation (1 April–31 July
2010) periods using a 15 min time step.
3.1. Rainfall Module
Final calibration of the lumped NAM parameters (Table 1) yielded R2 and E values of 0.93 and
0.91, respectively, indicating excellent agreement between simulated and observed discharge.
Table 1. Nedbør-Afstrømnings-Model (NAM) parameters of lumped Moose River catchment.
Parameter Description Parameter value
Umax Maximum water content in surface storage (mm) 13.0
Lmax Maximum water content in root zone storage (mm) 100.0
CQOF Overland flow runoff coefficient (0–1) 0.41
CKIF Time constant for routing interflow (hours) 650
CK1,2 Time constant for routing overland flow (hours) 12
TOF Root zone threshold value for overland flow (0–1) 0.1
TIF Root zone threshold value for interflow (0–1) 0.1
TG Root zone threshold value for groundwater recharge (0–1) 0.1
CKBF Time constant for routing baseflow (hours) 1000
These results are consistent with Jennings et al. [14] (R2 = 0.72–0.91), and superior to Shamsudin
and Hashim [15] (E = 0.75), and were therefore considered sufficient for use in the HD module.
3.2. Hydrodynamic Module
Calibration of the HD module against measured flows yielded a Manning (n) roughness coefficient
of 0.024. Adjusted NAM parameter values according to SCS curve number and slope distribution of
the sub-catchments produced excellent correlation (R2 = 0.91) and very good agreement (E = 0.84)
between predicted and observed flows for the calibration period.
The calibrated model was next simulated for a validation period of 1 April to 31 July 2010,
producing very good agreement (R2 = 0.88 and E = 0.85) between simulated and observed flows
(Figure 5). The mean observed discharge for the validation period was 0.63 m3/s, compared with
a mean simulated discharge of 0.53 m3/s. The model captured peak discharge values within 1–4 h of
observed flows. A 6 June 2010 rain event yielded observed flows of 6.4 m3/s, compared with simulated
flows of 6.7 m3/s. Similarly, a 15 July 2010 rain event produced observed flows of 3.7 m3/s, compared
with simulated flows of 4.1 m3/s. Assuming sufficient agreement of flows, calibration of the load
calculator and advection dispersion parameters could be completed.
Water 2014, 6 1937
Figure 5. Simulated versus observed discharge values for validated hydrodynamic (HD)
module (1 April–31 July 2010) (a); and observed rainfall versus simulated discharge values
for validated HD module (b).
(a)
(b)
3.3. Load Calculator and Advection Dispersion Module
Insufficient sampling would not allow for both calibration and validation of the model. Calibration of
the model was completed from June until November 2010 when water sampling took place.
To normalize the bacteria concentration values, a log transformation was applied to evaluate the model
performance. Following the log transformation, the calibrated model determined fair agreement (R
2
= 0.51
and E = 0.38) between measured and predicted concentrations (Figure 6).
Model performance is comparable to results of Parajuli [13] (R
2
= 0.36 and E = 0.21), who calibrated
the SWAT model on a daily time step to model fecal bacteria. To address uncertainties in biological
models, use of frequency curve analysis [4] and visual comparison [10,34] is recommended.
Frequency curve analysis compares observed and predicted frequency percentages. For example,
37.5% of measured E. coli concentrations were below 10 MPN 100 mL
1
, compared with 32.3% of
simulated concentrations below the same concentration. Observed percentages were calculated based on
a total sample number of eight water samples collected at the gauging station. Because three of the samples
Water 2014, 6 1938
were collected during the same rain event (4 August 2010), it was considered one sample within one
grouping (>600 MPN 100 mL1) to be more representative of the measured concentration frequency.
Figure 6. XY scatter of simulated versus observed E. coli concentrations (log transformed).
Concentrations reflect bacteria concentrations at the study area gauging station.
Analysis using this method produced fair correlation (R2 = 0.45) between simulated and observed
concentrations (Figure 7). Baffaut and Benson [4] validated up to 70% of their frequency curve to
compare model predicted concentrations with measured concentrations with average plus or minus one
standard deviation. Bougeard et al. [9] obtained excellent agreement (R2 = 0.95 to 0.98) after applying
frequency curve analysis.
