ArticlePDF Available

Geologic control of morphotectonic units from the Edea-Eseka Region (SW Cameroon)

Authors:

Abstract and Figures

The Low-Cameroon Plateau and coastal plain morphostructural analyses in the Edea-Eseka Region allow identification of three morphtectonic units within its, altitudes drop from East to West, from the continent to the Atlantic coast. It establishes the dependence of the morphology vis-à-vis of the geology through its lithostructural heterogeneities reinforced by differential erosion. The Puma eastern unit (Unit I) is a large plateau dominated in the East by high-reliefs due to the continental escalations. It is developed on the Neoproterozoic metamorphic Oubanguide complex liked to the Pan-African orogeny (650-550 Ma). The Edea central unit (Unit II) is characterized by NNE-SSW to NE-SW reliefs and developed on the metamorphic Paleoproterozoic Nyong complex which corresponds to the NW border of the Congo craton reactivated during the Eburnean orogeny (2400- 1800 Ma) due to it collision with the Sao Francisco craton. The Mevia western unit (Unit III), equivalent to the coastal plain, is shape on the cretaceous to actual sedimentary Atlantic complex that the emplacement is related to the Aptian rifting of the South Atlantic Ocean opening.
Content may be subject to copyright.
REV. CAMES - VOL. 01.2013
47 | Sciences de la vie, de la terre et agronomie
(1) Univ Douala, Fac Sci, DépSci de la Terre. BP. 24157,
Cameroun ; (2) Université de Ngaoundéré, Faculté des Sciences,
Département des Sciences de la Terre. BP. 454, Cameroun ; (3)
Université de Yaoundé I, Department des Sciences de la Terre,
P.B. : 812, Yaoundé, Cameroun ; (4) TU-Bergakademie Freiberg,
Institut de Géologie, D-09596 Freiberg/Sachsen, Allemagne.
Contrôle géologique des unités morphotectoniques de la
région d’Edéa – Eséka (SW Cameroun)
Nsangou Ngapna Moussa1, Owona Sébastien1*, Youmen Dieudonné1, Mpesse Jean
Engelbert1, TckeckeMpote Frédéric1, Temfack, Mathieu1, Ganwa Alembert Alexandre2,
Joseph Mvondo Ondoa3, LotharRatschbacher4et Ekodeck Georges Emmanuel1.
OÖdqdo|vh j•rpruskrorjltxh vwuxfwxudoh gx edv sodwhdx fdphurxqdlv hw gh vd sodlqh f›wl‘uh gdqv oh vhfwhxu
Hg•d Ñ Hv•nd d shuplv oÖlghqwlilfdwlrq gh wurlv xqlw•v pruskrwhfwrqltxhv grqw ohv dowlwxghv g•furlvvhqw hq
hvfdolhu gÖHvw hq Rxhvw/ gx frqwlqhqw Š od f›wh dwodqwltxh1 Hooh d •wdeol od g•shqgdqfh gh od pruskrorjlh ylv0Š0ylv
gh od j•rorjlh Š wudyhuv vhv k•w•urj•q•lw•v olwkrvwuxfwxudohv uhqiruf•hv sdu oÖdow•udwlrq glii•uhqwlhooh1 OÖxqlw•
rulhqwdoh gh Sxpd +Xqlw• L, hvw xq ydvwh sodwhdx fhqwudo vxuprqw• Š oÖHvw sdu ghv kdxwv uholhiv w•prljqdqw ghv
vxuuhfwlrqv frqwlqhqwdohv1 Hooh vÖhvw g•yhorss•h vxu oh frpsoh{h fulvwdoorsk|oolhq gh oÖRxedqjxlgh gÖ‹jh
Q•rsurw•ur}r—txh ol•h Š oÖrurj•q‘vh sdqdiulfdlqh +9830883 Pd,1 OÖxqlw• fhqwudohgÖHg•d +Xqlw• LL, vh fdudfw•ulvh
sdu ghv uholhiv rulhqw•v QQHÑVVZ Š QHÑVZ > g•yhorss•h vxu oh frpsoh{h p•wdpruskltxhgx Q|rqj gÖ‹jh
Sdo•rsurw•ur}r—txh1 Lo fruuhvsrqg Š od erugxuh QZ gx fudwrq gx Frqjr uhprelolv• oruv gh vd froolvlrq dyhf oh
fudwrq gh Vdr Iudqflvfr gxudqw oÖrurjhq‘vh Hexuq•hqqh +573304;33 Pd,1 OÖxqlw• rfflghqwdoh gh P•yld +Xqlw•6,
•txlydohqw Š od sodlqh f›wl‘uh/ vÖhvw g•yhorss•h vxu oh frpsoh{h v•glphqwdluh Dwodqwltxh gÖ‹jh Fu•wdf• Š dfwxho
grqw od plvh hq sodfh hvw frqv•fxwlyh dx uliwlqjdswlhq gh oÖrxyhuwxuh gh oÖDwodqwltxh Vxg1
Mots clés: J•rpruskrorjlh vwuxfwxudoh/ Frpsoh{h gx Q|rqj/ Frpsoh{h gh oÖRxedqjxlgh/ Frpsoh{h Dwodqwltxh/
VZ Fdphurxq1
Geologic control of morphotectonic units from the Edea-Eseka
Region (SW Cameroon)
RÉSUMÉ
ABSTRACT
The Low-Cameroon Plateau and coastal plain morphostructural analyses in the Edea-Eseka Region
allow identification of three morphtectonic units within its, altitudes drop from East to West, from the
continent to the Atlantic coast. It establishes the dependence of the morphology vis-à-vis of the
geology through its lithostructural heterogeneities reinforced by differential erosion. The Puma
eastern unit (Unit I) is a large plateau dominated in the East by high-reliefs due to the continental
escalations. It is developed on the Neoproterozoic metamorphic Oubanguide complex liked to the
Pan-African orogeny (650-550 Ma). The Edeacentral unit (Unit II) is characterized by NNE-SSW to
NE-SW reliefs and developed on the metamorphicPaleoproterozoic Nyong complex which
corresponds to the NW border of the Congo craton reactivated during the Eburnean orogeny (2400-
1800 Ma) due to it collision with the Sao Francisco craton. The Mevia western unit (Unit III),
equivalent to the coastal plain, is shape on the cretaceous to actual sedimentary Atlantic complex
that the emplacement is related to the Aptian rifting of the South Atlantic Ocean opening.