Figure 7. Frequency curves (%) of simulated versus observed E. coli concentrations.
The major requirement of the model for use in the water quality forecasting system is to identify
periods of high contamination. As shown in Figure 7, frequency curve analysis has indicated the
MIKE 11 model has achieved this requirement. Unfavorable results can be attributed to three major
factors: (1) the small sample size of measured concentrations; (2) seasonal variability of loadings; and
(3) the timing of discharge and concentration response.
Water 2014, 6 1939
3.3.1. Sample Size
The number of observed E. coli counts sampled was only ten for the advection dispersion calibration
period of six months (Figure 8). Sampling began in June 2010 and continued on until November 2010.
Sampling was not completed on a regular basis, and was heavily event-based during rain events.
Figure 8. Observed E. coli concentrations of Moose River water samples.
Referring to Figure 9, visual comparison of observed versus simulated concentrations suggest more
satisfactory agreement than the above statistical analysis implies. Small sample sizes make it very
difficult to compute meaningful statistics as even one occurrence of poor agreement can distort an
overall fit statistic [10]. For example, frequency analysis may address the issue of proper timing of
simulations, yet a small sample size of measured values does not provide a sufficient representation of the
physical or biological processes at work. As recommended by Canale et al. [34] and Manache et al. [10], a
small sample size of measured concentrations often make statistical analysis redundant, leaving visual
comparison as the only reliable method to evaluate a model.
Figure 9. Simulated versus observed E. coli concentrations for calibrated advection
dispersion module.
Water 2014, 6 1940
3.3.2. Seasonal Variation
Seasonal variation in E. coli loadings can also be observed as reflected in the discharge and
concentrations throughout the year. High simulated concentrations of E. coli are known to be heavily
based on bacteria loadings from mink farms. Simulations run without mink farms yielded much lower
peak concentrations (14 MPN 100 mL1) during the 4 August 2010 sampling event, compared with
1791 MPN 100 mL1 with mink farms included. Population numbers used were assumed to be at their
highest—i.e., total number of mature males, females, and juvenile kits. This model did not address the
dynamic process of the mink farming production cycle, which may explain disagreement between
predicted and observed concentrations. For example, it is assumed the summer population of mink is at
its peak following spring breeding and whelping. Over-estimation of concentrations during the
November sampling (Figure 9) may suggest a decline in the mink population. Furthermore,
information regarding the containment and fate of mink waste was limited. A correlation was observed
between high rainfall events and high E. coli concentrations in waterways adjacent to the mink farms.
During these rainfall events, it is possible the containment of waste was compromised. Additionally,
information concerning possible spreading of mink waste on adjacent fields was not available, and was
therefore not addressed in the model. The dynamic nature of farming presented a major challenge to
this study. Local farm conditions are constantly changing, and are thus very difficult to model without
firm knowledge of the farming process. While the use of remote sensing facilitates the identification of
land use within an area of interest, this study exemplifies the importance of diligent field examination.
Agriculture regulators consider information about farming practices confidential and do not make it
available to the public domain. As a result, the availability of this information is heavily dependent on
correspondence with farmers once new potential bacteria sources are identified.
3.3.3. Timing
While timing of concentrations during baseflow conditions is not an issue, prediction of the proper
timing during high runoff events is more difficult. The model treats loadings as flow-based pollutants,
so the timing of specific events is dependent on overland flow and interflow of the NAM module.
For example, the model response to the 4 August 2010 rain event produced a quick increase in bacteria
concentration, yet the response was approximately three hours later than measured values. Consequently,
the model simulation for the 14 July 2010 rain event had the opposite response, generating a quick rise
in concentration three hours earlier than measured values. Regardless of this, periods of high contamination
were still captured in the model simulations, as indicated by the frequency curve analysis.
4. Conclusions
This study evaluated the use of high resolution remote sensing and watershed modelling to monitor
fecal bacteria contamination resulting from land use practices. Remote sensing proved to be an extremely
useful tool in the identification of sources of fecal bacteria contamination, as well as the detection of
changes in land use over time. Water quality monitoring can present a challenge to water quality
managers with limited budgets and human resources. The identification of these point and non-point
sources through the use of remote sensing technologies will allow water quality managers to improve
Water 2014, 6 1941
the efficiency and effectiveness of their monitoring programs through more focused water sampling
and field examination.
This study has also shown that existing government data and current knowledge regarding the
origin of fecal contamination has limitations in accurately predicting water quality. While the current
focus of fecal contamination is attributed to municipal wastewater treatment plants, this study has
indicated that other sources of contamination exist within a basin watershed. Furthermore, land use
practices within a given area can be very dynamic, creating challenges in understanding their impact
on water quality over time. This study presented a feasible alternative to industry regulation and water
quality management involving the application of remote sensing to monitor these changes in land use,
coupled with a watershed model to predict patterns of low and high E. coli contamination. While
proper evaluation of the MIKE 11 model was constrained due to limited water sampling, the use of the
model in producing a continuous estimation of E. coli, most notably during periods of high
contamination, was shown to be promising for use in the integrated forecasting system.
Very favorable results were found for the calibration and validation of river flows, providing further
support to the use of MIKE 11 as a valuable river modelling tool. The MIKE 11 model performed
reasonably in predicting E. coli concentrations. However, for more comprehensive model assessment,
there is a need for more sampling of water quality for the purpose of calibration and validation. A small
sample number of measured concentrations made it difficult for proper evaluation of water quality
prediction. However, considering this limitation, the model predictions of E. coli concentrations was very
favorable. The main purpose of the model is to identify periods of high contamination. This study has
shown that MIKE 11 is suitable for this purpose, as indicated by the frequency curve analysis.
Acknowledgments
The funding which enabled this study was provided by the Atlantic Innovation Fund (AIF) of the
Atlantic Canada Opportunities Agency (ACOA). We would like to thank Mike Brylinsky of the Acadia
Centre for Estuarine Research, Peter MacDermott and Shalon Oldford-MacLellan of the Applied
Geomatics Research Group/Nova Scotia Community College (AGRG/NSCC), along with Greg Rose and
Chris Inkratas of Golder Associates for their substantial contributions to this study. Thank you to
David Colville and Wayne Reiger of AGRG/NSCC for providing the weather station data used in this
study. Thank you to John Roos from Digital Globe for providing the World View 2 imagery. Thank you
to Bruce Pollard of the Canadian Wildlife Service and Lawrence K. Benjamin of the Department of
Natural Resources for supplying information on wildlife population surveys.
Author Contributions
Sean Butler was responsible for the data collection, model development, and subsequent analyses
involved in this study. Tim Webster supervised the study, and provided guidance on all facets of this
work, with particular focus on remote sensing, watershed modelling, and Geographic Information
Systems (GIS). Anna Redden provided supervision through input on water quality and the research
methodology applied in this study. Jennie Rand supervised this work through input on study design
and water quality, and through her technical guidance with lab analyses. Nathan Crowell provided
technical direction on remote sensing, GIS and watershed modelling, and made valuable contributions
Water 2014, 6 1942
to the writing of this article. William Livingstone served as the project manager for this research, and
provided guidance on the MIKE 11 model.
Conflicts of Interest
The authors declare no conflict of interest.
References
1. Roberts, C.; Craig, C.; MacArthur, D.; Klaamas, P. Re-evaluation report of Nova Scotia Shellfish
Growing Area NS-18-010-001—Annapolis Basin; EC Manuscript Report ST-AR-2009-04;
Environment Canada: Dartmouth, Canada, 2009.
2. Kamel, A.H. Application of a hydrodynamic MIKE 11 model for the Euphrates River in Iraq.
Slovak J. Civ. Eng. 2008, 2, 1–7.
3. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment
Tool Theoretical Documentation (version 2000); Grassland, Soil and Water Research Laboratory,
Agricultural Research Service: Temple, TX, USA, 2002.