Key words: Structural geomorphology, Nyong complex, Oubanguide complex, Atlantic complex, SW
Cameroon.
REV. CAMES - VOL. 01.2013
Sciences de la vie, de la terre et agronomie | 48
La SW Cameroun est constitué géologiquement
de l’Archéen, du Paléo-, Néoprotérozoïque et
d’une couverture Crétacé à Actuelle (Fig. 1).
L’Archéen correspond au Complexe du Ntem, la
portion camerounaise du craton du Congo
(Maurizotet al., 1986; Feybesseet al., 1998). Le
Paléoprotérozoïque équivaut au Complexe du
Nyong, portion camerounaise de la Chaîne
Centre Ouest Africaine (Feybesseet al., 1998Ð;
Penaye et al., 2004). Le Néoprotérozoïque est
représenté ici par le Complexe de l’Oubanguide
dans partie méridionale qu’est la Chaîne Pan-
africaine Nord Equatoriale (Nzenti et al., 1988Ð;
Owona et al., 2011b). La couverture Crétacé à
actuelle correspond au bassin sédimentaire cô-
tier Camerounais de Douala-Kribi-Campo
(Maurizotet al., 1986Ð ; NjikeNgaha., 1984Ð ;
Ntamak-Nida et al., 2010). L’étude géomorpho-
logie et structurale effectuée dans la région
Edéa-Eséka (3°N30’ à 4°N, 10°E à 10°E50’) ré-
vèle l’existence de trois unités morphogéné-
tiques majeures au sein du bas plateau
camerounais dont le contrôle géologique à tra-
vers les variations aussi bien lithologiques (N-S
et E-W) que structurales sont évaluées dans ce
travail.
2. Contexte géologique
La région d’Edéa – Eséka est à cheval sur les
complexes du Nyong, de l’Oubanguide et At-
lantique. Le complexe du Nyong (NyC) d’âge
Paléoprotérozoïque (2400 – 1800 Ma) appartient
à la chaîne Ouest d’Afrique Centrale liée la re-
mobilisation de la bordure Ouest du craton du
Congo lors de sa collision avec le craton de Sao
Introduction
Figure 1: 1a,bÐ: Situation géographique de la zone d’étude. 1cÐ: Morphologie du SW Cameroun. 1dÐ: Esquisse
géologique du SW Cameroun modifiée après Owona et al. (Soumis). 1eÐ: Carte géologique de la Région Edéa-
Eséka. Noter en 1e, les discordances stratigraphique et angulaire entre les NyC et OC d’une part et NyC et
Sédimentaire d’autre part (Nsangou, 2011).
REV. CAMES - VOL. 01.2013
49 | Sciences de la vie, de la terre et agronomie
Francisco durant l’orogénèse éburnéenne
Centrale (Feybesseet al., 1998; Maurizotet al.,
1986; Nedelec et al., 1993; Pénayeet al., 2004).
Le groupe de Govayan exploré ici (Fig. 1e) est
constitué de TTG, anorthosites, métagabbros,
charnockites, métapelites et métaplutonites,
formations ferrifères et mylonites (Maurizotet
al., 1986; Lerouge et al., 2006Ð; Owona, 2008).
Le NyC a été affecté par une déformation poly-
phasée marquée par la mise en place de la
nappe du Nyong transporté vers l’Est sur le
craton du Congo et disséquée par des couloirs
de cisaillements blastomylonitiques orientés
NW–SE (Feybesseet al., 1998; Maurizotet al.,
1986; Nedelec et al., 1993; Pénayeet al., 2004Ð;
Lerouge et al., 2006Ð; Owona et al., 2011b). Le
complexe de l’Oubanguide (OC) ou chaîne Pan-
africaine Nord Equatoriale d’âge Néoprotéro-
zoïque ayant subi l’orogénèse Pan-Africaine
(Nzentiet al., 1988; Abdelsalamet al., 2002). Le
Groupe de Yaoundé exploré ici (Fig. 1e) dans sa
partie occidentale est constituée de métape-
lites, métaplutonites, tonalites et gabbros (Toteu
et al., 2006b). Sa déformation est dominée par
la mise en place de la nappe de Yaoundé trans-
portée vers le SSW sur le craton du Congo et le
NyC (Nzenti et al., 1988Ð; Mvondo et al., 2007aÐ;
Owona et al., 2011b). Cette nappe est dis-
séquée par des cisaillements à l’instar du
Cisaillement Centre Camerounais et plus tard
par des failles comme celle de la Sanaga (To-
teuet al., 1994b; Mvondoet al., 2007; Nzentiet
al., 1988; Owona et al., 2011a,b). Le complexe
Atlantique d’âge Crétacé à actuel, de nature
sédimentaire est mis en place à la faveur rifting
associé à l’ouverture de l’Atlantique Sud. Il est
représenté ici (Fig. 1e) par le bassin sédimen-
taire Kribi-Campo, Douala (Maurizotet al., 1986Ð;
NjikeNgaha., 1984).
3. Matériels et méthodes
L’analyse géomorphologique structurale s’est
basée sur l’étude des cartes topographiques et
des images MNT (Modèle numérique de terrain)
de type SRTM-3. Elle a permis l’élaboration des
cartes hydrographiques et d’unités morphogé-
nétiques, les profils topographiques sériéset le
bloc diagramme. Les logiciels ADOBE ILLUS-
TRATOR CS, SURFER 9, MAP INFO 8.5 etÐArc-
GIS 9.3 ont été utilisés à cet effet ainsi
qu’unrécepteur GPS pour la localisation des
points géoréférenciés sur le terrain. MAP INFO a
servi dans la vectorisation des courbes de ni-
veau du secteur étudié. Le bloc diagramme a
été réalisé dans SURFER 9. LeÐMNT àété analy-
sé dans ArcGis9.3 pour l’obtention des images
d’ombrage et d’ensoleillement.