4. Baffaut, C.; Benson, V.W. A bacteria TMDL for Shoal Creek using SWAT modelling and DNA
source tracking. In Proceedings of the Total Maximum Daily Load (TMDL) Environmental
Regulations–II of the Conference, Albuquerque, NM, USA, 8–12 November 2003; pp. 35–40.
5. Parajuli, P.B.; Mankin, K.R.; Barnes, P.L. New methods in modelling source-specific bacteria at
watershed scale using SWAT. In Proceedings of the Watershed Management to Meet Water
Quality Standards and TMDLs (Total Maximum Daily Load) of the Conference, San Antonio, TX,
USA, 10–14 March 2007.
6. Valiela, I.; Alber, M.; LaMontagne, M. Fecal coliform loadings and stocks in Buttermilk Bay,
Massachusetts, USA, and management implications. Environ. Manag. 1991, 15, 659–674.
7. Riou, P.; Le Saux, J.C.; Dumas, F.; Caprais, M.P.; Le Guyader, S.F.; Pommepuy, M. Microbial
impact of small tributaries on water and shellfish quality in shallow coastal areas. Water Res.
2007, 41, 2774–2786.
8. Kelsey, R.H.; Scott, G.I.; Porter, D.E.; Siewicki, T.C.; Edwards, D.G. Improvements to shellfish
harvest area closure decision making using GIS, remote sensing and predictive models. Estuaries
Coasts 2010, 33, 712–722.
9. Bougeard, M.; Le Saux, J.C.; Pérenne, N.; Baffaut, C.; Robin, M.; Pommepuy, M. Modelling of
Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality.
J. Am. Water Resour. Assoc. 2011, 47, 350–366.
10. Manache, G.; Melching, C.S.; Lanyon, R. Calibration of a continuous simulation fecal coliform
model based on historical data analysis. J. Environ. Eng. 2007, 133, 681–691.
11. Liu, Z.; Hashim, N.B.; Kingery, W.L.; Huddleston, D.H. Fecal coliform modelling under two
flow scenarios in St. Louis Bay of Mississippi. J. Environ. Sci. Health 2010, 45, 282–291.
12. Kelsey, H.; Porter, D.E.; Scott, G.; Neet, M.; White, D. Using geographic information systems
and regression analysis to evaluate relationships between land use and fecal coliform bacterial
pollution. J. Exp. Mar. Biol. Ecol. 2004, 298, 197–209.
Water 2014, 6 1943
13. Parajuli, P.B. SWAT Bacteria Sub-model Evaluation and Application. Ph.D. Thesis, Kansas State
University, Manhattan, NY, USA, 2007.
14. Jennings, S.; Elsaesser, B.; Baker, G.; Bree, T.; Daly, D.; Fitzpatrick, J.; Glasgow, G.;
Hunter-Williams, T. An Integrated Approach to Quantifying Groundwater and Surface Water
Contributions of Stream Flow; RPS Consulting Engineers Ltd.: Belfast, Northern Ireland, UK, 2000.
15. Shamsudin, S.; Hashim, N. Rainfall runoff simulation using MIKE 11 NAM. J. Civ. Eng. 2002,
15, 1–13.
16. Malakahmad, A.; Eisakhani, M.; Isa, M.H. Developing MIKE-11 model for water quality
simulation in Bertam River, Cameron Highlands. In Innovations in Water Resources and
Environmental Engineering; In Proceedings of the International Conference on Construction and
Building Technology, National Energy University, Kuala Lumpur, Malaysia, 16–20 June 2008.
17. Nielsen, S.A.; Hansen, E. Numerical simulation of the rainfall runoff process on a daily basis.
Nord. Hydrol. 1973, 4, 171–190.
18. Madsen, H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives.
J. Hydrol. 2000, 235, 276–288.
19. Texas A&M. Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modelling
Inventory, Model Description Form, MIKE 11; Texas A&M University: College Station, TX,
USA, 1999.