4. Résultats
4-1. Hydrographie
La région Edéa – Eséka est à cheval dans les
bassins versants de la Sanaga, du Nyong, de la
Dibamba, du lac Ossa et du lac Mévia (Fig. 2).
Le tableau 1 définit leurs paramètres hydrogra-
phiques. Ce réseau hydrographique est dendri-
Tableau I: Paramètres hydrographiques des principaux collecteurs
REV. CAMES - VOL. 01.2013
Sciences de la vie, de la terre et agronomie | 50
tique avec toutefois des tendances secondaires
qui varient d’un bassin à un autre, suggérant
d’une part l’existence des hétérogénéités litho-
structurales et d’autre part, son guidage
structural. Les paramètres géométriques dé-
terminés dans le sous bassin-versant de la Kel-
lé, affluent du Nyong et représentatif de
l’hydrographie de la zone définit un réseau
dense (l’indice de compacité de Gravelius KG =
27,81 m, les densités de drainage Dd = 1,22/km
et hydrographique Dh= 0,97 cours d’eau au
km²) pour un sous bassin versant au rectangle
équivalent plus long que large (le périmètre P =
4037,83 km et la superficie S = 1653,18 km²
pour une longueur L = 2018,35 km, une largeur l
= 0,82 km avec L = 2461,4l (L >>> l) suggérant
un temps de réponse aux crues plus long.
4.2 Orographie
La zone Edéa – Eséka, sur la base de la typolo-
gie, l’étagement et l’agencement spatial du
relief est constitué de en 03 unités morpholo-
giques (Unités1-3) dont les altitudes décroissent
d’Est en Ouest suggérant une variation latérale
lithostructurale aussi bien N-S que E-W (Fig. 3,
4, 5). Les collines et inselbergs de l’Est qui do-
mine la zone Edéa-Esékaeti culminent à plus de
400 m. Ils constituent l’Unité1. Le plateau
central orienté N-S aux altitudes comprises
entre 80 à 160 m est dominé par des collines en
Figure 2 : Carte hydrographique et rosaces de directions de la région d’Edéa-Eséka. Noter la
nature globalement dendritique de ce réseau et l’endoréisme du bassin versant du lac Mévia (V).
Fig. 3. Représentation du modèle numérique de terrain
(MNT) de la région d’Edéa mettant en relief les entités
morphogénétiques et fractures majeures.
Fig.4. Carte des unités morphologiques illustrant la
diminution d’altitude d’E en W, soit du continent vers la
plaine côtière.
REV. CAMES - VOL. 01.2013
51 | Sciences de la vie, de la terre et agronomie
demi-oranges et buttes subcirculaires NE–SW
parallèle à la faille de la Sanaga dont les alti-
tudes sont comprises entre 120 et 200 m. Il
constitue l’Unité2 qui sert aussi de transition
avec la plaine côtière occidentale ou Unité3.
Ses altitudes moyennes sont de l’ordre de 40
m. L’Unité3 est surmontée par quelques buttes
résiduelles qui avoisinent 80 m.
4.3 Lithologie
La lithologie met en exergue les Complexes du
Nyong, Oubanguide et Sédimentaire (Fig. 1e).
Le complexe du Nyong est constitué des ortho-
gneiss, charnockites, mylonites, amphibolites,
métasyénites et métagranodiorites. Le com-
plexe de l’Oubanguide est constitué de para-
gneiss, micaschistes, chloritoschistes et
quartzites. Le complexe sédimentaire est
constitué de conglomérats, grès grossiers, silts,
argiles, calcaires, sables ferrugineux et marnes
enrichies.
5. Discussion
L’étude morphostructurale dans la région
d’Edéa – Eséka révèle des variations morpholo-
giques de l’Ouest vers l’Est sous le contrôle
géologique (Ganwa et al.,2007; Owona et al.,
Submitted). L’hydrographie comparée dans les
différents bassins versants montre la domi-
nance des réseaux globalement dendritique qui
se développent habituellement sur des forma-
tions cristallines et cristallophylliennes (Fig. 1,
2). Les écoulements se font globalement de
l’Est vers l’Ouest, soit du continent vers l’océan
Atlantique. Ils témoignent d’une diminution dans
le même sens des altitudes et suggérant une
surrection continentale orientale liée à la mise
en place des nappes du Nyong et de Yaounde,
des horst et grabens etÐ ; une subsidence
occidentale lié à l’ouverture de l’Atlantique Sud
(Mvondo et al., 2007a, MvondoOndoa et al.,
2009Ð; Owona et al., 2011bÐ; Ngako et al., 2003Ð;
Njonfang et al., 2008Ð; NjikeNgaha, 1984). Le
réseau hydrographique globalement dendritique
établit la variation aussi bien W–E que N-S des
lithologies. Alors que la tendance élongée du
réseau hydrographique caractérise l’environne-
ment côtier, les tendances angulaires et subpa-
rallèles dans les bassins versants de la Sanaga,
du Nyong, de la Dibamba, des lacs Ossa et
Méviaétablissent le guidage par des failles à
l’instar de la faille de la Sanaga (NtepeMfou-
mouet al., 2004; Ngako et al., 2003Ð; Njonfang
et al., 2008Ð; MbolaNdzana et al., 2011). Les
portions curvilignes des cours d’eaux épousent
les plis régionaux des nappes du Nyong et de
Yaoundé. L’endoréisme des bassins versants
des lacs Ossa et Mévia indiquent l’existence de
deux zones de dépressions dont aucun filet
d’eau ne s’en échappe. Le bassin d’accumula-
tion du lac Mevia, orienté N-S parallèlement à la
côte et à la faille de la Sanaga, est lié à la frac-
turation. La dépression du lac Ossa serait
quant à elle, créée par l’érosion différentielle des
couches sédimentaires superficielles de nature
calcaire, érodées par une par l’eau, elle-même
stoppée en profondeur par les couches argi-
leuses. L’hypoTh de sa création par une chute
d’impactite reste à être confirmée par la miné-
ralogie et la thermobarométrie locales.