20. Danish Hydraulic Institute. MIKE 11 GIS User’s Guide; DHI: Hørsholm, Denmark, 2009.
21. Danish Hydraulic Institute. MIKE 11 Reference Manual; DHI: Hørsholm, Denmark, 2011.
22. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool
Theoretical Documentation (version 2005); Grassland, Soil and Water Research Laboratory,
Agricultural Research Service: Temple, TX, USA, 2005.
23. Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089.
24. Colilert. Available online: http://www.idexx.com/view/xhtml/en_us/water/colilert.jsf?conversationId
=55424 (accessed on 25 October 2010).
25. U.S. Soil Conservation Society. Section 4 Hydrology. In National Engineering Handbook;
U.S. Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1956.
26. MapTech Inc. Fecal Coliform TMDL (Total Maximum Daily Load) Development for Upper
Blackwater River, Virginia; Virginia Department of Environmental Quality and Virginia
Department of Conservation and Recreation: Blacksburg, VA, USA, 2000.
27. U.S. Environmental Protection Agency. Onsite Wastewater Treatment System Manual;
EPA-625-R-00-009; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
28. Petersen, C.M.; Rifai, H.S.; Stein, R. Bacteria load estimator spreadsheet tool for modelling
spatial Escherichia coli loads to an urban bayou. J. Environ. Eng. 2009, 135, 203–217.
29. Alderisio, K.A.; DeLuca, N. Seasonal enumeration of fecal coliform bacteria from the feces of
ring-billed gulls (Larus delawarensis) and Canada geese (Branta canadensis). Appl. Environ.
Microbiol. 1999, 65, 5628–5630.
30. Walsh, C.J.; Kunapo, J. The importance of upland flow paths in determining urban effects on
stream ecosystems. J. N. Am. Benthol. Soc. 2009, 28, 977–990.
Water 2014, 6 1944
31. Vinten, A.J.A.; Douglas, J.T.; Lewis, D.R.; Aitken, M.N.; Fenlon, D.R. Relative risk of surface
water pollution by E. coli derived from faeces of grazing animals compared to slurry application.
Soil Use Manag. 2004, 20, 13–22.
32. Fenlon, D.R.; Ogden, I.D.; Vinten, A.; Svoboda, I. The fate of Escherichia coli and E. coli O157
in cattle slurry after application to land. J. Appl. Microbiol. 2000, 88, 149–156.
33. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion
of principles. J. Hydrol. 1970, 10, 282–290.
34. Canale, R.P.; Auer, M.T.; Owens, E.M.; Heidtke, T.M.; Effler, S.W. Modelling fecal coliform
bacteria–II. Model development and application. Water Res. 1993, 27, 703–714.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
... climate, landscape) may help to better understand the mechanisms controlling bacterial concentrations in rivers. Keeping in mind these caveats, previous studies reported maximum values of MPN equal to 2420 MPN/ 100 mL in Canada (Butler et al., 2014), 5172 MPN/100 mL in Ecuador (Rao et al., 2015), 8000 MPN/100 mL in Belgium (de Brauwere et al., 2011), and 10,000 MPN/100 mL in Netherlands (Vermeulen and Hofstra, 2014) or in a rural area of Laos (Causse et al., 2015). Lyautey et al. (2010) reported 2004 measures of E. coli concentration in Ontario (Canada) with annual means between 10 MPN/ 100 mL and 1000 MPN/100 mL (global median: 64 MPN/100 mL) and only three measures larger than 10,000 MPN/100 mL. ...
Article
Handling editor: Yutao Wang Keywords: Coliforms Microbiological water quality Mixed-effect models Rivers Thailand a b s t r a c t Bacterial concentration is one of the most important aspects of water quality. Many regions in the world are affected by increasing urbanization and a potential increase in bacterial concentrations in waters. We used long-term data from 68 stations in eight watersheds in Eastern Thailand to quantify the temporal and geographical variation in total and fecal coliform bacteria. Descriptive statistics showed considerable seasonal, inter-annual, and geographical variation. In order to quantify this multi-level variation, we built a predictive model of bacterial loads. Using fixed-and mixed-effects regression models, we built a model including the effects of urbanization and other significant variables. The best model, fitted by restricted maximum likelihood, included the effects of season, year, urbanization as fixed effects, and of watershed and station as nested, random effects. Temporal variation was related to seasonal and annual variations. Spatial variation had a very significant impact on the bacterial concentrations. Urbanization was an important factor controlling concentrations of bacteria in rivers: we found that the proportion of urban area around a station had a statistically significant effect on log-transformed total coliform bacterial concentration with a slope equal to 1.3 (SE ¼ 0.3), and on log-transformed fecal coliform bacterial concentration with a slope equal to 1.4 (SE ¼ 0.3). Our model predicts that bacterial concentrations would be multiplied by 20 if land is transformed from non-urban to fully urban.