L’orographie d’ensemble région Edéa – Eséka,
en escalier d’Est en Ouest, met en relief des 03
morphofaciès identifiés à l’aide de la typologie,
le modelé et l’agencement spatial du reliefÐ; du
moutonnement et alignement des collines
parallèles aux failles. Ces morphofaciès sont
aussi liés aux différences lithostructurales des
complexes du Nyong, de l’Oubanguide et Sédi-
mentaire (Maurizot et al., 1986Ð; Nzenti et al.,
1988Ð; Feybesse et al., 1998Ð; Penaye et al.,
2004Ð; Owona et al., 2011b). En somme, l’ana-
lyse géomorphologique et structurale met en
évidences 03 unités (Fig. 5).
Fig. 5. Bloc diagramme avec échelle de couleurs indiquant
les 03 unités morphogénétiques de la Région Edéa-avec
diminution des altitudes du continent vers la côte (Fig. 3,
4). Noter le contrôle de la morphologie par la géologie
(structure et lithologie) d’Est en Ouest.
REV. CAMES - VOL. 01.2013
Sciences de la vie, de la terre et agronomie | 52
L’Unité1 de Puma à l’Est, développé sur les for-
mations cristallines et cristallophylliennes du
complexe de l’Oubanguide soulevés par les
surrections continentales liées au transport vers
le SSW de la nappe de Yaoundé sur les com-
plexes du Ntem et du NyongÐ; aux horsts et la
grabens post-panafricains majeurs (Feybesse et
al., 1998Ð; Mvondo et al., 2007aÐ; Owona et al.,
2011b).
L’Unité2 d’Edéa au Centre, développé sur les
formations cristallines et cristallophylliennes du
complexe du Nyong soulevés par des surrec-
tions NNE–SSW à NE–SW éburnéennes à pan-
africaines (Feybesse et al., 1998Ð; Penaye et al.,
2004Ð; Owona et al., 2011b). Sa limite occiden-
tale constitue une cuesta orientée sub-N-S
parallèlement à la direction du rifting sud-at-
lantique. Ce morphofacièsprécéde la plaine cô-
tière.
L’Unité3 de Mévia à l’Ouest, développé sur le
complexe sédimentaire lié au rifting de l’ouver-
ture Aptienne de l’Atlantique Sud (NjikeNgaha,
1984).
6. Conclusion
A partir des variations des typologies litholo-
giques,Ð des surrections continentales orientales
liées aux orogénèses éburnéenne et pan-afri-
caine; et de la subsidence occidentale associée
à l’ouverture de l’Atlantique Sud, l’analysemor-
phostructuraledifférencie la région d’Edéa –
Eséka en 03 unités morphogénétiques de Pu-
ma, d’Edéa et de Mevia. La première à l’Est
s’estdéveloppée sur les formations cristallo-
phylliennes du complexe de l’Oubanguide sou-
levés par les surrections continentales
post-panafricaines respectivement forte et
moyenne. L’unité d’Edéa au Centre s’estforgée
sur les formations cristallophylliennes du com-
plexe du Nyong soulevés par des surrections
NNE–SSW à NE–SW éburnéennes à panafri-
caines. Sa limite avec l’unité de Mevia à l’Ouest
constitue une cuesta orientée sub-N-S parallè-
lement à la direction du rifting sud-atlantique.
Cette unité est une plaine côtière construite sur
le sédimentaire Crétacé à Actuel du bassin sé-
dimentaire de Douala-Kribi-Campo.
Remerciements
Les auteurs sont infiniment reconnaissants au
projet Université de Douala-UNESCO sur les
changements climatiques qui a soutenu ce tra-
vail.
Références
Abdelsalam GM, Liégeois L, and Stern RJ.
2002. The Saharan Métacraton. J Afr Earth Sci,
34, 119-136.
Feybesse JL, Johan V, Triboulet C, Guerrot C,
Mayaga-Mikolo F, Bouchot V, EkoN’Dong J.
1998. The West Central African Belt: A model of
2.5-2.0Ga accretion and two- phase orogenic
evolution. Precamb Research, 87, 161-216.
Ganwa AA, Frisch W, MvondoOndoa J, Njom B.
2007. Relationships between the parameters of
geomorphology and structural features in the
Pan-African Fold belt of Cameroon. Example of
Kombé II-Mayabo area.JEng Applied Science,
2, 2, 336-341.
Lerouge C, Coherie A, Toteu SF, Penaye J, Mi-
lesi JP, Tchameni R, Nsifa EN, Fanny MC, De-
loule E. 2006. Shrimp U–Pb zircon age evidence
for Paleoproterozoic sedimentation and 2.05
Gasyntectonicplutonism in the Nyong Group,
south-western Cameroon: consequences for the
Eburnean–Transamazonian belt of NE Brazil and
Central Africa. J Afr Earth Sci, 44 (4–5),
413–427.
Maurizot P, Abessolo A, Feybesse A, Johan JL,
Lecompte P. 1986. Etude et prospection mi-
nière au Sud-Ouest Cameroun. SynTh des tra-
vaux de 1978–1985. Rapport BRGM, 85 CNRS
066, Orléans, 274 p.
MbolaNdzana SP, Sep Nlomngan JP,Owona S,
Olinga JB, KoumedjalaKamenbang B, Mous-
sangoIbohn PA, WokwenmendamNguet P,
NyamaAtibagoua B, MvondoOndoaJ. 2011.Evi-
dence for the NE-SW extension and E-W shor-
REV. CAMES - VOL. 01.2013
53 | Sciences de la vie, de la terre et agronomie
tening in the Sa’a-Monatélé Region, Yaoundé
Group (Cameroon, Central African Fold
Belt).Abstract Université deNgaoundéré, Coll
Inter RIPIESCA Nord Cameroun P97.
MvondoOndoa J, Mvondo H, Bas den Brok.
2009. Pan-African tectonics in northwestern
Cameroon: Implication for the history of western
Gondwana. Gond Research, 16, 163–164
Mvondo H, Owona S, MvondoOndoa J, and
Essono J. 2007a.Tectonic evolution of the
Yaounde segment of the Neoproterozoic Oro-
genic Belt in South Cameroon (Central Afri-
ca).Can J Earth Sci, 44, 443-444.
Nedelec A, Minyem D, Barbey P. 1993. High P-
High T anatexis of ArchaeanTonalitic grey
gneisses: the Esekamigmatites, Cameroon,
Precamb Research, 62, 191-205.
Qjdnr Y/ Diidwrq S/ Qqdqjxh MP/Qmdqnr W1 53361
Sdq0Diulfdq whfwrqlf hyroxwlrq lq fhqwudo dqg
vrxwkhuq Fdphurrq= wudqvsuhvvlrq dqg
wudqvwhqvlrq gxulqj vlqlvwudo vkhdu pryhphqwv1
M DiuHduwkVfl/ 69/ 53:05471
QmlnhQjdkd SU1 4<;71 Frqwulexwlrq Š oÖ•wxgh
j•rorjltxh/ vwudwljudskltxh hw vwuxfwxudoh gh od
erugxuh gx edvvlq dwodqwltxh dx Fdphurxq1 Xql0
yhuvlw• gh \drxqg•/ Wk‘vh j•rorjlh/ 4641
Qmrqidqj H/ Qjdnr Y/ Pruhdx Fk/ Diidwrq S/ Glrw
K1 533;1 Uhvwudlqlqj ehqgv lq kljk whpshudwxuh
vkhdu }rqhv= Wkh ÕÕFhqwudo Fdphurrq Vkhdu
]rqhÖÖ/ Fhqwudo Diulfd1 M DiuHduwkVfl/ 85/ <Ñ531
QvdqjrxQjdsd P1 53441 Hwxgh j•rpruskror0
jltxh hw vwuxfwxudoh gh od u•jlrq Hg•d0Hv•nd1
Xqlyhuvlw• gh Grxdod/ P•prluh Pdvwhuv LL/ J•r0
orjlh/ 781
Qwdpdn0Qlgd PM/ Erxutxlq V/ Pdnrqj MF/ Edx0
glq I/ Pshvvh MH/ LwmrnrQjrxhp F/ Nrpjxhp
SE/ Deror JP1 53431 Vhglphqwrorj| dqg vh0
txhqfh vwudwljudsk| iurp rxwfursv ri wkh Nulel0
Fdpsr vxe0edvlq= Orzhu Pxqghfn Irupdwlrq
+Orzhu Fuhwdfhrxv/ vrxwkhuq Fdphurrq,1
grl=43143492m1mdiuhduvfl153431341337
Qwhsh Q/ Dnd IW/ Xedqjrk UX/ Dwhed E/
Qqdqjh MP/ Khoo MY1 53371 Wkh Mxo| 5335 hduwk0
txdnh lq wkh Nulel uhjlrq= jhrorjlfdo frqwh{w dqg
d suholplqdu| hydoxdwlrq ri vhlvplf ulvn lq vrxwk0
zhvwhuq Fdphurrq1 M Diu Hduwk Vfl/ 73/
496Ñ4:51
Q}hqwl MS/ Edueh| S/ Pdfdxgl‘uh M/ Vred G1
4<;;1 Ruljlq dqg hyroxwlrq ri wkh odwh Suhfdp0
euldq kljk0judgh \drxqg• jqhlvvhv +Fdph0
urrq,1Suhfdpe Uhvhdufk/ 6;/ <4Ñ43<1
Rolyhlud HS/ Wrwhx VI/ Dudžmr PQF/ Fduydokr PM/
Qdvflphqwr UV/ Exhqr MI/ PfQdxjkwrq Q/ Ed0
vlolfl J1 53391 Jhrorjlf fruuhodwlrq ehwzhhq wkh
Qhrsurwhur}rlf Vhujlsdqr ehow +QH Eud}lo, dqg
wkh \drxqgh ehow +Fdphurrq/ Diulfd,1 M Diu Hduwk
Vfl/ 77/ 708/ 7:307:;1
Owona S. 2008. Archean, Eburnean and Pan-
African features and relationships in their junc-
tion zone in the South of Yaounde (Cameroon).
University of Douala, Ph.D. Thesis in geology,
232.
Owona S, MvondoOndoa J, MbolaNdzana SP,
Mpesse JE, NsangouNgapna M, Nkabsaah C,
Ratschbacher L,Ekodeck GE. Submitted.Geo-
logical control of morphotectonic units in the
Southwest Cameroon (Central Africa).C R
Géosciences.
Owona S, MvondoOndoa J, Ratschbascher L,
MbolaNdzana SP, Tchoua MF,Ekodeck GE.
2011b. The geometry of the Archean, Paleo and
Neoproterozoic tectonics in the Southwest Ca-
meroon. C R Géosciences, 343, 312-322.
Owona S, Schulz B, Ratschbacher L, Mvon-
doOndoa J, Ekodeck GE, Tchoua M, Affaton P.
2011a. Pan-African metamorphic evolution in
the southern Yaounde Group (Oubanguide
Complex, Cameroon) as revealed by EMP-mo-
nazite dating and thermobarometry of garnet
metapelites.J Afr Earth Sci, 59, 125-139.
Penaye J.Toteu SF, Tchameni R, Van Schmus
WR, Tchakounté J, Ganwa A, Minyem D,Nsifa
EN. 2004. The 2.1 Ga West Central African Belt
REV. CAMES - VOL. 01.2013
Sciences de la vie, de la terre et agronomie | 54
in Cameroon: extension and evolution. J
AfrEarthSci, 39, 159-164.
Scanvic JY. 1983. Télédétection aérospatiale et
informations géologiques. Manuels et mé-
thodes. Edition. BRGM., 284.