... Indeed, remote sensing science and the art of acquiring information about an object by observing it from a distance is great alternative for estimating planting date. Indeed, sensors can acquire data remotely while being on board different platforms (i.e: satellites, aeroplanes, etc.) (Li et al., 2017, Kharbouche et al., 2017, Martinez-Lopez et al., 2016, Locherer et al., 2015, Butler et al., 2014. ...
Thesis
Full-text available
[ Reference and PDF available at : http://hdl.handle.net/11589/160122 ] Coupling hydrologic and crop models is increasingly becoming an important task when addressing agro-hydrologic systems studies. Either for resources conservation or cropping systems improvement, the complex interactions between hydrologic regime and crop management components requires an integrative approach in order to be fully understood. Nevertheless, the literature offers limited resources on models’ coupling that targets environmental scientists. Indeed, major of guides are are destined primarily for computer specialists and make them hard to encompass and apply. To address this gap, we present an extensive research to crop and hydrologic models coupling that targets earth agro-hydrologic modeling studies in its integrative complexity. The primary focus is to understand the relationship between agricultural intensification and its impacts on hydrologic balance. We provided documentations, classifications, applications and references of the available technologies and trends of development. We applied the results of the investigation by coupling the DREAM hydrologic model with DSSAT crop model. Both models were upgraded either on their code source (DREAM) or operational base (DSSAT) for interoperability and parallelization. The resulting model operates at a grid base and daily step. The model is applied southern Italy to analyze the effect of fertilizer application on runoff generation between 2000 and 2013. The results of the study show a significant impacts of nitrogen application on water yield. Indeed, nearly 71.5 thousand cubic-meter of rain water for every kilogram of nitrogen and per hectare is lost as a reduction of runoff coefficient. Furthermore, a significant correlation between the nitrogen applications amount and runoff is found at a yearly basis with Pearson’s coefficient of 0.93.
... Geographic information system (GIS) is a computer system designed to store, manage, analyze, and visualize spatial data (Bolstad, 2012). The combination of RS and GIS techniques provides a powerful tool to map and monitor LULC changes and potentially to track the sources of fecal contamination (Butler et al., 2014). With high spatial resolution imagery, the LULC around monitoring sites for MST can be identified. ...
Article
Microbial source tracking (MST) techniques have been designed to identify the host source of fecal contamination in water. However, current MST techniques cannot provide geographic origins of particular sources because they do not provide any spatial information beyond the points of observation. In this study, the associations between landscape patterns and the major sources of microbial contamination were examined and the application of geospatial techniques (e.g., remote sensing and geographic information systems) and Bayesian modeling was explored to track microbial sources over the landscape. The land cover information of three watersheds (the lower Dungeness Watershed, the Middle Rio Grande Watershed, and the Arroyo Burro Watershed) in the United States was obtained either by classifying high resolution satellite images or directly using land cover datasets (e.g., National Land Cover Dataset, 2006 and 2011). Then, the relationship between land use/land cover (LULC) and microbial sources from these three geographically disparate watersheds were analyzed using Bayesian hierarchical models. The results showed the predictive positive associations between human sources of fecal contamination and developed area, between dog sources and grassland, and between bird sources and water, but negative associations between human sources and forest and water areas. Furthermore, the diversity of microbial sources had positive associations with landscape fragmentation and diversity indices. This study demonstrates associations between landscape patterns and major microbial sources and offers new insight in tracking the dominant sources of fecal contamination in water using geospatial and Bayesian techniques.