Toteu SF, Van Schmus WR, Penaye J, Nyobe
JB. 1994b. U–Pb and Sm–Nd evidence for
Eburnean and Pan-African high-grade meta-
morphism in cratonicrocks of southern Came-
roon. Precamb Research, 67, 321–347.
Toteu SF, Yongue FR, Penaye J, Tchakounté J,
SemeMouague AC, Van Schmus WR, Deloule E,
Stendal H. 2006b. U–Pb dating of plutonic rocks
involved in the nappe tectonic in southern Ca-
meroon: consequence for the Pan-African oro-
genic evolution of the central African fold belt. J
AfrEarthSci, 44, 4-5, 479-493.
... 41,42 The N0°to N10°directions correlate with directions of faults, which are associated with the opening of the South Atlantic. 43 These faults limit the Proterozoic crystallophyllian basement of the Douala-Kribi/Campo sedimentary basin. 12 The N130°to N140°directions correspond to the orientation of the shear zones and blastomylonitic faults of the NyC. ...
... 12 The N130°to N140°directions correspond to the orientation of the shear zones and blastomylonitic faults of the NyC. 11,12,[43][44][45] The confrontation of these lineaments with the known faults in the study area (Fig. 9) shows concordance in their alignments. The superimposition of Landsat and SRTM lineaments on the hydrographic network shows similarities between their directions [Figs. ...
... The N-S direction is in conformity with the general orientation of the opening of the South Atlantic, 44 structures 13 and 16 oriented in this direction, correspond to deep faults, marking the contact between the Douala sedimentary sub-basin and the Proterozoic crystalline basement. 31,43,44 ). Lineaments 1, 3, 4, 6, 12, and 15 follow E-W, ENE-WSW, and NE-SW directions, corresponding to the orientations of the Sanaga Fault and the Central Cameroon Shear Zone. ...
Article
Full-text available
The aim of this study is to map and analyze the lineament network in the Edéa, Cameroon, area using remote sensing and gravimetric data to determine their hydrogeological implications. Principal component analysis and directional filters applied to Landsat7 ETM+ and Shuttle Radar Topography Mission imagery, respectively , were used to extract remote sensing lineaments. Rose diagram of these linea-ments highlights four families of lineaments along the N-S, E-W, NE-SW, and NW-SE directions. There are three major directions accounting for 74% of lineaments, including N0°to N10°, N20°to N30°, and N40°to N50°; and four minor directions (with 26% of the lineaments), including N60°N70°, N80°to N90°, N130°to N140°, and N150°to N160°. N20°to N90°directions correlate with those of major structures of the Oubanguides Complex, such as the Sanaga Fault and Central Cameroon Shear Zone. N130°to N140°direction corresponds to orientation of Shear Zones and blastomylonitic faults of Nyong Complex. Superposition of these lineaments on hydrographic network shows similarities between their directions, thus highlighting strong impact of tectonics on orientation of hydrographic network. The presence of numerous lineaments highlights strongly fractured subsoil, and their high density favors the circulation and accumulation of groundwater. Upward continuation and horizontal gradient maxima methods applied to Earth Gravitational Model 2008 data allowed the extraction of gravimetric lineaments, with a major N-S orientation, which correlates with general orientation of South Atlantic opening. Superposition of remote sensing lineaments and gravimetric lineaments highlights their parallelism, admitting that gravimetric structures are an extension in depth of surface structures defined by remote sensing.
... 41,42 The N0°to N10°directions correlate with directions of faults, which are associated with the opening of the South Atlantic. 43 These faults limit the Proterozoic crystallophyllian basement of the Douala-Kribi/Campo sedimentary basin. 12 The N130°to N140°directions correspond to the orientation of the shear zones and blastomylonitic faults of the NyC. ...
... 12 The N130°to N140°directions correspond to the orientation of the shear zones and blastomylonitic faults of the NyC. 11,12,[43][44][45] The confrontation of these lineaments with the known faults in the study area (Fig. 9) shows concordance in their alignments. The superimposition of Landsat and SRTM lineaments on the hydrographic network shows similarities between their directions [Figs. ...
... The N-S direction is in conformity with the general orientation of the opening of the South Atlantic, 44 structures 13 and 16 oriented in this direction, correspond to deep faults, marking the contact between the Douala sedimentary sub-basin and the Proterozoic crystalline basement. 31,43,44 ). Lineaments 1, 3, 4, 6, 12, and 15 follow E-W, ENE-WSW, and NE-SW directions, corresponding to the orientations of the Sanaga Fault and the Central Cameroon Shear Zone. ...
... The rock massif on site is located on the Ngovayang chain which forms part of the major tectonic unit of the Nyong Series in the southern part of Cameroon according to Ndong et al. [20]. The rock mass is predominantly amphibolite in nature, with the rock being partly weathered [21], and from tunneling point of view the rock mass could be regarded as relatively competent. ...
Article
Full-text available
The modernization of railway networks constructed during the colonial era requires the conversion of railway gauges from the metric to the standard gauge, as well as the expansion from single-track operation to a dual-track operation in order to accommodate railway infrastructures with the traffic growth. Existing critical infrastructures such as bridges and tunnels in the existing network will also require appropriate reconstruction measures since minimum clearance requirements associated with the standard gauge are subjected to new rolling stock and maintenance facilities. The present work presents an optimal procedure to solve efficiently the problem of a tunnel reconstruction during track conversion while maintaining trains circulation during the transition period from metric to standard gauge with less traffic interruption. From a multi-criteria comparison scheme we examine different options ranging from enlarging the existing tunnel to constructing an adjacent new standard gauge dual-track tunnel with the construction of an adjacent standard gauge single-track tunnel as a neutral choice. Results show that enlarging the existing tunnel under a sustained traffic, is both technically feasible and economically viable.
Article
Full-text available
The study of satellite images or aerial photographs is often preliminary for geological field trips. Geologists, especially those in the undeveloped countries do not have access to landsat or aerial photographs. This study is intended to show that the use of geomorphological parameters like topographic maps can permit one to overcome such difficulties. Relations between morphology and rocks of basement are known and treated on physical geography and geomorphology revues and treaty. Correlation between structures, orography and river network in part of the Panafrican fold belt of Cameroon were studied based on the above relationships. The attitude of the topography is imposed by ductile deformation which builds up mega-structures. The hydrographic network is guided by the tectonic lines. This highlights the tectonic from hydrographic network It appears that geomorphological parameters are attributable to geologic factors. Thus, these parameters are to be taken as useful elements for structural cartography in the Pan African terrains. This methodology of cartography, involving a judicious study of topographic maps, is recommended as a preliminary work in areas without landsat images or aerial photographs and for researchers who do not have sufficient financial support to provide themselves with images or aerial photographs.
Article
Full-text available
Geomorphologic analyses discriminate the Ntem, Nyong and Yaounde geomorphic units in the South of Yaounde. The Ntem geomorphic Unit in the South East (SE) sculpted on the Archean Ntem complex displays a lower plateau dominated by shield hills and dendritic hydrographical patterns with parallel tendency. The Nyong geomorphic Unit in the South West (SW) fashioned on the Paleoproterozoic Nyong complex shows North North East-South South West (NNE-SSW) to South West - North East (SWNE) dissymmetric interfluves differentiated into lower and higher plateaus; defines a dendritic hydrographical pattern with angular tendency. The Yaounde geomorphic unit in the N shaped on the Neoproterozoic North Equatorial Fold Belt (NEFB) defines a stepped plateau dominated by shield inselbergs and hills; displays dendritic hydrographical patterns with angular to parallel tendencies. Above geomorphic units result from Proterozoic to Phanerozoic morphogenetic processes controlled by geological factors such as typology of rocks in term of resistance face to the erosion and weathering; Sn foliations, Ln lineations, Bn+1 fold axes, shear zones and faults for structures and reinforced by the selective erosion and weathering. Geomorphic analyses can contributed efficiently in survey even in equatorial area with uncommon outcrop occurrences. Results on geological controls of the morphology within the Lower Cameroon Plateau where outcrop the Archean Congo Craton (Ntem Complex), the Paleoproterozoic West Central African Fold Belt (Nyong Complex) and the Neoproterozoic North Equatorial Fold Belt (Oubanguide Complex) in the SW Cameroon to can be extended in the whole Central Africa.
Article
Full-text available
Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D1–D2, D3 and D4. The garnet-bearing assemblages crystallized in course of the deformation stage D1–D2 which led to the formation of the regional main foliation S2. In XCa–XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P–T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P–T trends. The P–T evolution started at ∼450°C/7 kbar, passed high-pressure conditions at 11–12kbar at variable temperatures (600–700°C) and involved a marked decompression toward 6–7kbar at high temperatures (700–750°C). Th–U–Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613±33Ma and 586±15Ma. The EMP-monazite age populations between 613±33Ma enclosed in garnet and 605±12Ma in the matrix apparently bracket the high temperature–intermediate pressure stage at the end of the prograde P–T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P–T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.
Article
Full-text available
The deformation history of the Neoproterozoic Central African Orogenic Belt in southern Cameroon is well recorded in the low- to high-grade rocks outcropping in the area around Yaoundé. The fabrics in these rocks are consistent with two main ductile deformation events D1 and D2. D1 predated emplacement of calc-alkaline dioritic bodies and caused the formation of nappes that resulted in high-pressure granulite metamorphism of soft sediments. A strong overprinting of these nappes during D2 symmetric extension, probably associated with large-scale foliation boudinage and (or) gneissic doming and intense magmatic underplating, gave rise to regional flat-lying fabrics. The latter were further buckled by D3 and D4 folding phases defining a vertical constriction occurring with a major east–west to NW–SE shortening direction. The corresponding F3 and F4 folds trend north–south to NE–SW and east–west to NW–SE, respectively, and represent the main regional strain patterns. Based on the east–west to NW–SE maximum shortening orientation indicated by F3 folds, it is proposed that the nappe-stacking phase D1 occurred in the same direction. The deformation history in the area can thus be described as corresponding principally to alternating east–west to NW–SE contractions and north–south to NE–SW orogenic-parallel extensions. At the regional scale, this could be due to the Transaharan east–west collisional system.
Article
Comment on: Ngako et al. 2008 (Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana. Gondwana Research 14, 509–522.) --- The authors present a three-stage tectonic scenario highlighting N–S to NNE–SSW collision between the San Francisco Congo Craton (SFCC) and Eastern Saharan Block (ESB) tectonic indent for Gondwana deformation of northwestern Cameroon (Ngako et al., 2008). In spite of our strong disagreement with this interpretation (Mvondo et al., 2007), we welcome this publication, as challenging and useful for triggering new discussion on the tectonic history of Central W-Gondwana. We do however wish to point out what in the authors' present demonstration seems to us difficult to understand.
Article
Available isotopic and geochronological data, combined with new petrographic and structural observations in Cameroon, permit discussion of the nature and extension of the Paleoproterozoic West Central African Belt, which resulted from the Eburnean collision between the Congo and São Francisco cratons. The portion of the belt recognized in Cameroon is approximately oriented NNE-SSW and includes the Nyong series along the NW corner of the Congo craton and Paleoproterozoic remnants cropping out further north within the late Neoproterozoic Pan-African belt. The dominant rock units consist of migmatitic orthogneisses associated with amphibolites, felsic gneisses of volcanic to volcano-sedimentary origin, quartzites, and banded iron formations. Orthogneisses are mostly TTG compositions within the Nyong series and metadiorites to metagranodiorites to the north in the Pan-African belt. Paleoproterozoic evolution is characterized by the development of nappe tectonic structures, recognized in the Nyong series, and by high-grade, granulitic facies metamorphism that was associated with arrested charnockite formation. The Paleoproterozoic structures and mineral assemblages were subsequently reworked more severely in the Pan-African mobile belt than in the Nyong series, where they are locally well preserved. Broadly, the Nyong series may be ascribed to a proximal domain characterized by reworking and recycling of the adjacent Archean cratonic crust, while the occurrences farther north represent a more distal domain characterized by newly formed Paleoproterozoic (Birrimian) crust. This is consistent with the distribution of metamorphic ages, which display a polarity from the internal zones (ca. 2.1 Ga) to the external zones (ca. 2.03 Ga) and suggest origin of the metamorphic rocks in a modern-type collisional belt during the Paleoproterozoic (Eburnean).