... In order for a river-lake system to adapt to the impact of an urban system, several decades must pass before the adaptation process is complete [15]. Biogeochemical cycles of urban watershed continuums and the functions of watershed ecosystems are linked with land use and urban infrastructure, and these elements are continuously changing in terms of space and time [16,17]. In the economic, social, and environmental conditions in which the background of rapid development is set, building an eWater model for integrated planning and management of river-lake systems is a new method for solving the conflicts between river-lake and urban systems [18]. ...
Article
Full-text available
The process of urbanization takes up a lot of wetlands, profoundly changing the natural connection of surrounding river–lake systems, all the while causing serious damage to the environment of connected catchments. Urban systems and river–lake systems are not isolated and static, there is a relation between them which is constantly changing. Based on the idea of system research, the urban system is simplified into four subsystems: environment, infrastructure, social, and economic. These four components interact together, influencing the river–lake system to form a compound system. This paper aims to reflect the features and evolution laws of the compound system, by building a Collaborative Development Model to study the changing of the compound system in Wuhan, China over a 10-year period. The results show that by implementing the Donghu Lake Ecological River Network Engineering Project, the damaged river–lake system in Wuhan showed some improvement. However, in order to improve the sustainability of the compound system in Wuhan, the status of the river–lake system, social system and environment system, which are still comparatively substandard, should be constantly improved. The Collaborative Development Model could also be used in other cities and regions, to provide the basis for sustainable development.
Article
The ecological and human health issues caused by inter-basin water transfer have drawn wide attention. To illustrate the spatial and temporal distribution of heavy metals (HMs) in the middle and lower Han River (MLHR), a 1D hydro-environmental model was developed, calibrated, and validated based on the observed data. Three simulation scenarios were conducted to analyze the human health risks resulting from heavy metal pollution. The results show that the water flow reduction after water transfer enhanced the heavy metal pollution in the MLHR. The total health risk of HMs in surface water of the MLHR basin was 4.69×10⁻⁵ a⁻¹ for adults and 7.82×10⁻⁵ a⁻¹ for children without the water transfer, while it increased to 4.77×10⁻⁵ a⁻¹ and 7.95×10⁻⁵ a⁻¹ when the South-to-North Water Transfer Project (SNWTP) was put into operation. The Yangtze to Han River Water Transfer project (YHWTP) can partially offset the adverse SNWTP influences. However, the human health risk is still higher than those without SNWTP operation. The health risks in the MLHR basin are main from carcinogens As, which should be prioritized as the main targets for water environment risk management in the Han River basin.
Article
Full-text available
This paper presents a 1-dimensional unsteady flow hydraulic model used for the simulation of flow in rivers: the MIKE 11 model from the Danish Hydraulic Institute (DHI). In this study, the hydraulic model use flow and stage hydrographs in a time series format from field measurements. The approach for this model leads to unsteady flow simulations along stream channel reach. The study case applied to the model is the Euphrates River in Iraq; the stream length used for this model is 1.6 km. The study’s focus was the development of a MIKE 11 model based on surveyed, stream cross-section data. The results of this study explain that the model gives a good simulation of the flow according to a comparison between the estimated and observed stage hydrograph; also, the comparison between this model and the Uday model that was used for the same river explains that the MIKE 11 model give better simulation.
Conference Paper
Full-text available
A TMDL was developed for the Shoal Creek Watershed, a 365-km2 watershed in southwest Missouri. The watershed consists of grazed or hayed pastures (89%) fertilized with poultry litter and commercial nitrogen and some wooded areas (11%). The cattle roam freely through the pastures year-round and we estimated that 25% of the pastures have direct access to the stream. Potential sources of bacterial contamination were determined through DNA source tracking technologies. The technology was used to quantify the bacteria contribution from poultry litter spread on pastures, grazing cattle, wildlife, failing septic systems, and direct inputs such as cattle standing in the streams or pipes discharging wastewater into the streams. The Soil and Water Assessment Tool was used to simulate the flows in Shoal Creek as well as the fate and transport of nutrients in the watershed. The model was calibrated and validated using 3 years of daily flow data and 18 months of weekly nutrient data. The new bacteria equations in SWAT were then tested on this watershed. They include decay processes of bacteria in the streams as well as on the land and in the soil. The decay rates in soil water, in the soil, and in stream water are allowed to vary with water and air temperature. These equations were tested with 18 months of weekly fecal E. coli concentrations collected from grab samples. The model was used to develop and simulate alternative management practices that comply with the water quality criteria required for recreational uses of this stream.