Article
UPb analyses of zircons and SmNd mineral and whole-rock analyses of samples from southern Cameroon document three distinct rock-forming or high-grade metamorphic events: ∼2900 Ma, ∼2050 Ma, and ∼600 Ma. Zircons from the Ebolowa charnockite in southern Cameroon yield an age of 2896±7 Ma, consistent with published RbSr total rock data for the region. SmNd crustal formation ages for these rocks are ∼3000 Ma, indicating that the granitoids and Ntem Series gneisses in the north end of the Congo Craton formed ∼2900 Ma ago and do not contain major contributions from older Archean crust. A second metamorphic event of Eburnian age is identified from re-equilibration of Sm and Nd in gneisses and metadolerites of the Ntem Complex at ∼2050 Ma.Zircons from the younger Nyong Series gneisses are a complex mixture of cores and overgrowths. The overgrowths in most cases formed during a high-grade metamorphic event between 2100 and 2000 Ma and clearly postdate the Ebolowa charnockite. The ages of the cores are not precisely known, but we believe most represent detrital zircons from 2900 Ma protoliths. SmNd crustal formation ages for samples of the Nyong Series gneisses are generally 2500 to 2900 Ma, indicating that their precursors were apparently derived mainly from the Archean craton with variable amounts of younger component. SmNd garnet-total rock isochrons for metamorphosed mafic rocks in the Nyong Series yield ages of ∼2050 Ma, and zircons from one of them yield an upper intercept age of 2037±10 Ma, further documenting the existence of a major event with magmatism and charnockitization at 2000 to 2100 Ma. We interpret the Nyong Series metasedimentary gneisses as post-2900 Ma cratonic cover that was deformed and metamorphosed during the 2000 to 2100 Ma Eburnian orogeny; we cannot define precise limits on the ages of sedimentation.Preliminary data on metamorphosed intrusive rocks associated with the Yaoundé Series yield UPb concordant ages around 620 Ma, consistent with SmNd garnet—whole-rock ages from the same series. This dates the Pan African tectono-metamorphic activity in the southern end mobile belt. The Pan African lower intercepts of zircons and SmNd garnet-whole-rock ages from thNyong Series are the consequences of this event, which is further represented by a ∼590 Ma zircon age from a late syenitic pluton.Results from Cameroon are consistent with recent results from the western part of the Congo Craton farther south and from the northeastern part of the São Francisco Craton in Brazil. One interpretation of these results is that the Congo and São Francisco cratons were joined during the Ebumian-Trans-Amazonian orogeny ≈2100 Ma and are bordered to the north by a late Mesoproterozoic rift basin that was closed during the Pan-African-Brasiliano orogeny ∼600 Ma.
Article
The foliations, lineations, fold axes trajectories and shear zones kinematics vary from the Archean Ntem and Paleoproterozoic Nyong complexes to Neoproterozoic Oubanguide complex. The S1, S2 and S3 typified foliations are folded in F2, F3 and F4 cartographic folds equivalent to thrust slices while the L1, L2 and L3 lineations are oriented SSE-NNW, west-east and sub-north-south in the above complexes, respectively. Both, the foliations and lineations confirm the transport top-to-the east of the Nyong nappe onto the Congo craton during the Eburnean orogeny under amphibolitic conditions and as the transport top-to-the SSE of the Yaounde nappe onto the Ntem and Nyong complexes during the Pan-African event under granulitic to green schist conditions. The paleostress of fault and shear zones display crustal thinning and horizontal extension oriented east-west, NW-SE and sub-north-south in the Ntem, Nyong and Oubanguide complexes. All these tectonic features, completed by north-south and east-west cross sections, demonstrate litho-chrono-stratigraphical, structural and angular discordances between the three complexes.
Article
An earthquake was felt in Kribi, southwestern Cameroon, on July 23rd 2002. It was recorded at 19h50 UT by two seismographs of the Mount Cameroon volcano observatory. A macroseismic survey was conducted in the area to place the event within its geological and seismological contexts and to evaluate the seismic risk in the region. The earthquake was felt with maximum intensity of IV+ MM in the city of Kribi and was accompanied by a sound related to the transfer of longitudinal elastic energy from the earth to the air. Analysis of the seismograms and macroseismic data show that the earthquake had a magnitude of 3.6±0.4 and its epicenter is located in the Atlantic Ocean, 50–55 km west of Kribi. The earthquake originated from the oceanic part of the northern margin of the Congo craton and/or the Sanaga fault system, frequent reactivation of which has produced many historic earthquakes. Preliminary evaluation of seismic risk shows that Kribi city is the most risky zone in the area, but the risk is about 20 times less than in the Mount Cameroon region.
Article
TIMS-ID and SIMS U–Pb dating on zircons from metaplutonic rocks involved in the Pan-African nappe of southern Cameroon allow definition of three groups of subduction-related intrusions: group-I intrusions represented by the Masins metagabbro in the Lomie region yielded 666±26Ma; group-II intrusions represented by the Mamb metasyenogabbro and the Yaoundé pyriclasite yielded ca. 620Ma and are broadly coeval with the deposition of the Yaoundé metasediments; group-III intrusions represented by the Elon augen metagranite and the Ngaa Mbappe metamonzodiorite yielded ca. 600Ma. The onset of the nappe tectonics occurred under high-grade conditions in the range 616 to 610Ma and continued around 600Ma with the emplacement of the shallowest nappes. Finally, the construction of southern Cameroon proceeded by a multi-stage evolution characterized by a long-lived development of magmatic arcs associated with rapid opening and closure of sedimentary marginal basins in relation to a northward subduction.