Conference Paper
Full-text available
Fecal coliform bacteria contamination is one of the causes of water-quality impairments in surface waters which often result from the non-point source pollution, including grazing operations, failing septic system and wildlife. The Soil and Water Assessment Tool (SWAT) microbial sub-model 2005, was used to simulate the daily flows, total suspended solids, and fecal coliform bacteria concentrations in three grazed sub-watersheds (Auburn, Deer Creek, Rock Creek) of the Upper Wakarusa watershed in the northeast Kansas. The watershed characteristics for bacterial source, such as livestock, human, and wildlife, were modeled with four separate combinations to evaluate the source specific bacteria concentration at the outlet of the each watershed using modified deterministic probability of bacteria source tracking data.
Article
A digital model has been developed for the simulation of the rainfall-runoff process of rural watersheds. Input data are daily values of precipitation and temperature together with mean monthly potential evapotranspiration. The model produces daily values of streamflow as well as information on the time variation of the soil moisture content. In all, ten model parameters have to be identified, seven of which have a major influence on the performance of the model. The model operates by accounting continuously for the moisture content in four different and mutually interrelated storages representing physical elements in the watershed. It has been applied to three different Danish watersheds. Several statistical measures of accuracy have been utilized for a quantitative evaluation of the simulation results. The simulations demonstrate that the main shortcomings of the model are due to the lack of a procedure accounting for frozen ground during extended periods of frost, which could improve some of the simulation results during winter and spring.
Article
The fate of both faecal Escherichia coli and E. coli O157 in slurry following application to arable and grass plots on a clay loam soil was studied. Slurry (5% dry matter) containing 5.3 x 104 ml-1 E. coli and 30 E. coli O157 100 ml-1 was spread in early March. Initially, almost all E. coli were retained in the upper layers of the soil. Escherichia coli numbers steadily declined to less than 1% of those applied by day 29, and E. coli O157 were only detected in the soil and on the grass for the first week after application. There was some transport of bacteria to deeper layers of the soil, but this was approximately 2% of the total; transport to drains over the same period was mainly associated with rainfall events and amounted to approximately 7% of applied E. coli. However, there were indications that periods of heavy rainfall could cause significant losses of E. coli by both leaching and run-off. Experimental studies showed that E. coli O157 on grass, which was subsequently ensiled in conditions allowing aerobic spoilage, could multiply to numbers exceeding 106 g-1 in the silage.
Article
The model developed in this paper, the bacteria loading estimator spreadsheet tool (BLEST), was designed as an easy to use indicator bacteria model that can overcome the shortcomings of many of the simpler total maximum daily load (TMDL) modeling approaches by integrating spatial variation into load estimates. BLEST was applied to the Buffalo Bayou watershed in Houston, Texas and incorporated loading from point and nonpoint sources, such as wastewater treatment plants, sanitary sewer overflows, septic systems, storm sewer leaks, runoff, bed sediment resuspension, and direct deposition. The dry weather Escherichia coli load in Buffalo Bayou was estimated using BLEST to be 244 billion MPN/day and would require an overall 48% reduction to meet the contact recreation standard, while wet weather loads would need to be reduced by 99.7%. Dry weather loads were primarily caused by animal direct deposition, septic systems and discharges from storm sewers under dry weather conditions, while wet weather loads were mostly attributable to runoff and resuspension from sediment. Unlike most simple TMDL load allocation strategies, BLEST can be used to evaluate spatially variable load reduction strategies. For example, septic system load reductions implemented in less than 10% of the subwatersheds resulted in a decrease in bayou loading of more than 20%.